Posts tagged ‘Quotes’

I Like Eq

I grew up in an environment that glamourized mathematical equations. Equations adorned a text like jewelry, set there to dazzle, and often to outshine the text that they were to illuminate. Needless to say, anything I wrote was dense, opaque, and didn’t communicate what it set out to. It was not until I saw a Reference Frame essay by David Mermin on how to write equations (1989, Physics Today, 42, p9) that I realized that equations should be treated as part of the text. You should be able to read them. David Mermin set out 3 rules for writing out equations, which I’ve tried to follow diligently (if not always successfully) since then. Continue reading ‘I Like Eq’ »

Kepler and the Art of Astrophysical Inference

I recently discovered iTunesU, and I have to confess, I find it utterly fascinating. By golly, it is everything that they promised us that the internet would be. Informative, entertaining, and educational. What are the odds?!? Anyway, while poking around the myriad lectures, courses, and talks that are now online, I came across a popular Physics lecture series at UMichigan which listed a talk by one of my favorite speakers, Owen Gingerich. He had spoken about The Four Myths of the Copernican Revolution last November. It was, how shall we say, riveting.

Owen talks in detail about how the Copernican model came to supplant the Ptolemaic model. In particular, he describes how Kepler went from Ptolemaic epicycles to elliptical orbits. Contrary to general impression, Kepler did not fit ellipses to Tycho Brahe’s observations of Mars. The ellipticity is far too small for it to be fittable! But rather, he used logical reasoning to first offset Earth’s epicyle away from the center in order to avoid the so-called Martian Catastrophe, and then used the phenomenological constraint of the law of equal areas to infer that the path must be an ellipse.

This process, along with Galileo’s advocacy for the heliocentric system, demonstrates a telling fact about how Astrophysics is done in practice. Hyunsook once lamented that astronomers seem to be rather trigger happy with correlations and regressions, and everyone knows they don’t constitute proof of anything, so why do they do it? Owen says about 39 1/2 minutes into the lecture:

Here we have the fourth of the myths, that Galileo’s telescopic observations finally proved the motion of the earth and thereby, at last, established the truth of the Copernican system.

What I want to assure you is that, in general, science does not operate by proofs. You hear that an awful lot, about science looking for propositions that can be falsified, that proof plays this big role.. uh-uh. It is coherence of explanation, understanding things that are well-knit together; the broader the framework of knitting the things together, the more we are able to believe it.

Exactly! We build models, often with little justification in terms of experimental proof, and muddle along trying to make it fit into a coherent narrative. This is why statistics is looked upon with suspicion among astronomers, and why for centuries our mantra has been “if it takes statistics to prove it, it isn’t real!”

A quote on data analysis

Same data, different authors, different results.

(Marco Sirianni, from a conference on starbursts).