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Why Study Quasars and AGN?
• Up to 1000 Galaxy Luminosities

– Visible to z > 6 (Age < 1 Gyr)
– Evolve strongly in luminosity and space density
– Variability: ‘galaxy power from solar system scales’

• Growth of Massive Black holes
– Quasars & Active Galactic Nuclei are where SMBH grow

from their z~10 seeds.
– Much of growth is hidden by dust & gas

• Black Hole & Galaxy “Co-evolution”
– M-σ. Why?
– Feedback: limit cycle induced by AGN?

• Efficient energy extraction ~0.1Mc2

– vs 0.01 Mc2 for nuclear fusion
– Spectra nothing like starlight

• similar power/decade from Far-IR to X-ray
— Black Hole masses: 106 - 109 M

– Accretion disk Laccretion =  5-20% Lfusion
• Relativistic Jets

–  accelerates matter in bulk to 99.5% c [Γ=10].
– ‘superluminal motion’  c.f. 99.88% at Fermilab Tevatron;

– electrons accelerated to Γ=1000 (TeV photons)
– Linear: ‘spherical cow’ not a good approximation

Note: AGN (Active Galactic Nuclei) are just lower luminosity quasars)
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Galaxy & Black Hole Co-evolution
Feedback

• Galaxy bulges and central black hole
masses correlate: MBH = 0.05[?] Mbulge

– Magorrian et al. 1998
– Ferrarese & Merritt; Gebhardt et al. 2002[?]
– Maiolino & Hunt 2004[?]

• Extraordinary link between accretion rates
at kpc and µpc scales
– High angular momentum barrier

• Feedback from AGN
– Radiation
– Relativistic jets
– Wind kinetic energy, momentum
– Matter (metals)

• Invoked as a  panacea in galaxy formation
– How does it work?

Ferrarese & Ford 2005
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Black Hole Masses at Early Times
Black Hole Growth

• Reverberation mapping shows L-
radius relation

• 2ndary BH masses from FWHM =>
Rg + Lopt => cm

• z = 3 - 5 quasar BH masses can
exceed 109 M

• Age 1.2-1.8Gyr,
• 0.8-1.4 Gyr from reionization
• Grow faster than Eddington rate?

– Salpeter time = 4 x 107 yr (= mass e-
folding time

• Are masses overestimated?
• Check by measuring R(cm) directly

Vestergaard 2004 ApJ 601, 676
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 Quasar & AGN ComponentsQuasar & AGN Components
1. massive black hole ✓
Proposed: Lynden-Bell 1969
Demonstrated in AGN: Wandel & Peterson
Questions: Origin, co-evolution,

spin, Penrose process; GR tests

2. accretion disk   ?
Proposed: Lynden-Bell 1969, Pringle & Rees 1972,

Shakura & Sunyaev 1972
Demonstrated?: Shields78, Malkan82, Eracleous?
Questions: proof. Viscosity=(MRI?), ang.mom,RIAF

3. relativistic jet ✓
Proposed: Rees 1967 [PhD], Blandford & Rees 1974
Demonstrated: Cohen et al. (VLBI)
Questions: acceleration mechanism (Penrose/Blandford-Znajek?)

4. Disk wind atmosphere ✓BELR, WA,BALs, NELR

Proposed: Mushotzky+1972 - Murray+1995- Elvis 2000,Proga2000
Demonstrated:  Krongold et al. 2006 - NGC4051
Questions: acceleration mechanism; M/Medd, eigenvector 1,

impact on environment

5. Obscuring torus ✓
Proposed: Lawrence & Elvis 1982
Demonstrated: Antonucci & Miller 1985,

Urry et al.
Questions: Beyond the Bagel: host

and/or disk



Martin Elvis, Interferometry Workshop, Tucson AZ Nov 2006

Scale of Quasar/AGN Components
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Imaging the AGN UV/Optical Continuum
Accretion Disk Physics

• Wide SED spread: No theory, no
correlations

• Presumed to be accretion disk
– 50 - 100 Schwartzchild radii
– ~100 nano-arcsec

• Underlying power-law component
– Occasionally dominates
– Jet? Bremsstrahlung?
– Jet dia. Few x 100 Rs

• Challenging
– Not the next generation

interferometers?

Elvis et al., 1994, ApJ, 95,
1
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Interferometer Accessible Ranges:
Dust and Broad Emission Lines
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Imaging Quasars I: Dust
Black Hole Growth, Accretion Physics

• Strong dust reddening between NELR and
BELR - AGN types. Very common.

•  ‘Unified Model’
• Minimum radius set by maximum dust

evaporation temperature
Rmin = 1.3 L UV,46

1/2 T1500
-2.8 pc

Barvainis 1987 ApJ 320, 544
– Rmin ~ 10 pc for the most luminous quasars
– Rmin ~ 1 pc for 3C273 (Quasar)
– Rmin ~ 0.1 pc for NGC5548 (AGN)

• Absorbed radiation re-emitted: 1-100µm IR
• First dust forms in AGN winds?
• Brightest AGNs in Near-IR:

– “NGC Seyferts” K = 10 - 12

1

1.5

1.8

1.9/2
*

Osterbrock & Koski 1976
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Standard Torus: Standard Issues

• ‘Torus’ obscures 4/5 AGN
• How is donut supported?

– Covering fraction >50%
– yet cold (dusty)
– Cloud-cloud collisions should flatten

structure
– Thick clumpy accretion needs

Mtorus>MEdd   see SgrA*
Vollmer, Beckert & Duschl 2004 A&A 413, 949
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Torus Alternatives: 1. Warped Disk

• Warped CO disk on ~100 pc scale in
NGC1068 Schinnerer et al. 2000 ApJ 533, 850

• NGC 1068 has hollow ‘ionization’ cones
Crenshaw & Kraemer 2000 ApJ 532, L101

– I.e. Matter bounded
– a true outflow cone
– Not ISM illuminated by collimated continuum

CO warped disk AGN

‘ionization
cones’

NGC1068 Kinematics

Hollow ‘ionization cones’
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Torus Alternative: 2. Disk Wind

• Rapid absorption variability
– days, hours
 accretion disk scale obscurer

• Eases torus physics:
– No problem supporting large

covering factor
• Aids Feedback:

– Radiation still blocked
– Matter escapes

Host ISM can be affected
 Imaging the torus will decide

Kartje, Königl & Elitzur,
1999 ApJ 513, 180
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Beginnings of Imaging AGN Torus
Feedback

• NGC 1068 has hollow cones in ENLR
Crenshaw & Kraemer 2000 ApJ 532, L101

• Cen A  [3 Mpc]

– 0.1” = 1.5 pc, same as 15mas @ 20 Mpc

– HST Pα image: disk or bicone?
Schreier et al. 1998 ApJ 499, L143

– Magellan resolved 10µm emission r ~1 pc
Karovska et al. 2003

• NGC4151 [20 Mpc]
– hot dust:.
– r =  0.1 pc  Keck K interferometry, Swain et al. 2003 ApJ 596, L163

– r = 0.04 pc reverberation Minezaki et al. 2003 ApJ 600, L35

• 48+/-2 light-days

– Range of sizes: multiple origins?

Cen A Pa-α
HST

Cen A  12µm Magellan

NGC1068 Kinematics
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Quasars as Dust FactoriesQuasars as Dust Factories
Early Star FormationEarly Star Formation

Elvis, Marengo & Karovska, 2002 ApJ, 567, L107

Cooling BEL
clouds

Oxygen rich dust

Cooling BEL clouds

Carbon rich dust
Dust:
• Hard to make: high density, low T
• Important catalyst of star formation
• Could quasars be the source of the first

dust in the universe?
• Outflowing BEL gas expands and cools

adiabatically
• BEL adiabats track through dust

formation zone of AGB stars
• AGN Winds must create dust copiously
• Applies to Carbon-rich and Oxygen-rich

grains
Applies to Carbon-rich and Oxygen-rich grains

Princeton AGN Physics with the SDSS, 29 July 2003
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High z Quasar Dust: an example

• Highest z quasar: SDSSJ1148+52 z=6.4
• Mdust = 108.5 M Bertoldi et al. 2003

• Assumptions:
– Mdot = mdot(Edd), always
– Mdot(wind) = 0.5 x 10-8 MBH/M
– Z =  10 Z
– Milky Way dust depletion

• Dust formation rate is sufficient
 quasar winds may be important for

dust creation at high z
Rmin = 1.3 L UV,46

1/2 T1500
-2.8 pc

Barvainis 1987 ApJ 320, 544

• The most luminous z=5-6 quasars
– R ~ 10 pc   ~ 6 mas
– J = 15 - 16, K = 14-15 Agueros et al.

2005,  AJ 130, 1022

Maiolino et al. 2006, astro-ph/0603261
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Imaging Quasars II:Imaging Quasars II:
Broad Emission Line RegionsBroad Emission Line Regions

 Broad Emission Lines (BELs)

• FWHM = 2000 - 10000 km/s

• few 1000 rg location

• EW up to 200 Å (Hα, Lα)

• Brightness T ~ 10,000K

• Logarithmic profiles:

• Line flux proportional to continuum

• no beaming

•Photoionized

• High velocity gas closer to Black Hole

•Velocity resolved imaging
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Broad Emission Lines: BELs
• Universal

– All are permitted transitions
• High densities ~1010-12 cm-3

– Can be hidden (type 2 AGN)
– Can be overwhelmed (blazars)

• Properties:
– Bright: 2 meter telescopes need

1/2 hr
– logarithmic profiles(triangular)

• rare 2-horned profiles (disks)
• Which lines?

– High Ionization: CIV, NV, OVI,
HeII

• blueshifts - winds esp. Leighly
2004

– Low Ionization: MgII, FeII, Pa,
Br

• disk? Collin et al. 1988
– FWHM(HiBELs) > FWHM(LoBELs)

OpticalUltraviolet

Infrared
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A Plausible Model for the
Broad Emission Line Regions

Elvis 2000 ApJ 545, 63;  2003 astro-ph/0311436

Becoming a secure basis for physical wind models: allow tests
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Imaging Broad Emission Line Regions
Feedback, Accretion Physics

LoBELs: MgII, Balmer, Paschen
• Observe outer accretion disk
Precision BH masses
HiBELs: OVI, Lyα, CIV} all UV, HeII}

weak
• Measure acceleration law
 Choose between wind models

[Line driven, hydromagnetic, thermal]
• Measure mdot in wind
 Determine cosmic feedback
• Observe secular changes in

structure (years)



Martin Elvis, Interferometry Workshop, Tucson AZ Nov 2006

BELR Size: Reverberation MappingBELR Size: Reverberation Mapping

• Reverberation mapping shows
Keplerian velocity relation in BELs

• FWHM gives size in rs

• Light echo delay gives size in cm
• Ratio gives rs in cm, hence MBH

• MBH = fcτΔv2/G Keplerian orbits

Mass

Light echo delay (days)D
op

pl
er
 w
id
th
 o
f 
em

. L
in
e

Peterson & Wandel 2000 ApJ 540, L13
Onken & Peterson 2002

Princeton AGN Physics with the SDSS, 29 July 2003

Thanks to Brad Peterson
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Reverberation
Mapping Results

• Scale is light-days in
moderate luminosity AGN

• Highest ionization emission
lines respond most rapidly
⇒ ionization stratification

Thanks to Brad Peterson
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BELR Sizes from Reverberation Mapping:
Response of an Edge-On Ring

• Suppose line-emitting clouds are on
a circular orbit around the central
source.

• Compared to the signal from the
central source, the signal from
anywhere on the ring is delayed by
light-travel time.

τ = r/c

τ = r cosθ /c

The isodelay surface is a parabola:

θ
τ
cos1+

=
c

r

Thanks to Brad Peterson
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Imaging the Broad Emission Line Region
Feedback

• Hβ High Ionization BELR have
~0.1mas diameters in nearby AGN

• Begins to be resolved with VLT-I,
Ohana, though in near-IR

• 10 times better resolution (few km
baselines) would be enough to see
shape

• Interferometer at Antarctica Dome C?

Elvis & Karovska, 2002 ApJ, 581, L67
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Caution!
Interferometry and Reverberation measure

different quantities

• Interferometry measures total line
flux on each baseline/physical scale

• Reverberation measures change in
line flux - which comes from region
where emissivity changes most

• “Locally Optimally Emitting Cloud”
models Korista et al. 1997

– Ionization parameter vs. gas column
density

• Requires:
– Simultaneous reverberation and

interferometry
– Could pick high/low states from

simple photometric monitoring
– Best solution: make reverberation

measurements with interferometer
– Highly intensive campaigns Korista et al. (1997)

Contours of line emissivity

Continuum
changes
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Reverberation + Interferometry
Cosmology

• H0 now measured to 10%
• H0 errors dominate uncertainties on

WMAP cosmology parameters
• Imaging reverberation mapping could

give H0 to <5%
• Reverberation gives BEL radius in cm
• Interferometry gives BEL radius in mas
• Ratio gives Angular dia. Distance vs. z

i.e.
• Works up to z~6 cf 1.5 for SN1a
• Metric plus luminosity evolution keeps

sizes (relatively) large >1µas

Elvis & Karovska, 2002 ApJ 581, L67

Redshift, z

h

w
HST

Spergel et al. 2003, 1 year WMAP results

WMAP

1.00.80.6 0.7 0.90.5

-1.0

-0.5

-1.5

-2.0
-2.5



Martin Elvis, Interferometry Workshop, Tucson AZ Nov 2006

Near-IR BELs: A preparatory Campaign
Hermine Landt et al. 2007 in prep.

P-α 1.8751 µm
P-β 1.2818 µm
P-γ 1.0941 µm
P-δ 1.0052 µm
P-ε 0.9548 µm
Br-β 2.6269 µm
Br-γ 1.9451 µm
Br-δ 1.8181 µm
Br-ε 1.7367 µm
Br-limit 1.459 µm

PDS 456,  z=0.184

P-αP-β

• Need AGN NIR
emission line
fluxes, widths for
reverberation and
ground-based
interferometry

• Need AGN NIR emission line fluxes, widths
for reverberation and ground-based
interferometry

• No JHK spectra of unobscured AGNs in
literature.

• 2 year IRTF/SPEX campaign to get Paschen
α, β, and higher series fluxes

• Selected sample of bright (J<14) nearby
(z<0.3) AGN



Martin Elvis, Interferometry Workshop, Tucson AZ Nov 2006

Near-IR BELs

• Blending issue
for many lines

• Pa-α, Pa-β, Pa-ε
clean

Hermine Landt et al. 2007 in prep.

3C273, z=0.158
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Observability of Near-IR BELs

• Low z AGN sample
z = 0.009 - 0.300
V = 11.8 - 16.4
J = 10.3 - 13.9

• NIR BEL properties
– Pa-α/H-α, Pa-β/H-α ~ 0.1
– FWHM similar

• 1000 - 7000 km s-1

• . Δλ ~30 - 200 Å

Hermine Landt et al. 2007 in prep.
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Imaging Quasars and AGN: Summary

• Pretty good astrophysics
– Black hole growth
– Cosmic Feedback
– Accretion physics
– Bulk acceleration of matter

• Needs: [~10 pixels/dia]
– 0.1 mas for dust
– 0.01 mas for LoBELs
– 0.003 mas for [UV] HiBELs
– 0.001 mas for high z LoBELs

• Near-IR BELs are promising
– R = 1000 - 6000 [500 - 3000 km/s]

• Brightest
– nearby objects K = 10 - 12
– z=6 quasars K~ 14-15
– Use unresolved accretion disk continuum

as reference?
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Coda
Interferometry Theme: Movies vs. Snapshots

A sociological note:
• Extragalactic astronomers generally do not

ask for high angular resolution because what
they do does not need it

• What they do does not need high angular
resolution just because they can do it now.

• I.e. They never thought about it
• Why not image Sn1a to get Baade-Wesselink

distances?
• Or axion constraints from stellar

diameters/pulsations? [Physics Today]

Astronomy suffers from a ‘static illusion’
- what we can image changes on timescales longer than our lifetimes
At <1 arcsec resolution we start to see changing structures
Qualitatively new view of universe

A partial list: (please send additions)
Galactic Center stars (AO)

HH-30 expanding jets (HST)

Rotating pinwheel around WR104

XZ Tau expanding jet (HST)

Mizar A binary orbit

V1663Aql -  Nova expansion

SN 1987A expansion/rings (speckle, HST)

Crab nebula wisps (Chandra)

Vela SN jet (Chandra)

Superluminal radio jets (VLBA)
http://hea-ww.harvard.edu/~elvis/motion.html
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A long term challenge: BEL Imaging Polarimetry

Smith J.E., 2002, MNRAS   astro-ph/0205204

Smith et al. 2005, MNRAS in press. astro-ph/0501640
total flux

Hydrogen
Balmer α

 polarization PA

Position angle
swing by 40o

Mrk 985

Smith J.E., 2005, MNRAS   astro-ph/0501640
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Imaging Quasars & AGN

~0.01mas~light daysAccretion Disk/ UV-
optical continuum

100km 2 µm
interferometer at
Dome C, Antarctica

10km UV space
interferometer

10µas at any z~light months
~0.1pc

High z BELRs

VLTI at U band?
1km UV space
interferometer

~0.1 mas~light weeks
~0.01 pc

Winds/High
ionization BELR

 VLTI,  Magdalena
Ridge at 1 - 2 µm

JHK, Pα

~few mas~few x r(BELR)
~light months
~0.1pc

Torus/Dust
sublimation radius
τ=1 e- scattering
surface

 VLTI at 10µm, N~few 10s mas~few pcBELR forms dust

Resolvable
with

Angular size
at 20 Mpc

Physical size
pc

AGN Wind
feature

smaller
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Quasars effects on Cosmology

Same as cooling flowsProbablyJetsMax. galaxy mass

YESJetsInhibit cooling flows

Yes, but is it dominantWindsHigh z dust

Yes, but is it dominant?Winds
Jets

Enrichment of IGM

True SED?
Obscuration

possiblyRadiation
Winds

Dry Mergers

Too many mechanismsYesRadiationMBH-σ*

CaveatsHappens?PathwayEffect


