Source code for soxs.apec

import numpy as np
from astropy.io import fits
import os
from soxs.utils import parse_value, mylog, soxs_cfg, \
    DummyPbar, get_data_file
from tqdm.auto import tqdm
from soxs.lib.broaden_lines import broaden_lines
from soxs.constants import erg_per_keV, hc, \
    cosmic_elem, metal_elem, atomic_weights, clight, \
    m_u, elem_names, abund_tables


[docs]class ApecGenerator: r""" Initialize a thermal gas emission model from the AtomDB APEC tables available at http://www.atomdb.org. This code borrows heavily from Python routines used to read the APEC tables developed by Adam Foster at the CfA (afoster@cfa.harvard.edu). Parameters ---------- emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The minimum energy for the spectral model. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The maximum energy for the spectral model. nbins : integer The number of bins in the spectral model. var_elem : list of strings, optional The names of elements to allow to vary freely from the single abundance parameter. These can be strings like ["O", "N", "He"], or if nei=True they must be elements with ionization states, e.g. ["O^1", "O^2", "N^4"]. Default: None apec_root : string, optional The directory root where the APEC model files are stored. If not provided, the default is to grab them from the tables stored with SOXS. apec_vers : string, optional The version identifier string for the APEC files. Default is set in the SOXS configuration file, the default for which is "3.0.9". broadening : boolean, optional Whether or not the spectral lines should be thermally and velocity broadened. Default: True nolines : boolean, optional Turn off lines entirely for generating spectra. Default: False abund_table : string or array_like, optional The abundance table to be used for solar abundances. Either a string corresponding to a built-in table or an array of 30 floats corresponding to the abundances of each element relative to the abundance of H. Default is set in the SOXS configuration file, the default for which is "angr". Built-in options are: "angr" : from Anders E. & Grevesse N. (1989, Geochimica et Cosmochimica Acta 53, 197) "aspl" : from Asplund M., Grevesse N., Sauval A.J. & Scott P. (2009, ARAA, 47, 481) "wilm" : from Wilms, Allen & McCray (2000, ApJ 542, 914 except for elements not listed which are given zero abundance) "lodd" : from Lodders, K (2003, ApJ 591, 1220) nei : boolean, optional If True, use the non-equilibrium ionization tables. These are not supplied with SOXS but must be downloaded separately, in which case the *apec_root* parameter must also be set to their location. Default: False Examples -------- >>> apec_model = ApecGenerator(0.05, 50.0, 1000, apec_vers="3.0.3", ... broadening=True) """ def __init__(self, emin, emax, nbins, var_elem=None, apec_root=None, apec_vers=None, broadening=True, nolines=False, abund_table=None, nei=False): if apec_vers is None: apec_vers = soxs_cfg.get("soxs", "apec_vers") mylog.debug(f"Using APEC version {apec_vers}.") if nei and var_elem is None: raise RuntimeError("For NEI spectra, you must specify which elements " "you want to vary using the 'var_elem' argument!") self.nei = nei emin = parse_value(emin, "keV") emax = parse_value(emax, 'keV') self.emin = emin self.emax = emax self.nbins = nbins self.ebins = np.linspace(self.emin, self.emax, nbins+1) self.de = np.diff(self.ebins) self.emid = 0.5*(self.ebins[1:]+self.ebins[:-1]) if nei: neistr = "_nei" ftype = "comp" else: neistr = "" ftype = "coco" cocofile = f"apec_v{apec_vers}{neistr}_{ftype}.fits" linefile = f"apec_v{apec_vers}{neistr}_line.fits" if apec_root is None: self.cocofile = get_data_file(cocofile) self.linefile = get_data_file(linefile) else: self.cocofile = os.path.join(apec_root, cocofile) self.linefile = os.path.join(apec_root, linefile) if not os.path.exists(self.cocofile) or not os.path.exists(self.linefile): raise IOError(f"Cannot find the APEC files!\n {self.cocofile}\n, " f"{self.linefile}") mylog.debug(f"Using {cocofile} for generating spectral lines.") mylog.debug(f"Using {linefile} for generating the continuum.") self.nolines = nolines self.wvbins = hc/self.ebins[::-1] self.broadening = broadening self.line_handle = fits.open(self.linefile) self.coco_handle = fits.open(self.cocofile) self.nT = self.line_handle[1].data.shape[0] self.Tvals = self.line_handle[1].data.field("kT") self.dTvals = np.diff(self.Tvals) self.minlam = self.wvbins.min() self.maxlam = self.wvbins.max() self.var_elem_names = [] self.var_ion_names = [] if var_elem is None: self.var_elem = np.empty((0, 1), dtype='int') else: self.var_elem = [] if len(var_elem) != len(set(var_elem)): raise RuntimeError("Duplicates were found in the \"var_elem\" list! %s" % var_elem) for elem in var_elem: if "^" in elem: if not self.nei: raise RuntimeError("Cannot use different ionization states with a " "CIE plasma!") el = elem.split("^") e = el[0] ion = int(el[1]) else: if self.nei: raise RuntimeError("Variable elements must include the ionization " "state for NEI plasmas!") e = elem ion = 0 self.var_elem.append([elem_names.index(e), ion]) self.var_elem.sort(key=lambda x: (x[0], x[1])) self.var_elem = np.array(self.var_elem, dtype='int') self.var_elem_names = [elem_names[e[0]] for e in self.var_elem] self.var_ion_names = ["%s^%d" % (elem_names[e[0]], e[1]) for e in self.var_elem] self.num_var_elem = len(self.var_elem) if self.nei: self.cosmic_elem = [elem for elem in [1, 2] if elem not in self.var_elem[:, 0]] self.metal_elem = [] else: self.cosmic_elem = [elem for elem in cosmic_elem if elem not in self.var_elem[:,0]] self.metal_elem = [elem for elem in metal_elem if elem not in self.var_elem[:,0]] if abund_table is None: abund_table = soxs_cfg.get("soxs", "abund_table") if not isinstance(abund_table, str): if len(abund_table) != 30: raise RuntimeError("User-supplied abundance tables " "must be 30 elements long!") self.atable = np.concatenate([[0.0], np.array(abund_table)]) else: self.atable = abund_tables[abund_table].copy() self._atable = self.atable.copy() self._atable[1:] /= abund_tables["angr"][1:] def _make_spectrum(self, kT, element, ion, velocity, line_fields, coco_fields, scale_factor): tmpspec = np.zeros(self.nbins) if not self.nolines: loc = (line_fields['element'] == element) & \ (line_fields['lambda'] > self.minlam) & \ (line_fields['lambda'] < self.maxlam) if self.nei: loc &= (line_fields['ion_drv'] == ion+1) i = np.where(loc)[0] E0 = hc/line_fields['lambda'][i].astype("float64")*scale_factor amp = line_fields['epsilon'][i].astype("float64")*self._atable[element] if self.broadening: sigma = 2.*kT*erg_per_keV/(atomic_weights[element]*m_u) sigma += 2.0*velocity*velocity sigma = E0*np.sqrt(sigma)/clight vec = broaden_lines(E0, sigma, amp, self.ebins) else: vec = np.histogram(E0, self.ebins, weights=amp)[0] tmpspec += vec ind = np.where((coco_fields['Z'] == element) & (coco_fields['rmJ'] == ion+int(self.nei)))[0] if len(ind) == 0: return tmpspec else: ind = ind[0] de0 = self.de/scale_factor n_cont = coco_fields['N_Cont'][ind] e_cont = coco_fields['E_Cont'][ind][:n_cont]*scale_factor continuum = coco_fields['Continuum'][ind][:n_cont]*self._atable[element] tmpspec += np.interp(self.emid, e_cont, continuum)*de0 n_pseudo = coco_fields['N_Pseudo'][ind] e_pseudo = coco_fields['E_Pseudo'][ind][:n_pseudo]*scale_factor pseudo = coco_fields['Pseudo'][ind][:n_pseudo]*self._atable[element] tmpspec += np.interp(self.emid, e_pseudo, pseudo)*de0 return tmpspec*scale_factor def _preload_data(self, index): line_data = self.line_handle[index+2].data coco_data = self.coco_handle[index+2].data line_fields = ['element', 'lambda', 'epsilon'] if self.nei: line_fields.append('ion_drv') line_fields = tuple(line_fields) coco_fields = ('Z', 'rmJ', 'N_Cont', 'E_Cont', 'Continuum', 'N_Pseudo','E_Pseudo', 'Pseudo') line_fields = {el: line_data.field(el) for el in line_fields} coco_fields = {el: coco_data.field(el) for el in coco_fields} return line_fields, coco_fields def _get_table(self, indices, redshift, velocity): numi = len(indices) scale_factor = 1./(1.+redshift) cspec = np.zeros((numi, self.nbins)) mspec = np.zeros((numi, self.nbins)) vspec = None if self.num_var_elem > 0: vspec = np.zeros((self.num_var_elem, numi, self.nbins)) if numi > 2: pbar = tqdm(leave=True, total=numi, desc="Preparing spectrum table ") else: pbar = DummyPbar() for i, ikT in enumerate(indices): line_fields, coco_fields = self._preload_data(ikT) # First do H, He, and trace elements for elem in self.cosmic_elem: if self.nei: # For H, He we assume fully ionized ion = elem else: ion = 0 cspec[i,:] += self._make_spectrum(self.Tvals[ikT], elem, ion, velocity, line_fields, coco_fields, scale_factor) # Next do the metals for elem in self.metal_elem: mspec[i,:] += self._make_spectrum(self.Tvals[ikT], elem, 0, velocity, line_fields, coco_fields, scale_factor) # Now do any metals that we wanted to vary freely from the abund # parameter if self.num_var_elem > 0: for j, elem in enumerate(self.var_elem): vspec[j,i,:] = self._make_spectrum(self.Tvals[ikT], elem[0], elem[1], velocity, line_fields, coco_fields, scale_factor) pbar.update() pbar.close() return cspec, mspec, vspec def _spectrum_init(self, kT, velocity, elem_abund): kT = parse_value(kT, "keV") velocity = parse_value(velocity, "km/s") v = velocity*1.0e5 tindex = np.searchsorted(self.Tvals, kT)-1 dT = (kT-self.Tvals[tindex])/self.dTvals[tindex] return kT, dT, tindex, v
[docs] def get_spectrum(self, kT, abund, redshift, norm, velocity=0.0, elem_abund=None): """ Get a thermal emission spectrum assuming CIE. Parameters ---------- kT : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The temperature in keV. abund : float The metal abundance in solar units. redshift : float The redshift. norm : float The normalization of the model, in the standard Xspec units of 1.0e-14*EM/(4*pi*(1+z)**2*D_A**2). velocity : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The velocity broadening parameter, in units of km/s. Default: 0.0 elem_abund : dict of element name, float pairs, optional A dictionary of elemental abundances in solar units to vary freely of the abund parameter, e.g. {"O": 0.4, "N": 0.3, "He": 0.9}. Default: None """ from soxs.spectra import Spectrum if self.nei: raise RuntimeError("Use 'get_nei_spectrum' for NEI spectra!") if elem_abund is None: elem_abund = {} if set(elem_abund.keys()) != set(self.var_elem_names): raise RuntimeError("The supplied set of abundances is not the " "same as that was originally set!\n" "Free elements: %s\nAbundances: %s" % (set(elem_abund.keys()), set(self.var_elem_names))) kT, dT, tindex, v = self._spectrum_init(kT, velocity, elem_abund) if tindex >= self.Tvals.shape[0]-1 or tindex < 0: return np.zeros(self.nbins) cspec, mspec, vspec = self._get_table([tindex, tindex+1], redshift, v) cosmic_spec = cspec[0,:]*(1.-dT)+cspec[1,:]*dT metal_spec = mspec[0,:]*(1.-dT)+mspec[1,:]*dT spec = cosmic_spec + abund*metal_spec if vspec is not None: for elem, eabund in elem_abund.items(): j = self.var_elem_names.index(elem) spec += eabund*(vspec[j,0,:]*(1.-dT)+vspec[j,1,:]*dT) spec = 1.0e14*norm*spec/self.de return Spectrum(self.ebins, spec)
[docs] def get_nei_spectrum(self, kT, elem_abund, redshift, norm, velocity=0.0): """ Get a thermal emission spectrum assuming NEI. Parameters ---------- kT : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The temperature in keV. elem_abund : dict of element name, float pairs A dictionary of ionization state abundances in solar units to vary freely of the abund parameter, e.g. {"O^1": 0.4, "O^4": 0.6, "N^2": 0.7} Default: None redshift : float The redshift. norm : float The normalization of the model, in the standard Xspec units of 1.0e-14*EM/(4*pi*(1+z)**2*D_A**2). velocity : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The velocity broadening parameter, in units of km/s. Default: 0.0 """ from soxs.spectra import Spectrum if not self.nei: raise RuntimeError("Use 'get_spectrum' for CIE spectra!") if set(elem_abund.keys()) != set(self.var_ion_names): raise RuntimeError("The supplied set of abundances is not the " "same as that was originally set!\n" "Free elements: %s\nAbundances: %s" % (set(elem_abund.keys()), set(self.var_ion_names))) kT, dT, tindex, v = self._spectrum_init(kT, velocity, elem_abund) if tindex >= self.Tvals.shape[0]-1 or tindex < 0: return np.zeros(self.nbins) cspec, _, vspec = self._get_table([tindex, tindex+1], redshift, v) spec = cspec[0,:]*(1.-dT)+cspec[1,:]*dT for elem, eabund in elem_abund.items(): j = self.var_ion_names.index(elem) spec += eabund*(vspec[j,0,:]*(1.-dT) + vspec[j,1,:]*dT) spec = 1.0e14*norm*spec/self.de return Spectrum(self.ebins, spec)