{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Cosmological Source Catalog" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "SOXS provides the `make_cosmological_sources_file()` function to generate a set of photons from cosmological halos and store them in a SIMPUT catalog. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, import our modules:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib\n", "\n", "matplotlib.rc(\"font\", size=18)\n", "import soxs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Second, define our parameters, including the location within the catalog where we are pointed via the argument ``cat_center``. To aid in picking a location, see [the halo map](../users_guide/source_catalogs.html). " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "exp_time = (200.0, \"ks\")\n", "fov = 20.0 # in arcmin\n", "sky_center = [30.0, 45.0] # in degrees\n", "cat_center = [3.1, -1.9]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, use `make_cosmological_sources_file()` to create a SIMPUT catalog made up of photons from the halos. We'll set a random seed using the `prng` parameter to make sure we get the same result every time. We will also write the halo properties to an ASCII table for later analysis, using the `output_sources` parameter:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "soxs.make_cosmological_sources_file(\n", " \"my_cat.simput\",\n", " \"cosmo\",\n", " exp_time,\n", " fov,\n", " sky_center,\n", " cat_center=cat_center,\n", " prng=33,\n", " overwrite=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, use the `instrument_simulator()` to simulate the observation:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "soxs.instrument_simulator(\n", " \"my_cat.simput\",\n", " \"cosmo_cat_evt.fits\",\n", " exp_time,\n", " \"lynx_hdxi\",\n", " sky_center,\n", " overwrite=True,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use the `write_image()` function in SOXS to bin the events into an image and write them to a file, restricting the energies between 0.7 and 7.0 keV:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "soxs.write_image(\n", " \"cosmo_cat_evt.fits\", \"cosmo_img.fits\", emin=0.7, emax=7.0, overwrite=True\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now show the resulting image:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = soxs.plot_image(\n", " \"cosmo_img.fits\",\n", " stretch=\"sqrt\",\n", " cmap=\"cubehelix\",\n", " vmin=0.0,\n", " vmax=2.0,\n", " width=0.33333,\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" } }, "nbformat": 4, "nbformat_minor": 4 }