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Thesis advisor: Professor Samuel Kou Yang Chen

Expediting Scientific Discoveries with Bayesian Statistical
Methods

ABSTRACT

The topic of this thesis is developing Bayesian statistical methodology aimed at
solving scientific problems and thoroughly studying relevant statistical computational
methods. There are four chapters in total. The first three chapters are motivated
from a fundamental biological process and the last one is about evaluating Bayesian
computational algorithms that utilize modern parallelisable computing architecture.
Each of the four chapters is self-contained and is in the format of a journal paper,
with technical details given in the corresponding Appendix.

In chapter one, we study the molecular mechanism underlying the protein trans-
portation process through data obtained from single-molecule experiments that use
fluorescence imaging to track molecular behaviors. The experimental data consist
of hundreds of stochastic time traces from the fluorescence recordings of the experi-
mental system. We introduce a Bayesian hierarchical model on top of hidden Markov
models (HMMs) to analyze these data and use the statistical results to answer the bi-
ological questions. Besides resolving the biological puzzles and delineating the regulat-
ing roles of different molecular complexes, our statistical results enable us to propose
a more detailed mechanism for the late stages of the protein targeting process.

In chapter two, we introduce a a Matlab package for Bayesian analysis of ensem-

bles of single-molecule fluorescence traces from replicated experiments. The proposed

il
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Bayesian hierarchical hidden Markov model in chapter one provides a principled way
of extracting the common dynamics of observed traces from experimental replicates.
Numerical examples demonstrate the wide applicability of the Matlab package: traces
with low signal-to-noise ratios, traces with rare events, and heterogeneous traces with
unknown number of hidden states and different numbers of observations.

In chapter three, we propose a consistent method of estimating the order of hidden
Markov models based on the marginal likelihood, which is obtained by integrating
out both the parameters and hidden states. We prove the consistency of the marginal
likelihood method under weak regularity conditions that are satisfied by a broad class
of models. An R package is built for practitioners to apply the proposed methodology.
Comprehensive simulation studies illustrate the comparison of the proposed method
with the currently most widely adopted method, the Bayesian information criterion
(BIC), demonstrating the effectiveness of the marginal likelihood method.

In chapter four, we study parallelisable Markov chain Monte Carlo algorithms. Par-
allelisable Markov chain Monte Carlo algorithms generate multiple proposals and par-
allelise the evaluations of the likelihood functions on different cores at each iteration.
We give a simple-to-use criterion, the generalized effective sample size, for evaluations
and comparisons of general parallelisable Markov chain Monte Carlo algorithms. The
formula is easy to implement using moment estimators.

The thesis concludes with brief discussions of several open interesting questions

related to the materials in chapters 1 through 4.
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Introduction

Statistical analysis has been playing an important role in facilitating scientific discov-
eries in many ways — from designing experiments to processing experimental data and
interpreting the quantitative results. The contents of this thesis is motivated from the
broad applications of various statistical tools in tackling challenging scientific prob-
lems in the Big-Data era, aiming at contributing to the innovative developments and

thorough understanding of statistical methods, the advancement of statistical theory,



and the practice of principled statistical analysis for real world problems. Many parts
of the statistical research presented in this thesis originate from science, and serve sci-
ence. Besides the contributions to scientific disciplines, progress has also been made
to the statistical methodology and theory — on the one hand, the scientific questions
stimulate novel statistical problems; on the other hand, scientific practice contributes

original ideas to the development of novel statistical methods.

0.1 STATISTICS ANALYSIS OF SINGLE-MOLECULE DATA

Propelled by advances in technology, the scientific community has been able to study
dynamical behaviors of biological molecules through single-molecule experiments. A
single-molecule experiment preserves the signal that is lost by the bulk averaging in
traditional ensemble experiments. Thus the last two decades has witnessed great ex-
citement of single-molecule methods in various biological areas.

For the statistics community, the single-molecule experiments have brought in both
challenges and opportunities for the rigorous data analysis. First, since molecular be-
haviors are inherently stochastic, stochastic modeling is required to analyze single-
molecule data, which is not necessary in traditional ensemble experiments. Second,
the single-molecule observations are highly noisy. Third, the true biological process is
often the unobserved latent process underlying the noisy observations. Last but not
least, hundreds of experimental replicates are created in single-molecule experiments
and the experimental replicates demonstrate apparent heterogeneity.

The major contents of this thesis is motivated from the afore mentioned challenges
in single-molecule data analysis. First, we develop general Bayesian statistical method-

ologies to cope with the difficulties in analyzing data sets from single-molecule experi-



ments. The statistical analysis plays an important role in understanding the biological
mechanisms by enabling information sharing while allowing heterogeneities among
experimental replicates, which are highly volatile. Next, we build user-friendly compu-
tational packages for the scientific community to easily adopt the proposed methodol-
ogy for daily data analysis. Last, the number of conformations of a biomolecular com-
plex, which is mostly unknown beforehand, is of great importance in biology. Deter-
mining the number of conformations based on observations corresponds to the model
selection problem in statistics. This leads to the theoretical studies of order selection

of hidden Markov models and finite mixture models.

0.2 STATISTICAL COMPUTATION FOR COMPLEX MODELS

As the demand for extracting valuable signal from highly noisy data increases, peo-
ple are no longer satisfied with descriptive statistics or simple statistical models such
as linear regression. The desire for modeling real world stochastic systems and un-
derstanding the underlying uncertainties pushes the boundary of statistical models.
An appropriate statistical model that takes into account the realistic complexity al-
ways turns out to be highly sophisticated. The single-molecule data analysis is a
good example that demonstrates this point. The increasing complexity of the statis-
tical model poses difficulties on the computation, especially on Bayesian computation
which relies on the Markov chain Monte Carlo sampling, the efficiency of which is a
concern. In recent years, Bayesian computational algorithms that utilize modern par-
allel computation architecture have caught a lot of attention. Along this direction,
we further develop parallelisable Markov chain Monte Carlo algorithms and evaluate

them against widely adopted traditional sampling algorithms.



0.3 OUTLINE OF EACcH CHAPTER

The remainder of the thesis is organized as follows.

In chapter one, we give a thorough study of the single-molecule data obtained from
experiments aimed at understanding a fundamental biological process called protein
transportation. The data acquisition, pre-processing, analysis and interpretation are
detailed, as well as the scientific meanings. We propose a Bayesian hierarchical model
on top of hidden Markov models to take into accounts of different layers of variabili-
ties in the single-molecule data. The manuscript has been published in the Journal of
American Statistical Association in 2016.

In chapter two, we generalize the methodology proposed in chapter one and build
a Matlab package for processing single-molecule data sets. The statistical properties
such as consistency and robustness are studied with numerical experiments.

In chapter three, we study the theoretical problem motivated from the real appli-
cation in chapter one, i.e., the order selection of discrete state space hidden Markov
models. This is a fundamental problem that is faced by many practitioners of various
fields, but yet to be satisfactorily solved. We propose a consistent estimator that can
be easily computed and provide an R pacakge for practitioners.

In chapter four, parallelisable Markov chain Monte Carlo algorithms are discussed.
We derive a quantity that measures the effectiveness of posterior sampling for a gen-
eral family of parallelisable Markov chain Monte Carlo algorithms.

Each chapter in chapters 1-4 is a self-contained paper on its own.

The thesis is concluded with discussions about some open and intriguing statistical

problems in single-molecule data analysis and Bayesian computation algorithms.
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Science is the great antidote to the poison of

enthusiasm and superstition.

Adam Smith, The Wealth of Nations, 1776

Those who ignore statistics are condemned to

reinvent it.

Bradley Efron

Uncovering Science from Single-Molecule

Data

1.1 INTRODUCTION

In cells, proteins often need to be transported to appropriate destinations inside or

outside of a cell in order to maintain proper cellular functions (Rapoport, 2007). In



fact, over 50% of all proteins encoded in the genome need to be properly localized
from the site of their synthesis (Lodish et al., 2000; Rapoport, 1991). Co-translational
protein targeting is such a process in which proteins still being synthesized on the ri-
bosome (called ribosome nascent-chain complex or RNC) are transported to the mem-
brane. This is achieved by the collaboration of a signal recognition particle (SRP) in
the cytoplasm and its receptor (SR) located on the endoplasmic reticulum (ER) mem-
brane. It is known that the co-translational protein targeting process consists of four
basic steps (Zhang et al., 2009b; Nyathi et al., 2013), as schematically illustrated in
Figure 1.1. First, SRP recognizes and binds the signal sequence on the RNC. Second,
SRP forms a complex with SR on the membrane, bringing the RNC-SRP complex to
the membrane surface (here, an RNC-SRP-SR ternary complex is formed near the
membrane). Third, the RNC is released from the SRP-SR complex and docks on the
protein conducting channel, known as the translocon. Fourth, SRP and SR dissoci-
ate (through GTP-hydrolysis) to enter a new round of protein targeting; at the same
time, the nascent polypeptide chain goes through the translocon on the membrane.

Ribosome
mRNA

RNC Nascent T~

peptide chair\o v O SRP
L

() A~ Q
oD o P
Cytosol Osgxq;hg /—,\g 0

Membrane R ‘U [

- - — =
Periplasmic space
Translocon

Figure 1.1: The four steps of protein targeting.

While the four steps give the big picture, the detailed molecular mechanisms of the



protein targeting process remained unclear (Shen et al., 2012). One particularly puz-
zling question arises from the earlier observation that SRP and the translocon bind
the same sites on the ribosome and the signal sequence; thus, the bindings of the tar-
geting and translocation machineries to RNC are mutually exclusive. How do these
two machineries exchange on the RNC, and how do they accomplish this without los-
ing the RNC (which aborts the pathway)? Recent biochemical, structural, and single-
molecule work (Zhang et al., 2008; Shen & Shan, 2010; Ataide et al., 2011; Voigts-
Hoffmann et al., 2013; Nyathi et al., 2013; Akopian et al., 2013b) offered valuable
clues to this question. These works showed that the SRP-SR complex can undergo a
large-scale structural change and visit an alternative state in which the proteins in the
SRP-SR complex are moved away from their initial binding site on the ribosome (see
Figure 4 below); this provides a potential mechanism to enable a step-wise exchange
with the translocon.

To provide direct evidence for this mechanism and resolve its molecular details,
single-molecule experiments on the prokaryotic SRP system were conducted by the
Shan group. Single-molecule experiments are one of the major experimental break-
throughs in chemistry and biophysics in the last two decades: using advanced tools
in optics, imaging, fluorescence tagging, biomolecule labeling, etc., researchers are
able to study biological processes on a molecule-by-molecule basis (Moerner, 2002; Nie
& Zare, 1997; Tamarat et al., 2000; Weiss, 2000; Xie & Trautman, 1998; Xie & Lu,
1999; Qian & Kou, 2014). Under single-molecule experiments, transient excursions of
molecules to alternative structures can be directly visualized, rather than lost in the
statistical averaging of bulk experiments.

The single-molecule experiments under our study employ an experimental tech-

nique, FRET (Foster resonance energy transfer) (Roy et al., 2008), which uses reso-



nance energy transfer as a molecular ruler to track the dynamic movement of a molecule
in distinct conformational states, providing information on the pathway, kinetics and
equilibrium of the structural transitions of molecules. The experimental data con-
sist of hundreds of FRET trajectories, three of which are shown in Figure 1.2. Each
FRET trajectory is a time series (y1,y2,...). These experimental FRET trajectories
provide crucial information on the structural dynamics for us to resolve the questions
regarding the underlying mechanism of protein targeting. We will describe the experi-
mental details as well as the molecular structures in Section 1.2.
10 — FRET
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Figure 1.2: Three sample FRET trajectories.

From the hundreds of traces collected, we can clearly see a low FRET state and a
high FRET state in each trace, with one or more possible intermediate states. Several

critical questions arise regarding the correct interpretation of the data.

1. Molecular behavior is inherently stochastic. Ensembles of molecules that are
chemically identical will vary in their behavior at the single-molecule level (in

a manner predicted by the Boltzmann distribution). Thus, individual single

9



molecule traces are inherently heterogeneous. In addition, due to the experi-
mental limitations, such as uneven laser illumination, each FRET trajectory
has its own FRET values and length. Moreover, it is possible that some ob-
served molecules are partially damaged during sample preparation or applica-
tion. Therefore, we want to carefully examine the homogeneity/heterogeneity
of the data set: Does the collection of FRET trajectories represent chemically
homogeneous molecules or molecular complexes? If not, is the heterogeneity

biologically relevant?

. How many states are there in these FRET trajectories? Previous analysis uti-
lized an arbitrary number of states for HMM (Shen et al., 2012). However,
there is no statistical analysis to legitimate that number. A careful analysis is
needed to unravel the existence of intermediate state(s) from the noisy experi-
mental data; this information is critical, as it reflects possible pathways through

which the SRP-SR undergoes its structural transitions.

. Are these intermediates on-pathway or off-pathway? In other words, during
the transition from the low FRET state to the high FRET state, must or may
not the trajectory go through one or more intermediate state(s)? Clarifying
the transition pathway will differentiate between different mechanisms. In one
model, often termed trial-and-error, the intermediate states are “mistakes”
made by the complex as it searches for alternative structures. This model pre-
dicts that the molecules must return from the intermediate back to the low
FRET state before transitioning to the high FRET state. In an alternative
model, the active-searching model, the intermediate FRET state(s) represent

on-pathway intermediate(s) through which the SRP-SR complex attains the

10



high FRET state. This model predicts that most of the successful low-to-high

or high-to-low FRET transitions occur via the intermediate state(s).

. During the protein targeting process, RNC and translocon regulate the confor-
mation of the SRP-SR complex. This was also observed in the single-molecule
experiments. Addition of RNC or translocon changes the equilibrium and kinet-
ics via which the SRP-SR complex transits between the different FRET states,
as reflected by altered frequency and durations of these transitions. However, as
individual single-molecule traces are stochastic due to a combination of inherent
and experimental limitations (as explained in question 1), it is not possible to
accurately extract kinetic and equilibrium information from individual trajec-
tories. Rigorous statistical analysis using the information from all trajectories

is required to extract this information and understand whether the RNC and
translocon change the conformational space of the SRP-SR complex, and if so,

how.

With these questions posed, we employ a hidden Markov model (HMM), modeling

each trajectory (y1,ys,...) as originated from a hidden Markov chain. The parameters

governing the hidden Markov chain, such as the number of distinct states and the

transition probabilities, capture the molecular conformations and dynamics of the

underlying biological processes.

We note that the analysis of individual FRET trajectories based on HMMs has

been considered in the biophysical community (Rabiner, 1989; Eddy, 1996; Liu et al.,

2010). Software packages HaMMy (McKinney et al., 2006) and SMART (Greenfeld

et al., 2012) give the maximum likelihood estimators of parameters for a single trajec-

tory using the EM/Baum-Welch algorithm (Baum & Petrie, 1966; Baum et al., 1970;

11



Dempster et al., 1977). Variational Bayes method is also suggested in the FRET data
analysis, which incorporates prior information about the range of parameter values
into the model fitting (Bronson et al., 2009). Empirical Bayes methods (van de Meent
et al., 2014) and bootstrap methods (Konig et al., 2013) have also been proposed for
the analysis of FRET data.

The information from individual FRET trajectories is rather limited, mainly due
to the low signal-to-noise ratio and the limited observation time of each individual
molecule (before its photobleaching). Consequently, the inference based on single
FRET trajectories is highly variable and unreliable in the sense that even for FRET
trajectories recorded under the same experimental condition, heterogeneities of esti-
mated parameters and the estimated number of hidden states across trajectories are
apparent. Experimentalists address this issue by performing hundreds of replicate ex-
periments. Quantifying cross-sample variability has recently drawn attention among
the biophysics community (Konig et al., 2013; van de Meent et al., 2014). How to
pool information from these replicate experimental trajectories as well as to account
for their heterogeneity is the key statistical question.

Two statistical questions naturally arise in our analysis of the FRET trajectories:
(1) the determination of the total number of hidden states and (2) a robust and reli-
able estimation of model parameters by pooling information from “seemingly” hetero-
geneous FRET trajectories obtained from the same experimental condition.

The first quesiton, which is a preliminary step of building models to pool informa-
tion from multiple trajectories, has been widely studied in the statistics and chemistry
literature (Finesso, 1990; Leroux, 1992a; Rydén, 1995; Blanco & Walter, 2010; Bulla
et al., 2010). We adopt a population approach based on the Bayesian information cri-

terion, which estimates the number of hidden states by the majority rule (e.g., if the

12



majority of the FRET trajectories under the same experimental condition shows three
states, then the method selects three as the number of hidden states). This approach
actually has been recommended in the chemistry literature (Watkins & Yang, 2005)
and is described in Section 1.3, which also discusses our fitting of HMM to individual
FRET trajectories.

Second, we propose a hierarchical model on top of the HMMSs to combine informa-
tion from multiple trajectories. The hierarchical model embodies the biological intu-
ition that the same dynamics underlies all the experimental replicates, but each repli-
cate is a noisy realization of the common process due to intrinsic/experimental fluctu-
ation and noise. The hierarchical HMM enables us to not only robustly estimate the
parameters from the common dynamics but also fit the individual trajectories better
than if fitted individually. Section 2.2 describes in detail our hierarchical HMM and
how we use it to combine information from individual trajectories. Simulation studies
demonstrating that the hierarchical model can work effectively under low signal-to-
noise ratio, which is very difficult to analyze if one only fits individual trajectories.

From an applied angle, our statistical analysis of the experimental FRET data
leads to a resolution of several questions about the protein targeting process that are
described above. The model fitting and biological implications are discussed in Sec-
tion 1.5, at the end of which (Section 1.5.4) we are able to provide a detailed molecu-
lar mechanism of the co-translational protein targeting process. Model assessment is
conducted in Section 1.6. We conclude this article in Section 2.5 with a summary.
The appendix contains the technical details of our computation and Monte Carlo

sampling.
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1.2 SINGLE-MOLECULE EXPERIMENTS ON CO-TRANSLATIONAL PROTEIN TAR-

GETING

1.2.1 SINGLE-MOLECULE FRET EXPERIMENTS

The single-molecule experiments use the FRET technique to study the protein tar-
geting process. FRET tracks in real time the distance and orientation between two
microscopic tags, a donor fluorophore and an acceptor fluorophore, placed in a molec-
ular complex (Roy et al., 2008). It is often the case that the experimentalists cannot
directly observe the structural change of a bio-molecule. The FRET recording, on the
other hand, measures the distance changes of the two tags on the bio-molecule and
thus reveals the structural changes during a biological process.

Each experimental FRET trajectory is a time series (y1,y2,...), obtained at every
30 millisecond (ms) in our case. y; € [0, 1] is calculated as y; = acceptor fluorescence
/ (donor fluorescence + acceptor fluorescence). A high FRET value y; implies that
the two tags, the donor and acceptor, are close to each other, while a low FRET value
means the donor and acceptor are far apart. A sample FRET trajectory is shown in
Figure 1.3. On the top panel, the red curve is the acceptor fluorescence and the green
curve is the donor fluorescence. The black curve in the lower panel shows the FRET

values, i.e., the ratio of acceptor fluorescence over the total fluorescence.

1.2.2 FRET oN BAcCTERIAL SRP SYSTEM

In this subsection, we give the necessary background on the molecular structure of our
experimental system and how FRET reveals information about protein targeting.

Single-molecule FRET technique was used to study the bacterial SRP system. The

14
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Figure 1.3: Sample trajectory of FRET observations. The upper panel is the fluorescence of the
donor and the acceptor, respectively; the lower panel shows the FRET values.

bacterial SRP is comprised of two subunits: an RNA segment (the SRP RNA) and an
Ffh protein. Ffh contains two domains connected by a flexible linker: the M-domain
binds tightly to the SRP RNA near its capped (tetraloop) end and recognizes the sig-
nal sequence on the nascent protein; the NG-domain interacts with the SRP recep-
tor, termed FtsY in bacteria, and binds a ribosomal protein at the “exit site” where
the nascent protein emerges from the ribosome. We will use Ffh-M and Ffh-NG to
denote the M- and NG- domains of Ffh (Akopian et al., 2013b; Halic et al., 2004;
Keenan et al., 2001; Zhang et al., 2008). The SRP RNA has an elongated structure:
it stretches over 100 A (angstrom) from one end (the capped end) to the other end
(the distal end). Figure 1.4 illustrates the E.coli SRP and SR.

When the SRP-SR complex is formed, Ffh-NG binds FtsY (step 2 in Figure 1.1).
In a single-molecule experiment, we placed a FRET donor at Ffh-NG or FtsY and a
FRET acceptor at the distal end of RNA. The resulting FRET trajectory tracks the
movement of the FtsY-[Ffh-NG] complex along the RNA in real time: a low FRET

value implies the FtsY-[Ffh-NG| complex is far from the RNA distal end, whereas a
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Figure 1.4: Molecular details of SRP and SR in E.coli. (A) SRP in E.coli is composed of RNA,
Ffh-M and Ffh-NG. Ffh-M binds the RNA and the signal sequence (not shown); Ffh-NG binds the
ribosome (not shown) and SR. (B) SR in E.coli is the FtsY protein. (C) FtsY-[Ffh-NG] complex
is near the capped end of the RNA with a low FRET value. (D) FtsY-[Ffh-NG] complex is near

the distal end of the RNA with a high FRET value. The red and green stars denote the FRET
acceptor and donor, respectively.

high FRET value implies the FtsY-[Ffh-NG] complex is close to the RNA distal end.
See C and D of Figure 1.4 for illustration (where the FRET donor is the green star
and the FRET acceptor is the red star). The FRET tracking provides direct informa-
tion on the structural change of SRP-SR complex critical for the biological process. It
is known that the FtsY-[Ffh-NG] complex initially assembles at the RNA capped end
(the low FRET state of Figure 1.4(C)), where it excludes the translocon from bind-
ing RNC. When this complex moves to the RNA distal end (the high FRET state of
Figure 1.4(D)), the ribosome is vacated to allow translocon binding, and disassembly
of the FtsY-[Ffh-NG]| complex is triggered (Shen & Shan, 2010; Ataide et al., 2011).
Therefore, from the FRET trajectory, we know when the SRP-SR complex is posi-
tioned for assembly or disassembly, and when ribosome-translocon contacts are en-
abled.

To study how the RNC and translocon regulate the structural change on the SRP-

SR complex, two more sets of single-molecule FRET experiments were done: one with
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RNC, SRP and SR, the other with all four components: translocon, RNC, SRP and
SR. Together, these experiments reveal the functional role of RNC and translocon in
the protein targeting process. Table 1.1 summarizes the four sets of data labeled Ffh-
Data, FtsY-Data, RNC-Data and Translocon-Data obtained from these experiments,
and Table 1.2 summarizes the lengths of the trajectories in each data set. We will

analyze and discuss these data starting from Section 1.3.

Data Donor Acceptor Complexes in experiments No.
Ffh-Data Ffth-NG RNA distal end SRP-SR 142
FtsY-Data FtsY  RNA distal end SRP-SR 208
RNC-Data Ffh-NG RNA distal end SRP-SR, RNC 97

Translocon-Data Ffh-NG RNA distal end SRP-SR, RNC, Translocon 138

Table 1.1: Data sets and number of recorded trajectories (last column) in each set.

5% Quantile Median Mean 95% Quantile
Ffh-Data 518 1484 1681 3390
FtsY-Data 357 1027 1248 2993
RNC-Data 317 746 873 1864
Translocon-Data 338 918 1071 2357

Table 1.2: Summary of the lengths (number of data points) of the recorded trajectories in each
data set.

1.2.3 MORE EXPERIMENTAL DETAILS

This subsection gives the experimental details. A statistics oriented reader can skip it

and directly go to the statistical analysis in Section 3.
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SAMPLE PREPARATIONS

Single cysteine mutants of Fth and FtsY were expressed and purified in bacterial cells
and were subsequently labeled with Cy3-maleimide by the thiol side chain. Labeling
reaction was carried out in 50 mM KHEPES (pH 7.0), 300 mM NaCl, 2 mM EDTA,
10% glycerol at room temperature for 2 hours. Free dyes were removed by a gel fil-
tration column. Labeled SRP RNA was prepared by annealing a Quasar670-labeled
DNA splint with a T7-transcribed RNA. All the labeled protein or RNA was tested
using a well-established GTP hydrolysis assay, and showed no functional difference

with wildtype protein or RNA.

SINGLE MOLECULE INSTRUMENT

All the experiments were carried out on a home-built objective-type TIRF micro-
scope based on an Olympus IX-81 model. Green (532nm) and red (638nm) lasers
were aligned and focused on the sample in a 100 x oil immersed objective. Cy3 and
Quasar670 signals were split by a dichroic mirror and were simultaneously imaged
using an Ixon 897 camera through DV2 Dualview. Data points were recorded at 30

milliseconds time resolution.

SINGLE MOLECULE ASSAY

Before conducting experiments, all protein samples were ultracentrifuged at 100,000

rpm in a TLA100 rotor for an hour to remove possible aggregates. PEGylated slides
and coverslips were assembled into a flowing chamber, in which fluorescent molecules
were attached through biotin-neutravidin interaction.

SRP complexes were assembled in SRP buffer and diluted to 50 picomolar in imag-

18



ing buffer with oxygen scavenging system (saturated Trolox solution containing 50
mM potassium-HEPES (pH 7.5), 150 mM KOAc, 2 mM Mg(OAc),, 2 mM DTT,
0.01% Nikkol, 0.4% glucose and 1% Gloxy), flowed onto the sample chamber and in-
cubated for 5 minutes before imaging. Movies were recorded at 30 milliseconds time

intervals for up to 3 minutes until most fluorescent molecules were photobleached.

DATA AQUISITION

Single molecule data were initially processed by scripts written in IDL and Matlab.
Fluorescent peaks in the images were identified and traced throughout the movie.
Fluorescent trajectories that showed a single donor bleaching event, which implied
single-molecule attachment, and no photoblinking event, were hand-picked for sub-
sequent data analysis. The background was subtracted using the residual fluorescent

intensities in both channels, after the fluorophore has been photobleached.

1.3 PRELIMINARY ANALYSIS OF INDIVIDUAL TRAJECTORIES

Let y = (y1,v2,--.,yn) be an observed experimental FRET trajectory. We model it
as a hidden Markov model (HMM):

yi | (zi = k) ~ N (g, o7), (1.1)

where z = (z1, 22, ..., 2n) are the hidden Markov states, evolving according to a K-
state Markov chain. Although, rigorously speaking, the FRET value y; is between 0
and 1, the Gaussian assumption is widely used and accepted in the single-molecule
FRET literature in that with moderate observational noise Gaussian distribution is

a good approximation (Dahan et al., 1999; McKinney et al., 2006; Liu et al., 2010).
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The distinct states of z;, K in total, model the different conformations of a biological
complex. A conformation is a specific 3D structure of a protein or a protein complex.
For example, the low- and high-FRET states in C and D of Figure 1.4 correspond to
two distinct conformations of the SRP-SR complex. Let P = (P;;) be the K x K
transition matrix of z; it represents the conformational kinetics of a complex. For
each FRET trajectory, the parameters are @ = (P, 1, ..., [ix,0%,...,0%), where
i and a,% are the mean and variance of the FRET value at state k; k = 1,--- | K.

Let # = (m1,...,7K) be the probabilities that the first hidden state z; is in state

1,---, K. The joint likelihood of observations yi.n and the hidden states z1. is

N N
p(y1:n, 21:510) = 72y [] p(2nlzn—1, P) T] p(wnl2n, 1, 0?).
n=2 n=1
Please note that for notational ease, we use Y., to denote the vector (Ym, Ym+1,---,Yn)

for m < n throughout this article. The marginal likelihood L(0|y1.x) = [ p(y1.n, z1:n|0)d2z1:N

is given by integrating out z;.n in the joint likelihood.

1.3.1 INFER THE PARAMETERS WITH A GIVEN NUMBER OF TOTAL STATES

For each FRET trajectory, for a given K, we can use the Baum-Welch algorithm (Baum
& Petrie, 1966; Baum et al., 1970), or equivalently, the EM algorithm (Dempster
et al., 1977), to calculate the maximum likelihood estimator (MLE) 6. The Baum-
Welch/EM algorithm, in addition, can yield the marginal likelihood evaluated at the
MLE, L(é|y1; ~). Appendix A.1 gives the details of our implementation of the algo-
rithm, which uses the forward-backward algorithm.

Alternatively, taking a Bayesian perspective, we can use the Gibbs sampler (Geman

& Geman, 1984) together with data augmentation (Tanner & Wong, 1987) to jointly
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draw posterior samples of the parameters and the hidden states. This gives the pos-
terior distribution (instead of point estimates) of the parameters. Appendix A.2 gives

the details of our implementation of the Gibbs sampler with data augmentation.

1.3.2 DETECTING THE NUMBER OF HIDDEN STATES

At the molecular level, the total number of states K corresponds to the number of
conformations accessible to the complex in the experimental duration. The two con-
formations in C and D of Figure 1.4 have already been identified in previous stud-
ies, and one of our aims is to detect if there are more conformations involved in the
protein targeting process (Shen et al., 2012). Statistically, we want to find the K
that can “best” explain the variability of the observed FRET trajectories. As an ex-
ploratory analysis, we fit each FRET trajectory with the Baum-Welch/EM algorithm
for K = 1,2,3,... and find that when K > 6, the hidden states become highly non-
identifiable in that the difference of the means of neighboring hidden states are less
than 10% of their corresponding standard deviations, which are not experimentally
meaningful; and the variance parameters converge to zero, the boundary of the pa-
rameter space. Thus, the candidates are K = 1,2, 3,4, 5 for our data.

Determining K for each trajectory is a model selection problem. Akaike Informa-
tion Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC) (Schwarz,
1978) are two popular model selection methods. It is well observed in the literature
that AIC has a tendency to overestimate the number of mixture components (Wind-
ham & Cutler, 1992; Hawkins et al., 2001; Frithwirth-Schnatter, 2006), which we also
observe in our simulations. Thus, we focus on using the BIC in our study, which is
known to be consistent (as the sample size goes to infinity) for mixture models (McLach-

lan & Peel, 2005; Frithwirth-Schnatter, 2006; Biernacki et al., 1998; Leroux, 1992a).
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Though the consistency of BIC for Gaussian HMMs has not been completely estab-
lished (Cappe et al., 2005; Finesso, 1990; Rydén, 1995), it has been shown through
simulations that BIC empirically tends to select the correct model when the sample
size is large but could give highly variable results when the sample size is small or
moderate (Celeux & Durand, 2008; Rydén, 1995; MacKAY, 2002; Watkins & Yang,
2005; Frithwirth-Schnatter, 2006; Keribin, 2000). In the context of FRET trajecto-
ries, the variability of BIC for HMMs has also been observed (van de Meent et al.,
2014; Blanco & Walter, 2010; Keller et al., 2014). The general recommendation in
the statistics literature and in the FRET literature for the state-selection of HMM is
to use BIC as a first step of preliminary analysis and then assess the selection result
based on scientific and experimental insight (McKinney et al., 2006; Greenfeld et al.,
2012; Bulla et al., 2010; Keller et al., 2014; Celeux & Durand, 2008). We adopt this
recommendation.

In our case of a K-state HMM, the BIC statistic, denoted by BICk, is

BICk = —2log L(Bly1.v) + log N x (K* + 2K — 1),

where 0 is the MLE of 6 and K2 + 2K — 1 is the total number of parameters: K2 — K
for the transition matrix, 2K for the mean and variance parameters, K — 1 for the
initial distribution of the first hidden state. Minimizing BIC'k over K gives the BIC
selection of K for each trajectory. There are two potential issues with the computa-
tion of the BIC statistics: (i) the Baum-Welch/EM algorithm converges to local maxi-
mum (Baum et al., 1970; Dempster et al., 1977), and (ii) the likelihood function is un-
bounded at the boundary of the parameter space for Gaussian mixture models (Chen

& Li, 2009). These problems make the choice of initial points of the Baum-Welch/EM
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algorithm critical (Frithwirth-Schnatter, 2006). We treat them by starting the Baum-
Welch/EM algorithm from more than 500 randomly generated initial points: the ini-
tial values of the mean parameters p are uniformly generated from [0, 1], the initial
values of each row of the transition matrix P and the distribution 7 of the first hid-
den state are independently generated from the Dirichlet distribution with concen-
tration parameters all equal to 1, and the initial values of the standard deviations o
are independently generated from uniform distribution on [0.01, 0.3]; these distribu-
tions are employed based on the scientific knowledge of the plausible ranges of the
parameters. For each of the 500+ initial values, we run the Baum-Welch/EM algo-
rithm until convergence. The minimum of the BIC statistic over the 500+ algorithm
outputs is taken as the value of the BIC for model selection. Table 1.3 tallies the BIC
selection of K for the experimental FRET trajectories. Note that we put the Ffh- and
FtsY-Data together in the first row as they are both designed to study the SRP-SR

interaction by itself.

No. of trajectories allocated

Data K=1 K=2 K=3 K=4 K=5
Ffh, FtsY-Data 1 21 159 136 33
Translocon-Data 2 13 75 44 4

RNC-Data 92 3 1 1 0

Table 1.3: The number of trajectories with hidden states K allocated by minimizing BICk.

Based on the mode, we select K = 3 for the Ffh-, FtsY- and Translocon-Data and
K =1 for RNC-Data. Using the estimation mode to select K reflects “majority rule”,
i.e., using the consensus to capture the behavior in majority of the experimental repli-
cates. We note that this approach has in fact been proposed in the chemistry litera-

ture: Watkins & Yang (2005) showed through simulation and real data studies that
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it gives a highly robust estimate of K. Note that although we cannot totally rule out
the possibility of 4 or more hidden states for some trajectories, we have enough evi-
dence that 3 is the minimum number of K, which the majority of trajectories support.
We will see later (in Section 4.2) that K = 3 is well supported by the fitting of all the

trajectories.

1.4 MOoODELING FRET TRAJECTORIES WITH HIERARCHICAL HIDDEN MARKOV

MODEL

The analysis of individual FRET trajectories reveals that they could have significantly
different 0. For instance, a likelihood-ratio test on the three trajectories in Figure 1.2,
which are from the Ffh-Data, gives a p-value smaller than 0.01, soundly rejecting the
hypothesis that the three trajectories share the same 6.

Biologically, the trajectories from replicate experiments under the same condition
should reflect the common underlying process. Hence, our goal is to account for the
heterogeneity among the experimental trajectories and at the same time to pool in-
formation from the trajectories under the same experimental condition. We propose
a hierarchical HMM. Suppose {y(l), z(l)} are the observations and hidden states for
trajectory I. We assume that the same transition matrix P is shared by all trajec-

(0 (0

tories; for trajectory I, the means (u;’,...u; ) come from a higher level distribu-

(@)

tion g, ~ N (poi, n3;) with (vector) hyperparameters po and 3, and the variances
(62D, ... (6%)V) come from scaled inverse-x? distributions with (vector) hyperpa-
rameters (v, s2), where v denotes the degrees of freedom and s? are the scale param-
eters. The intuition behind this hierarchical HMM is that (i) the transition matrix

P represents the conformational kinetics, which is intrinsic to the molecule; it thus
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should be the same across the trajectories. (ii) The experimental replicates are sub-
ject to equipment noise, thermal fluctuation and random variations in experimental
samples; the hierarchical structure on p® and (02)(1) reflects it — each trajectory can
be considered as a noisy version of the underlying truth. Figure 2.1 diagrams our hi-

erarchical HMM.

2 2
Global Parameters /(/“‘07/"70)7 (v, KP\

Individual Parameters (u®, o) (u®,o®) (D), ™)
and indicators 7 72 7(T)
Hidden States 21 ~(2) e e »(T)

Observed Trajectories ym y? . ()

Figure 1.5: Diagram of the hierarchical HMM.

We note that the real experimental trajectories have different lengths: some are
quite short. Within a short experimental time window it is possible that not every
conformation shows up — some fast transitions and rare states might be missed in
short trajectories. To accommodate this we incorporate a set of indicators into our hi-
erarchical HMM: I() indicates which states are present in trajectory [. For example,
if the maximum number of states is K = 3, I¥) can take four values I = {1,2,3},
IO = {1,2}, I® = {1,3} or I® = {2,3}, corresponding to the states present in tra-
jectory [. Note that we exclude the singletons (such as {1}, {2} or {3}) in the set of
possible states, since we know from the preliminary analysis of individual trajectories

that there are at least two states in each trajectory of the Ffh-Data, FtsY-Data and
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Translocon-Data.
Let N; ( ) be the number of transitions from state ¢ to j in trajectory ; Ni(fj) = 0 if

either state ¢ or j does not appear in trajectory [. The likelihood for trajectory [ is

l l l l 0y _
p(y(),z()|u()7a(),P,I()) —igll <W) HN yn 7# (z)’o' (z))

P; . . - . .
(;) Pk)i jerw is the re-normalized transition matrix for trajectory ! accord-
kel v

where (Z
ing to which states are present in 1), and Nj is the length of trajectory I. The like-
lihood function of all the trajectories (under the same experimental condition) under

our hierarchical HMM is

[Tot® =010, PO, (O Pl ).

1.4.1 ESTIMATION UNDER THE HIERARCHICAL HMM

To obtain the posterior distribution of the parameters in this model, we use MCMC (Liu,
2001) algorithms. The priors are specified as follows. Each row of the transition ma-

trix P has a flat prior (i.e., a Dirichlet distribution with all parameters equal to 1),
which is a proper prior. The global parameters py, 77(2) have flat priors. The categor-

ical variable I also has flat priors, with equal probability of falling into each cat-

egory. Similar to the Bayesian data augmentation (Tanner & Wong, 1987) proce-

dure for fitting a single trajectory in Appendix A.2, we augment the parameter space

(P; o, m3; {n®, oW; 10} with the hidden states {z()} and sample from the condi-
tional distributions of these two parts iteratively until convergence. The parameters

(P; o, m3; {u® o®: 10}) are updated one at a time from the conditional distribu-
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tions using Metropolis-Hastings (for P) or Gibbs (for po, n3; {u®,e®; 10}). Condi-
tioning on the parameters (P, {u®,o®;1V}), the hidden states {z()} are updated
sequentially for | = 1,2.... The details of the sampling procedure are given in Ap-
pendix A.3.

Figure 1.6 shows the fitting of our hierarchical HMM with K = 3 to two represen-
tative FRET trajectories: one long trajectory from the Ffh-Data and one short tra-

jectory from the Translocon-Data. The grey curves on the top two panels are the ob-

N
n=1»

served experimental FRET values. The solid black lines are the fitted values {/is, }
where [i and 2, denotes the posterior modes from our MCMC sampling. The lower
panel plots the histograms of y;, the FRET values, of the two FRET trajectories. The
black curves overlaid on the histograms are the fittings from our hierarchical HMM,

using the posterior mode.

1.4.2 ASSESSING THE NUMBER OF HIDDEN STATES WITH THE HIERARCHICAL

HMM

The posterior distribution of the indicator I%) gives the probability that a given tra-
jectory [ contains a specific collection of states. This posterior distribution thus pro-
vides a hierarchical-HMM-based method of model selection: we can allocate the num-

ber of hidden states for each trajectory based on the posterior mode of ‘I @)

, the size
of I, By combining multiple trajectories and allowing the sharing of information,
we potentially obtain more stable model selection results — borrowing information
from other trajectories helps identify rarely occurred hidden states for some trajecto-
ries. Table 1.4 tallies the hierarchical-HMM based assignment of the number of hid-
den states for the experimental FRET trajectories. We apply the hierarchical HMM

separately with K = 3, where the maximum number of states is three, and with
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Figure 1.6: Two sample FRET trajectories, one long trajectory from the Ffh-Data and one short
trajectory from the Translocon-Data. The trace plots show the fitted hidden states. The lower

panel shows the histograms of the experimental FRET values together with the fitted Gaussian
mixtures.
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K = 4, where the maximum number of states is four. Table 1.4 shows that no matter
we set three or four states as the maximum to begin with, the majority of the tra-
jectories are assigned three states. The allocation of states based on the hierarchical
HMM, therefore, corroborates our selection of three total states for the Ffh-, FtsY-

and Translocon-Data, indicating the robustness of the selection.

No. of trajectories allocated
Hierarchical HMM | three states four states
maximum maximum
No. States 2 3 2 3 4
Ffh, FtsY-Data | 56 294 |26 201 123
Translocon-Data | 39 99 50 60 28

Table 1.4: Number of trajectories from the Ffh/FtsY-Data and Translocon-Data assigned to
2,3,4 hidden states based on the posterior mode of |I(l)’. The hierarchical HMM was fitted twice
with three states maximum and four states maximum, respectively. As in Section 1.3.2, we put
the Ffh-Data and FtsY-Data together in the table.

1.4.3 HIERARCHICAL FITTING VERSUS INDIVIDUAL FITTING

It is worth pointing out that by pooling the information from the multiple trajecto-
ries, we obtain more robust and reliable estimates. Figure 1.7 shows what happens if
we only fit the individual trajectory by itself. The left panel shows the fitting of the
2-state, 3-state and 4-state HMMSs to the long trajectory of Figure 1.6(A) alone; the
right panel shows the fitting to the short trajectory of Figure 1.6(B) by itself. The in-
dividual fitting is seen to be unstable in that it is quite difficult to judge which fitting
is better. The hierarchical model, in contrast, allows the information to be pooled
from all the trajectories, resulting in stable estimates.

To further compare the fitting under the hierarchical model versus the fitting on in-

dividual trajectories and to test the limit of the hierarchical model fitting, we conduct
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Figure 1.7: Fitting of individual FRET trajectories. The left column (A) shows the fitting of the
2-state, 3-state and 4-state HMMs to the long trajectory of Figure 1.6(A) alone. The right column
(B) shows the fitting of 2-state, 3-state and 4-state HMMs to the short trajectory of Figure 1.6(B)
by itself.

a sequence of simulations. The mean vector g = (i1, 2, 13) is generated according
to p1 ~ N(0.1,0.1%), o ~ N(0.4,0.12), uz ~ N(0.7,0.12). The standard deviation
vector o = (01,09,03) is taken to be 01 = 09 = o03. Trajectories each with length
N = 1000 are generated from a three-state HMM with transition matrix with diag-
onal elements equal to 0.9 and off-diagonal elements equal to 0.05. For each value of
o1 = oy = o3 € {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8}, we repeat the data generation 100 times, so we have 16 sets of simulated
data, each set containing 100 trajectories with length 1000.

For each of the 16 sets of simulated data, we apply the hierarchical fitting as well
as the individual fitting. Intuitively, as the hierarchical HMM pools information from
multiple trajectories, it is able to handle data with much lower signal-to-noise-ratio

(SNR) than the fitting of HMM to individual trajectories. Figure 1.8 provides an il-
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lustration, showing the results for the case of 07 = 09 = o3 = 0.65. The left panel
compares the estimation of the global means pg = (0.1,0.4,0.7). The right panel com-
pares the estimation of the transition probabilities Pi1, Po2, P33. In each panel, the
left half shows the posterior distribution under the hierarchical HMM, and the right
half shows the aggregated posterior distribution based on fitting the 3-state HMM to
individual trajectories. It is evident that individual fitting gives highly variable and
biased estimates; in contrast, by pooling the information from the 100 trajectories to-

gether, the hierarchical fitting gives much more reliable and accurate estimates.
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Figure 1.8: Comparison of fitting of the hierarchical HMM versus the fitting of individual trajec-
tories. The left panel compares the estimation of the global means pg. The right panel compares
the estimation of the transition probabilities Py1, Pso, P33. Both panels use the boxplots. In each
panel, the left half shows the posterior distribution under the hierarchical HMM; the right half
shows the aggregated posterior distribution based on fitting the 3-state HMM to individual trajec-
tories. The grey horizontal lines correspond to the true values of the parameters.

Formally, for each trajectory we can define SNR as SN R = ming{“ ’“*;k_“k, = k;kl:l“ £l (Green-
feld et al., 2012; Hawkins et al., 2001). For the 100 trajectories of Figure 1.8, the me-
dian SNR is 0.3. In contrast, we find from our 16 simulated data sets that for indi-

vidual fitting to give meaningful result, the median SNR has to be as high as 2.0. As

the standard deviation increases, the SNR decreases. Intuitively, as the SNR becomes
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smaller and smaller, eventually the hierarchical model fitting will start to break down.
In our simulation, we observe that the breakdown happens at 01 = 09 = g3 = 0.7,
where the median SNR is less than 0.3. This number is in sharp contrast with the
SNR limit of around 2.0 for the individual trajectory fitting. For the experimental
data, the median SNR is 1.47 for the Ffh-Data, 1.36 for the FtsY-Data, and 1.46

for the Translocon-Data; all three are below the SNR limit of around 2.0 for reliable

individual-trajectory fitting.

1.5 RESOLVING THE BIOLOGICAL (QUESTIONS

Based on our analysis of the single-molecule FRET data, we will address in this sec-
tion the unsolved questions regarding the detailed mechanism of the protein targeting
process put forward in Section 1, delineating the roles of different components in the
protein targeting process. We will consider first the conformation change of the SRP-
SR complex without RNC or translocon, and then the effect of RNC and translocon
in regulating the protein targeting process. Based on the results of our data analysis,
we will propose a refined mechanism for co-translational protein targeting process,
addressing the biological puzzles.

It is worth pointing out that the hierarchical structure enables us to include hetero-
geneous trajectories in a single model, capturing common characteristics while allow-
ing for individual variabilities. Our analysis allows us to distinguish between two pos-
sibilities that could give rise to the heterogeneous FRET trajectories: (i) heterogene-
ity of sample, meaning that the SRP-SR complex can exist in distinct populations
that have different structural and chemical properties, therefore exhibiting different

kinetic and equilibrium behaviors; and (ii) intrinsic noise due to the stochastic nature
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and molecular reactions and limited time scale for sampling in single-molecule exper-

iments. Our result supports that the heterogeneous trajectories are well explained by

(ii).

1.5.1 CONFORMATIONAL CHANGE OF THE SRP-SR COMPLEX

The Ffh-Data and FtsY-Data are obtained from the single-molecule FRET experi-
ments on the SRP-SR complex in the absence of RNC or translocon. The only differ-
ence between these two datasets is the placement of the FRET donor. For the Ffh-
Data the FRET donor is placed at Ffth-NG, while for the FtsY-Data the FRET donor
is placed at FtsY; see Figure 1.4 and Table 1.1. These data reveal the conformational
fluctuation of the SRP-SR complex without RNC or translocon.

As we described in Sections 1.3.2 and 4.2, three FRET states are detected, corre-
sponding to three conformations. For these three conformations, Table 1.5 lists the
95% posterior intervals of the global parameters j; and ng; for the data sets. The
state with a low FRET value, pg1 ~ 0.1, corresponds to the conformation where the
FtsY-[Ffh-NG]| complex is near the capped end of the RNA (see C of Figure 4). The
state with a high FRET value, o3 ~ 0.6 ~ 0.8, corresponds to the conformation
where the FtsY-[Ffh-NG]| complex is near the distal end of the RNA (see D of Figure
4). Tt is noteworthy that in addition to these two major conformations, our analysis
identifies a “middle” state with the FRET value fi92 around 0.3 to 0.4, suggesting a
third conformation of the SRP-SR complex. This conformation might correspond to
alternative modes of docking of the FtsY-[Ffh-NG] complex at the RNA distal end (in
which FtsY-[Ffh-NG] is oriented differently relative to the RNA), given the relative
large value of pig 2, or an alternative binding site of the FtsY-[Ffh-NG] complex on

the RNA (Shen et al., 2012). As we shall see shortly, this conformation could serve as

33



an intermediate stage that mediates the large scale movement of the FtsY-[Ffth-NG]

complex, which travels 100 A from the RNA capped end to the distal end.

Parameters Fth-Data FtsY-Data RNC-Data  Translocon-Data
o1 [0.105, 0.116] [0.096, 0.107] [0.091, 0.099] [0.097, 0.104]
Ho.2 [0.319, 0.353] [0.348, 0.382] NA [0.380, 0.441]
o 3 [0.619, 0.646] [0.733, 0.761] NA [0.619, 0.635]
0,1 [0.039, 0.048] [0.041, 0.049] [0.017, 0.022] [0.019,0.023]
Mo,2 [0.110, 0.135] [0.122, 0.148] NA [0.1317 0.169]
70,3 [0.087, 0.107] [0.101, 0.126] NA [0.044, 0.058]

Table 1.5: 95% posterior intervals of the global means p; and global standard deviations n;;
i € {1,2,3} for Ffh-Data, FtsY-Data, RNC-Data and Translocon-Data.

— Ffh-Data
—— FtsY-Data

Figure 1.9: The posterior distributions of the mean parameters for the Ffh-Data and FtsY-Data.

Figure 1.9 compares the distributions of the mean parameters for the Ffh-Data to
those for the FtsY-Data. It is also interesting to note from both Table 1.5 and Fig-
ure 1.9 that the FRET value pi9 3 of the FtsY-Data is higher than that of the Ffh-
Data. This implies that FtsY is closer to the distal end than Ffh-NG is when the
FtsY-[Ffh-NG] complex docks at the distal end. It thus gives a fine picture of the
relative positions of FtsY and Ffh-NG as shown in Figure 1.4. This is consistent
with findings from the crystal structures of the SRP-SR complex (Ataide et al., 2011;

Voigts-Hoffmann et al., 2013).
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The conformational change that SRP-SR undergoes on the RNA is unusually large,
spanning over 90 A. How this large-scale movement occurs is an interesting question.
It is possible that the complex travels along the RNA via “intermediate” stops. Alter-
natively, the complex could constantly sample alternative potential docking sites on
the RNA until it finds the distal site. The transitions among different states capture
the pathways and mechanisms by which the SRP-SR complex undergoes the large-
scale conformation change. Table 1.6 shows our estimates of the transition probabili-
ties {P;;} for the data sets. We note that the estimates of the transition probabilities

from the Ffh-Data are similar to those from the FtsY-Data.

Data Fth-Data FtsY-Data Translocon-Data
Py 109703 £ 0.0014 0.9798 4+ 0.0013  0.9976 4+ 0.0005
Py | 0.8732 £ 0.0054 0.8776 4+ 0.0058 0.9713 £ 0.0076
P33 1 0.9384 £ 0.0027 0.9217 4+ 0.0039 0.9870 4 0.0015
P51 0.0283 £ 0.0014 0.0186 4 0.0015 0.0011 4 0.0004
P53 | 0.0015 £ 0.0005 0.0015 4+ 0.0005 0.0013 4 0.0004
Py | 0.0587 £ 0.0034 0.0579 4+ 0.0044 0.0044 4+ 0.0015
P3| 0.0681 £ 0.0036 0.0646 4+ 0.0037 0.0244 4+ 0.0072
P31 0.0029 £ 0.0010 0.0057 4 0.0017 0.0022 4 0.0006
P3| 0.0587 £ 0.0031 0.0726 4+ 0.0045 0.0108 4 0.0015

Table 1.6: Posterior estimates of the transition probabilites (mean &+ 2x standard deviations) of
Ffh-Data, FtsY-Data, Translocon-Data based on the hierarchical model fitting.

We next investigate the functional role of the middle state based on the posterior
distributions of {P;;} for the Ffh-Data. First, we obtain the 95% credible interval
of di = 1/(1 — P;;), the mean dwell time at state i. The intervals are [0.966, 1.057]
seconds for dp, the low-FRET state; [0.228, 0.249] seconds for dy, the middle state;
and [0.465,0.507] seconds for d3, the high-FRET state. The observation that both d;
and ds are significantly larger than dy indicates that the SRP-SR complex spends less

time at the middle state than at the low- or high-FRET state, which are more stable.
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Second, it is known that biologically the SRP-SR complex initially assembles at the
RNA capped end and the complex disassembles at the RNA distal end (Shen & Shan,
2010). Thus, a “complete transition” is the one that goes from the low-FRET state
to the high-FRET state (see Figure 1.4). The observation that Pj3 is significantly
smaller than Pjy suggests that a direct transition from the low-FRET state to the
high-FRET state is quite infrequent; rather, a “complete transition” more frequently
proceeds through the middle state. In other words, without RNC or the translocon,
the FtsY-[Ffh-NG| complex usually travels from the capped end to the distal end
through an intermediate stage.

In fact, we can calculate the probability that a final passage from state 1 to state
3 goes through state 2 versus the probability that such a final passage does not go

S (k)
through state 2 as follows. For i,j = 1,2, let us use ]3i_>j

to denote the probability
of transition from state 7 to state j in k steps without ever reaching state 3. Then the
probability of going from state 1 to state 3 finally through state 2 is Y - ; Pl(QQng
(i.e., taking any number of steps between state 1 and 2 and then finally reaching state
3 from state 2 in the last step). The probability of going from state 1 to state 3 not

finally through state 2 is P13 + > 5oy P(k)lPlg. Pi(i)j

e satisfies the following recursive

formulas, owing to the first-step analysis:

P — PPl + Porll P — PuplE, + Por?)
Pz(ﬁjzl) = P21P1(@2 + P22P2(ﬁ)>2 P2(i+11) = P21P1(E)>1 + P22P2@>1
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Summing over k on both sides of the equations yields

(k) _ Py P
ZEO:]_ P1—>2P23 - (1—P11)(112P2223)—P12P21 (12)

(k) o (l—P )P
Pig+ 302, P Pis = (1_P11)(1—?22)?P12P21

From these formulas and the posterior distributions of P;;, we find that 91.2% of the
transitions from state 1 to state 3 occurs finally through the intermediate state 2 for
the Ffh-Data.

These observations and calculations reveal that (i) the movement of the FtsY-[Fth-
NG] complex from the RNA capped end to the distal end requires the middle state,
which serves as an on-pathway intermediate to facilitate this largescale movement.
(ii) The middle state is quite efficient in facilitating the search for the RNA distal
site: once the SRP-SR complex reaches this state, over 50% of molecules move on
successfully to the distal site (high-FRET state) (because Py3 > Po1); this over 50%

probability is much higher than that from the low-FRET state.

1.5.2 ErreEcT OF RNC

Once RNC is added to the SRP-SR complex, the experimental FRET trajectories, the
RNC-data, show the presence of only one state with a low FRET value: the FRET
values are well fitted by y; = const + Gaussian noise, see Table 1.5. Comparison of
these results with those on SRP-SR alone (the Ffh-Data and FtsY-Data) show that
the RNC has a pausing effect: it holds the SRP-SR complex near the capped end and
prevents its movement to the RNA distal end (see C of Figure 4). This pausing effec-
tively prevents premature dissociation of SRP and SR, which happens at the distal

end of the SRP RNA and results in abortive reactions. We thus see that RNC plays
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an important regulating role in ensuring the efficiency of a successful protein target-

ing.

1.5.3 ROLE OF TRANSLOCON

When the translocon is further added to the RNC-SRP-SR complex, single-molecule
experiments on the translocon-RNC-SRP-SR complex yield the Translocon-Data in
Table 1.1. As shown in Table 1.5, the high-FRET state (uo3 ~ 0.6) is restored in the
Translocon-Data, which is completely absent in the RNC-Data. Therefore, the translo-
con enables the FtsY-[Ffh-NG] complex to restore movement to the RNA distal end,
where disassembly of SRP-SR, (by GTP-hydrolysis) can be initiated.

We also observe that the transition probabilities of the Translocon-Data, shown in
Table 1.6, differ significantly from those of the Ffh-Data. This rules out the model
that the translocon simply awaits for and binds the RNC that has spontaneously dis-
sociated from the SRP-SR complex. If this were the case, the FRET trajectories in
the presence of both RNC and translocon (the Translocon-Data) would exhibit nearly
identical features as those for the SRP-SR complex (the Ffh-Data). Instead, these
data strongly suggest that the translocon forms a quarternary complex together with
RNC, SRP and SR, in which attainment of the distal conformation is favored.

We next consider the role of the middle state. Using formula (1.2) derived in Sec-
tion 1.5.1, we find that only 40.7% of the transitions from the low FRET to high
FRET state occur via the middle state as an intermediate for the Translocon-Data.
This is in sharp contrast with the 91.2% probability for the Ffh-Data. This indicates
that the translocon alters the pathway via which the FtsY-[Ffh-NG| complex searches
for the RNA distal site, biasing them towards pathways in which transitions between

low FRET and high FRET states occur directly. We note that it is possible that in
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the presence of translocon, the residence in the intermediate state could be too fast to
be detected within the time resolution (30 ms) of the experiment.

To gain further insights into the regulatory role of the translocon, we asked whether
and how it alters the kinetics by which the SRP-SR complex undergoes the struc-
tural change. To this end, we compare the dwell time of the FtsY-[Ffh-NG] complex
at the high-FRET state, which is d3 = 1/(1 — Ps3), between the Translocon-Data
and the Ffh-Data. The 95% posterior interval for ds is [2.058,2.577] seconds for the
Translocon-Data and [0.465,0.507] seconds for the Ffh-Data, respectively. Thus, the
translocon enhances the kinetic stability of the SRP-SR complex in the distal confor-
mation by 4-5 fold. Table 1.7 contrasts the parameter estimates between the Ffh-Data

and the Translocon-Data.

Parameters Ffth-Data Translocon-Data
o1 [0.105,0.116] [0.097,0.104]
Ho,2 [0.319,0.353] [0.380, 0.441]
o3 [0.619,0.646] [0.619,0.635]

ds [0.465, 0.507] [2.058,2.577]
Drmiddle 91.2% 40.7%

Table 1.7: Compare Ffh-Data and Translocon-Data: 95% posterior intervals of mean values of
the states (o1, tt0,2, ft0,3), dwell time at the high-FRET state (ds) and the probability that a
transitions from low- to high-FRET state goes through the middle state (pmiddie)-

In summary, our statistical analysis shows that the translocon regulates the pro-
tein targeting process by (i) restoring the movements of the FtsY-[Ffh-NG]| complex
to the RNA distal end, (ii) promoting alternative pathways for this movement, in
which the FtsY-[Ffh-NG] complex directly transitions from the low-FRET state to
the high-FRET state, and (iii) prolonging the time that FtsY-[Ffh-NG] stays at the
RNA distal end. It is known that movement of the FtsY-[Ffh-NG] complex away from

the RNA capped end is important for vacating the ribosome binding site and initiat-
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ing ribosome-translocon contacts during the handover of RNC to the translocon. It

is also known that GTP-hydrolysis, which disassembles SRP and SR, occurs at the

RNA distal end (Shen et al., 2013). Our findings thus reveal that the translocon, via
mechanisms (i)-(iii), promotes both of these molecular events and allows them to be
synchronized in the pathway. Collectively, these results show that the translocon not
only serves as a channel through which the nascent proteins translocate, but also fa-
cilitates the productive handover of the RNC onto itself to complete the protein tar-

geting reaction.

1.5.4 A PROPOSAL OF DETAILED MECHANISM

Our statistical analysis of the single-molecule experimental data in combination with
the known biological understanding (Halic et al., 2006; Pool et al., 2002; Peluso et al.,
2001; Estrozi et al., 2011; Shen & Shan, 2010; Zhang et al., 2009a; Akopian et al.,
2013a; Ataide et al., 2011) suggests the following detailed mechanism of protein tar-
geting, which was conjectured in Shen et al. (2012), corresponding to the four steps of

Section 2.1:

1. SRP recognizes the signal sequence on RNC and binds it. The RNC is delivered

to the target membrane where the SR can localize to.

2. When the SRP-SR complex is initially formed, the FtsY-[Ffh-NG] complex
binds at the RNA capped end near the ribosome exit site, blocking the site

from translocon binding.

3. As the RNC initiates contact with the translocon, the latter actively facilitates
the conformation change of SRP-SR complex and drives the FtsY-[Ffh-NG]

complex from the capped end to the distal end of RNA.
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4. GTP-hydrolysis is initiated at the RNA distal end to disassemble the SRP and
SR. Meanwhile, the nascent chain is released from the Ffh M-domain to the

translocon on the membrane.

Cytosol SR ‘ " —
Membrane B |

Periplasmic space
P P Translocon

Figure 1.10: The refined mechanism. Steps 1 & 2: SRP binds RNC at the RNA capped end and
carries it to the membrane by forming a complex with SR located at the membrane. Step 3: The
FtsY-[Ffh-NG] complex goes to the distal end so that RNC can be loaded at the translocon. Step
4: SRP-SR disassembles through GTP-hydrolysis and the nascent chain goes through the translo-
con on the target membrane.

Figure 1.10 illustrates the detailed mechanism. The movement of the FtsY-[Ffh-
NG] complex from the RNA capped end to the distal end is first negatively regulated
by RNC, whose pausing effect keeps the SRP-SR complex from disassembly before
the translocon is identified, and later positively regulated by the translocon, which ac-
tively facilitates the movement of FtsY-[Ffh-NG] to the RNA distal end. This mech-
anism allows the coordinated exchange of SRP and translocon at the RNC and the
effective timing of GTP-hydrolysis, thus minimizing abortive reactions due to prema-

ture SRP-SR disassembly or non-productive loss of the RNC.
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1.6 MODEL CHECKING

1.6.1 CHECK OF DETAILED BALANCE

In biophysics, the principle of microscopic reversibility states that at equilibrium the
transition flux between any two states should be equal. In the familiar probability
language, the microscopic reversibility translates into the detailed balance condition
or the reversibility of the Markov chain: m;P;; = m;P;; for all i and j, where m; is the
equilibrium probability of state 7. This can be checked from the posterior samples of
the transition matrix P.

Figure 1.11 compares the distribution of m; P;; (first column) with that of 7, Pj;
(second column) from the Ffh-Data. The third column shows the distribution of the
difference m; Pj; — m;Pj; compared to zero (the vertical bar), where 4, j € {1,2,3},7 # j.
It is clear that m; P;; — m;P;; = 0 holds within the experimental error. The plots on
the FtsY-Data and the Translocon-Data give very similar pictures. We thus confirm
that indeed under our hierarchical HMM the principle of microscopic reversibility is

satisfied.

1.6.2 CHECK OF MARKOVIAN ASSUMPTION

In our hierarchical HMM, the Markov assumption of the state transitions (or the con-
formation changes) plays a fundamental role. If the Markov assumption is correct,
then the waiting time at the individual state should be exponentially distributed and
that the successive waiting times should be independent of each other. Both can be
checked under our Bayesian sampling approach, since we can straightforwardly obtain

the waiting time at each state from the posterior samples of the hidden states z. Fig-
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Figure 1.11: Check of detailed balance for the Ffh-Data. The first column is the posterior distri-
bution of m; P;;, and the second column is that of 7;P;j;, where 4,5 € {1,2,3}, ¢ # j. The third
column shows the distribution of their difference m; P;; — m; Pj;; the thick vertical bar is at zero.

ure 1.12 shows the posterior distribution of the waiting time at each of the low, mid-
dle and high FRET state of the Ffh-Data based on the samples of hidden states z in
its original scale (left column) and the log-scale (right column). It is seen that on the
log-scale the distribution of the waiting time is well fit by a straight line, supporting
the exponential distribution. Quantitatively, we performed a chi-squared goodness-
of-fit test for the exponential distribution using 30 evenly spaced bins. The resulting
p-values for the waiting time at the low, middle and high FRET states are 0.72, 0.20
and 0.35, respectively. Figure 1.13 shows the autocorrelation of the successive wait-
ing times from the Ffh-Data obtained from the samples of the hidden states z. It is
evident that the successive waiting times are uncorrelated, as the Markov assumption
requires. The posterior samples from the FtsY-Data and the Translocon-Data show

quite similar pattern.
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Figure 1.12: Posterior distribution of waiting time at the three states of the Ffh-Data on the
original scale, the left column (A); and the log scale, the right column (B).
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Figure 1.13: Autocorrelation of the successive waiting times from the Ffh-Data.
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1.7 SUMMARY

The advances in single-molecule experiments enable us to study the detailed mech-
anism of the co-translational protein targeting process. On the single-molecule level
the data are necessarily stochastic. They are often noisy realizations of the underly-
ing stochastic dynamics. To model the stochasticity of each individual experimental
trajectory, we use HMM.

The experimental time windows in single-molecule trajectories are often of rather
limited length, resulting in relatively short trajectories. As a result, the parameter es-
timation based on individual trajectories could be quite variable. Furthermore, the
determination of the total number of states of the HMM based on individual trajecto-
ries is highly unstable. Experimentally, these issues are mitigated by recording hun-
dreds of trajectories repeated under the same experimental condition. In this article,
we use the mode of the BIC selection over multiple trajectories for reliable determi-
nation of the number of states of the HMM as a preliminary analysis. Then we pro-
pose a hierarchical HMM to pool information together from the different trajectories
and at the same time to account for the heterogeneity among them. The heterogene-
ity among the different trajectories arises from the intrinsically stochastic nature of
molecular actions, equipment noise, thermal fluctuation and random variations in ex-
perimental setups. We find that the proposed hierarchical HMM is highly robust to
low signal-to-noise ratios. Finally, assessment of the fitting of each individual trajec-
tory based on parameters estimated from the hierarchical model re-assured us of the
model selection at the first stage and the assumption of the hierarchical model at the
second stage.

Biologically, we corroborated many conclusions from the previous ad-hoc analysis,
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giving solid quantitative evidence for the proposed new mechanism of co-translational
protein targeting. Instead of being passively involved in the protein targeting process,
our analysis shows that the RNC and translocon play active regulatory roles to facili-
tate the accurate timing of the biological steps. Specifically, the RNC and translocon
effectively regulate the movement of the SRP-SR complex between the capped end
and the distal end of the RNA, which in turn regulates the assembly and disassem-
bly of the SRP-SR complex and the preference of the RNC for binding the SRP-SR
complex versus the translocon. Compared to the previous ad-hoc analysis, our statis-
tical analysis clarifies the pathway for the structural change in the SRP-SR complex,
and rigorously showed that the translocon alters the pathway, kinetics, and stabil-

ity of this structural change, providing stronger evidence that the translocon actively
facilitates the loading of RNC onto itself and drives the completion of protein target-
ing. From a modeling perspective, the hierarchical HMMSs that we used for combining
information are quite general. They appear effective for dealing with replicated ex-
periments and can be potentially used for analyzing other biological or biochemical
experiments. We thus hope that this article would generate further interest in study-

ing these hierarchical models and in applying them for general data analysis.
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In God we trust. All others must bring data.

W. Edwards Deming

As for the future, your task is not to foresee it,

but to enable it.

Antoine de Saint-Exupery

Bayesian Computation Package for

Single-Molecule Data

2.1 INTRODUCTION

Single-molecule experiments are becoming more and more popular in studying the de-

tailed kinetics of biological processes. Unlike traditional experiments which record the
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signals representing the average properties of ensembles of molecules, single-molecule
experiments make it affordable to examine kinetic behaviors of individual molecules.
Therefore, more detailed information of a complicated biological process is captured.

One of the most widely adopted biophysical techniques for conducting single-molecule
experiments is through measuring the energy transfer rate from an illuminated donor
chromophore to an acceptor chromophore, where the donor and acceptor are attached
to two designated compartments of a molecule. The measurements, called the fluo-
rescent resonance energy transfer (FRET), tracks in real time the distances between
the donor and acceptor at the 1-10 nanometer scale. When the molecule undergoes
a biological process, e.g. a sequence of conformational changes of a protein complex,
the distance between the donor and acceptor changes over time. In this way, single-
molecule experiments using the FRET technique are able to probe the internal dy-
namics of single molecules in a biological process.

The goal of data analysis is to properly extract relevant information from FRET
traces. Due to the stochastic nature of the single-molecule experiments, the model
should capture the underlying process while allowing for enough noise coming from
various sources: (a) intrinsic noise from stochastic or other unpredictable behaviors
of molecules and (b) extrinsic noise from the environment, equipment and measure-
ments. The first source of noise may not even exist in experiments using ensembles of
molecules: the molecules that are chemically identical when measured at ensembles
would still demonstrate significant variability at the single-molecule level, in a manner
predicted by the Boltzmann distribution.

Analyzing FRET traces in statistically principled ways is an increasing trend in the
biochemical community. Traditionally, FRET traces are individually fit using hidden

Markov models (HMM). In McKinney et al. (2006) and Greenfeld et al. (2012), the
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Baum-Welch (or known as the Expectation-Maximization) algorithm (Baum & Petrie,
1966; Baum et al., 1970; Rubin, 1984) is implemented and a Matlab package is pro-
vided for fitting a single FRET trace. Schmid et al. (2016) proposes a maximum like-
lihood method to extract the kinetics from short and out-of-equilibrium FRET traces.
For sake of robustness, scientists usually measure multiple FRET traces under each
experimental condition, which leads to a more complicated data structure for statis-
tical analysis. van de Meent et al. (2016) combines multiple FRET traces using the
coupled hidden Markov models and applies the variational Bayes method to approxi-
mate the posterior distribution of the transition kinetics. Chen et al. (2016) proposes
the (heterogeneous) hierarchical hidden Markov model, which takes the coupled HMM
as a special case, and conducts full Bayesian analysis to understand the detailed later
stages of the co-translational protein targeting process.

We address the issues of extracting information from multiple FRET traces from
replicated experiments using the Bayesian hierarchical hidden Markov model. We ex-
tend the methods applied in Chen et al. (2016) and introduce a Matlab package for
conducting full Bayesian analysis of multiple (homogeneous or heterogeneous) FRET
traces. The Bayesian hierarchical model on top of hidden Markov models, as imple-
mented in the Matlab package, possesses three desirable characteristics for analyzing
multiple FRET traces from experimental replicates. (1) Information from all traces
are combined to study the common kinetics among all molecules in the experiment.
(2) The allowed variability within each individual trace (molecule) takes into account
of the noise coming from the environment, the equipment, and other random fluc-
tuations. (3) The allowed variability among different traces (molecules) takes into
account of the inherent stochastic molecular behaviors and uncontrollable variations.

The rest of the paper is organized into three sections. In Section 2.2, we restate the
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Bayesian hierarchical HMM proposed in Chen et al. (2016). The Matlab package is
introduced in Section 2.3. In Section 2.4, we demonstrate (i) the robustness of fitting
the hierarchical HMM using the Matlab package in practical situations like varying
FRET lengths, various signal-to-noise ratio, existence of rare events and (ii) the pow-

erfulness of the package in performing automatic and reliable model selection.

2.2 DESCRIPTION OF METHODOLOGY

In this section, we introduce the Bayesian hierarchical hidden Markov model for mul-
tiple heterogeneous FRET traces. This model pools information from the traces under
the same experimental condition to achieve more precise estimation of the common
kinetics. The model is defined through clearly specifying each layer of uncertainty and
identifying generic versus trace-specific features. We give a brief review of the HMM

in Section 2.2.1 and describe the Bayesian hierarchical HMM in Section 2.2.2.

2.2.1 HIDDEN MARKOV MODEL

Hidden Markov model (HMM) is a widely recognized model for single-molecule FRET
data in the biochemical community and has been successfully adopted in various
applications (McKinney et al., 2006; Liu et al., 2010; Blanco & Walter, 2010; Shen
et al., 2012; Keller et al., 2014). It models a single FRET trace, which constitutes the
building block of the more complicated Bayesian hierarchical HMM.

Let y = (y1,...,Yn) be observations from an HMM, i.e. a single FRET trace. For
each y;, there is a corresponding hidden state x;, which takes values in {1,2,..., K},
where K is the number of hidden states. Two major components of an HMM are (1)

a Markov model of the hidden states = (x1,...,2,) and (2) an observation model
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given the hidden states.

1. The hidden states, which follow a Markov chain, reprepsents the unobserved
‘true’ biological process. The Markov chain is defined by a K x K matrix,
denoted by P = Pk, that gives the transition probabilities among the K
states. Given that the current hidden state is 4, i.e. xy = 4, the probability of
the next hidden state being j, i.e. ;41 = j, is equal to P;;, the ijt" element
of the transition matrix P; 1 < 4,5 < K, 1 < t < n. The intrinsic kinetics
of a molecule is described by the transition matrix since it reveals how likely a

molecule is to move from one state (conformation) to another.

2. Each observation y;, conditioning on z; = 1, follows a Gaussian distribution

with mean p; and variance o2, denoted by

yilze =i ~ N (i, 02);

1 <i< K,1<t<n. This models the random measurement noise.

An HMM can be fitted with either the Expectation-Maximization (EM) algorithm,
from which we obtain the maximum likelihood estimate (the best possible set of pa-
rameters based on an observed trace), or the Gibbs sampling algorithm, from which
we obtain the full posterior distribution which provides quantified uncertainties, of all
the model parameters. Detailed descriptions of the implementations of the algorithms

are in the Appendix of Chen et al. (2016).
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2.2.2 BAYESIAN HIERARCHICAL HIDDEN MARKOV MODEL

In the Bayesian hierarchical HMM, each FRET trace is modeled as a hidden Markov
model with its own FRET values and lengths. We denote the lengths of FRET traces
from replicated experiments by {ni,ng,...,nr} where T is the total number of FRET
traces. For each trace [ (1 <1 < T, the observed FRET values are denoted by y) =
(ygl), . ,yﬁf)), with corresponding hidden states denoted by z() = (zy), .. ,zT(Lll)); the
mean and standard deviation for the k" state is denoted by ug) and og), 1<k<K.
The common kinetics and the variable replicates are the major assumptions that are
made to the Bayesian hierarchical HMM.

Common kinetics. Since experimental replicates are designed to study the common
kinetics of a biological process, we assume that the transition matrix P which depicts
the inherent dynamics of a biological process is shared by all FRET traces.

Variable replicates. Since the experimental replicates in essence constitute an en-
semble (possibly heterogeneous) with common characteristics, we assume that each

FRET trace is a noisy realization of a true underlying process. This is formalized in a

diagram shown in Figure 2.1, where the lines and arrows stands for dependencies.

2 2
Global Parameters %)a (v, {P\
Individual Parameters (", o) (u®,a®) (™, ™)
and indicators T 7 7(T)
| | |
Hidden States ~(1) ~(2) e . »(T)
| | |
Observed Trajectories y y? e e y@

Figure 2.1: Diagram of the hierarchical HMM.
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Each FRET trace, representing a single molecule, is doomed to behave slightly dif-
ferent from others due to the immanent stochastic property and some unpredictable
and uncontrollable experimental conditions. This heterogeneity is reflected in the
statistical modeling through disparities in the model parameters for different FRET
traces, as shown in Figure 2.1. Mathematically, we assume that for each trace [ and
each state k, the mean FRET value ,ug) comes from a Gaussian distribution with
mean /i, and variance nZ,, denoted by ,u,(f) ~ N (pok,n3;); and the corresponding
variance [0,2”]2 comes from an inverse-x? distribution with v, degrees of freedom and

scale s2, denoted by [(fl,gl)]2 ~ Inv — x?(v, sf). Figure 2.2 demonstrates the data gener-

ating process of a hierarchical HMM with a simple example.

Data Generating Process

Trace 1 FRET values:

- (0.12,0.132,0.098, 0.35,

-++,0.58,0.701,0.697)

Means:(0.09, 0.42,0.705)
Common Process Variances:(0.01, 0.02,0.01)
Transition Matrix: P

w1~ N(0.1,0.01)
Means: | p2 ~ N (0.4,0.02)
13 ~ N(0.7,0.005)

Trace 2 FRET values:

| (0.42,051,0.38,0.45,

-+ ,0.08,0.071,0.112)

Means:(0.12, 0.4, 0.693)
» Variances:(0.02,0.012, 0.009)
0% ~ 1/x*(1,0.01) Transition Matrix: P
Variances: [ o3 ~ 1/x%(2,0.02)
a3 ~ 1/x%(1,0.005)

Transition 0.95 0.025 0.025
Matrix: T~ 883? 0069255 00'09255 N Means:(0.1,0.39, 0.71)
) ) ) Variances:(0.008, 0.014,0.02)

Transition Matrix: P

Trace T' FRET values:

- (0.72,0.651,0.738,0.71,

-++,0.37,0.41,0.392)

Figure 2.2: An example of the data generating process of a hierarchical HMM.

Furthermore, since some FRET traces are quite short, within which some fast tran-
sitions and rare states might be missed, we incorporate indicators, 1), indicating
which states are present in trajectory [, in the model. For example, if the maximum
number of states is K = 3, I¥) can take four values {1,2,3}, {1,2}, {1,3} or {2,3},

corresponding to the states present in trajectory . We do not consider the singletons
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(such as {1}, {2} or {3}) in the set of possible states.

The fitting of the hierarchical HMM can be found in the Appendix of Chen et al.
(2016). Figure 2.3 give a comparison of the traditional method of fitting each FRET
trace separately with our method of combining multiple traces. Heuristically, by it-
eratively updating the common kinetics and the parameters of each trace, more pre-
cise and robust estimates are obtained for all the unknown parameters. Section 4.3
in Chen et al. (2016) elaborates the comparison of fitting the Bayesian hierarchical
model versus fitting each trace separately using both simulation studies and real data
results. It is apparent from the results that the Bayesian hierarchical model is more
robust and gives more efficient estimates as opposed to fitting each trace separately,

which can lead to significantly different estimates across different traces.

Traditional Method

f=(0.07,0.43,0.72) . 5 [ 99" 66.0.12

0.47,0.27,0.26

Hierarchical HMM

Iterate

Means: (ugl),ﬂém (U)

) H3
—— Variances: ((01")2 (0")?, (o5")?)
Hidden States: z
\) Transition Matrix : P
Means: (ut?, u$?, u$?)
—> Variances: ((0’52))27(052))27(0‘;2))2) 4 P P2 Pis
Hidden States: z® Por P Pos
Means: (15", u6”, ™)

P31 P> P
—— Variances: ((01”)2 (0f")?, (0§”)?)
Hidden States: z®

(3)
1

Figure 2.3: Comparison of traditional method (fit each smFRET trace separately, top panel) and
our method (Bayesian hierarchical HMM, bottom panel) for fitting ensembles of smFRET traces.
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2.3 BRIEF DESCRIPTION OF MATLAB PACKAGE

We have developed a publicly available Matlab package, ‘HHMM’, which fits the
afore mentioned Bayesian hierarchical hidden Markov model based on multiple FRET
traces. A detailed user manual is contained in the package. Users can run the ’de-
mon.m’ file included in the package to test the functions with simulated data.

The input data format is a collection of “txt’ files in a specific folder, ‘dataforanaly-
sis’, under the current working directory; where each file is a column vector of FRET
values, between 0 and 1. The estimated parameters and the corresponding standard
errors will be returned as a Matlab structure; and visualizations of fitted FRET traces

are generated. Here is a concrete example for usage of the package and the outputs.
1. Download and install the ‘HHMM’ package.
2. Change the current working directory to the one that contains the ‘m’ files.
3. Put all the data (‘1.txt’, ‘2.txt’, etc.) in the folder ‘dataforanalysis’

4. Set up the package using the following command:

>> setup_ package();

5. Fit a 3-state heterogeneous hierarchical HMM with the following command:

>> resultheter = HHMMfit('K’, 3, HeterTraces’, true);

The user can choose to set other tuning parameters, too. Please refer to the

user manual for detailed instructions.
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6. The return value ‘resultheter’ is a Matlab structure with fields Estimate With-
UncertaintyGlobalPar and Estimate WithUncertaintyIndTracePar, which are
both Matlab structures that contains summary statistics of the estimated global

parameters and parameters for individual traces respectively.

o EstimateWithUncertaintyGlobalPar — a Matlab structure with fields ‘post-
mean’, ‘postsd’; ‘postmodeindicator’. ‘postmean’ (estimated values) and
‘postsd’ (uncertainty/standard deviations of the estimated values) are
Matlab structures with fields ‘globalmean’, ‘globalvar’, ‘P’. ‘postmodeindi-
cator’ is a matrix, each row (representing one trace) is a vector of length
3: the k' element of which is equal to 1 if the k*" state exist in the cur-

rent trace and 0 otherwise; 1 < k < 3.

o EstimateWithUncertaintyIndTracePar — a Matlab structure with fields
‘postmean’, ‘postsd’, ‘hiddenstates’. ‘postmean’ (estimated values) and
‘postsd’ (uncertainty/standard deviations of the estimated values) are
Matlab structures with fields ‘indmean’ (a matrix, each row is estimated
mean values for one trace) and ‘indvar’ (a matrix, each row is estimated
variance values for one trace). The field ‘hiddenstates’ is a cell array, each

element is a vector of fitted discrete hidden states for each trace.

7. The ‘results’ folder is created under the current working directory, in which
visualizations of the fitting for each trace is saved as “png’ and ‘pdf’ files. Be-
sides, a “txt’ file is generated in the ’results’ folder, summarizing the fitted re-

sults. Here is an example outputfile.

Global parameters (with estimated standard deviation in parenthesis)

means = 0.023518 (0.020989) 0.500781 (0.030332) 0.936386 (0.022558)
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variances = 0.008564 (0.003453) 0.017869 (0.007036) 0.010294 (0.004022)
transition matrix is:

0.335916 (0.008882) 0.334422 (0.009856) 0.329662 (0.009131)

0.325266 (0.009096) 0.346403 (0.010000) 0.328331 (0.009302)

0.342556 (0.009179) 0.341375 (0.009900) 0.316068 (0.008926)

Means and variances for each trace (with estimated standard deviation in parenthesis):
FILENAME (column 1) Means (column 2-4) Variances (column 5-7)

1.txt -0.008 (0.009) 0.547 (0.010) 0.942 (0.010) 0.010 (0.001) 0.012 (0.002) 0.011 (0.002)
2.txt -0.018 (0.009) 0.462 (0.011) 0.752 (0.010) 0.011 (0.001) 0.009 (0.002) 0.010 (0.001)

Figure 2.4 shows two of the fitted traces in the ‘results’ folder.

Fitted vs Observed values

Fitted vs Observed values

| N
— 05 0 I | =
[ [
i | | W TUL o ty T
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100 200 300 400 500 50 100 150 200
Time Time
2 4
3l
2r /\
| /\
0
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 2.4: Example of output visualizations for two traces fitted from a heterogeneous HMM
using the ‘HHMM’ Matlab package. On the top panel, the observed FRET values are plotted with
gray line and the fitted values with blue line; on the bottom panel, the histogram is for all the
FRET values, the dashed gray lines are the mixture components whereas the solid black curve is
the fitted mixture density. The trace on the left has three hidden states but the right only has two.
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2.4 ROBUSTNESS TEST OF MODEL FITTING

We illustrate the robustness of model fitting using the ‘HHMM’ package. First, we
study the precision of the estimated transition matrix as compared to the truth using
traces with varying lengths in Section 2.4.1 and varying signal-to-noise ratios in Sec-
tion 2.4.2. Next, we simulate from heterogeneous hierarchical HMMs and study the
model-selection property of our method in Section 2.4.3. Last, we test the method for

estimation of rare events using strongly diagonal transition matrices in Section 2.4.4.

2.4.1 VARYING TRACE LENGTHS AND NUMBER OF TRACES

We vary the number of traces and the numbers of observations in each trace to exam-
ine their influence on the estimation precision of the common dynamics.

We repeatedly simulate 100 times from a hierarchical HMM with 7' = 20 (or
T = 50, T = 100) traces and the length of each trace is randomly simulated from the
interval [200,400] (or [400,600], [600, 800],...,[1200,1400]). We set the global means
po = (0.1,0.5,0.9), the global variance 3 = (0.12,0.1%,0.12), and the transition ma-
trix P with diagonal elements 0.6 and off-diagonal elements 0.2. The standard devia-
tion of all the states in all traces are set to be equal, i.e. a,gl) =01foralll <k <3,
1 <1 < 20. For each simulation, we calculate the distance of the estimated transition
matrix {P;j}1<ij<3 with the truth {P;;}1<; j<3, defined as 377_, Z?Zl(f)ij — Py)?,
which stands for the precision of the estimation. Figure 2.5 compares the boxplots of

this distance over repeated simulations when T' = 20, 50, 100, with red, gray and blue

boxes respectively; the x-axes labels the ranges of the lengths for each trace.
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Figure 2.5: Boxplots of the squared error of the transition matrix >, .(Pi; — P;j)? when the
number of traces is equal to 20 (red), 50 (gray), 100 (blue). Each box represents 100 simulations,
with a total of 6 x 3 experiments/boxes; the length of each trace in each experiment is randomly
simulated from the intervals labeled on the x-axis.

The results show that (1) with the same number of traces, as we increase the num-
ber of observations per trace, the precision of estimating the transition matrix in-
creases; (2) when we fix the range of the number of observations per trace, the larger
the number of traces, the better precision and the more stable the results. The practi-
cal implication is that when the observational time is limited for each trace, collecting

more traces indeed helps improve the precision of the inference significantly.

2.4.2 SIGNAL-TO-NOISE RATIO

Similar to the fitting of other statistical models, the higher the signal-to-noise ratio,
the more precise estimators we can obtain. We also confirm this through repeated
simulation studies, the details are omitted here. One thing that we need to empha-
size is that the hierarchical hidden Markov model is able to provide reliable estimates
of model parameters under much lower signal-to-noise ratios as opposed to fitting

individual traces separately using hidden Markov models. See Section 4.3 in Chen
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et al. (2016) for a detailed comparison of fitting hierarchical versus individual hidden

Markov models when the signal-to-noise ratio varies.

2.4.3 HETEROGENEOUS TRACES AND MODEL SELECTION

The hierarchical HMM provides an automatic allocation of the number of hidden
states through the indicators defined for each trace, see Section 2.2.2. We perform
repeated simulations (100 times) to study the correct classification rate of the number
of hidden states for each trace. Each time we simulate T3 (30 or 100) 3-state traces
with N3 (200, 500, 1000 or 2000) observations per trace, the means of the 3 states are

simulated independently from Gaussian distributions

(N(0.1,0.1%), N°(0.4,0.1%), N(0.7,0.12));

two 2-state traces of Ny observations with means from (AN(0.1,0.12), N (0.4,0.12)); two
2-state traces of Ny observations with means from (N(0.1,0.12), N'(0.7,0.1%)); and
two 2-state traces of Ny observations with means from (N(0.4,0.12), N(0.7,0.1%)); N
can be 200, 500, 1000 or 2000. The transition matrix (3 by 3) is set to be 0.6 on the
diagonal and 0.2 on off-diagonal elements. Table 2.1 gives the rates of correctly identi-
fying the number of hidden states for each trace, corresponding to different combina-
tions of N3, Nao, T3 values. Rj3 is the probability of correctly identifying 3-state traces
and Rs is the probability of identifying 2-state traces. The last two columns are in

the format of “mean + standard deviation”.
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T35 N3 |1y Ny R Ry

30 2000 | 6 1000 | 1.0000 £ 0.0000 | 0.9600 £ 0.0374
30 1000 | 6 2000 | 0.9993 £ 0.0025 | 0.8017 = 0.1481
30 500 | 6 200 | 0.9940 £ 0.0067 | 0.8383 £ 0.0504
30 200 | 6 500 | 0.9837 £0.0107 | 0.5317 = 0.1863
100 2000 | 6 1000 | 0.9995 £ 0.0022 | 0.9850 £ 0.0207
100 1000 | 6 2000 | 0.9986 £ 0.0035 | 0.9600 £ 0.0469
100 500 | 6 200 | 0.9950 £ 0.0075 | 0.8383 %= 0.0306
100 200 | 6 500 | 0.9914 £ 0.0097 | 0.8850 £+ 0.0698

Table 2.1: The rates (mean =+ standard deviation) of correctly identifying the number of hidden
states for each trace according to 100 repeated simulations of mixed population, where T3 and T3
are the numbers of 3-state and 2-state traces, N3 and Ny are the number of observations in each
of the 3-state and 2-state traces, and R3 and Rs, in the format of ‘mean =+ standard deviation’,
are the correct classification probabilities for the 3-state and 2-state traces.

Table 2.1 shows that the correct classification probability of the 2-state traces,
which are ‘minorities’, are more volatile than that of the 3-state traces, which are the
‘majority’. Based on empirical studies, the ‘HHMM’ package can identify correctly the

number of hidden states for majority of the traces.

2.4.4 RARE EVENTS ESTIMATION

In cases when certain states do not appear a lot, each single FRET trace does not
provide enough information for understanding the true kinetics of the biological pro-
cess. The hierarchical HMM, by pooling information from multiple traces, is more
capable of capturing these ‘rare events’ and giving efficient estimations of the under-

lying dynamics. We study the performance of the proposed hierarchical HMM in es-
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timating the probabilities of the rare events, i.e. transitions with small probabilities,
through a series of repeated simulations.

The number of traces in each simulation is 20 and the number of observations for
each trace is 1000. The global means and variances are set to be py = (0.1,0.4,0.7),
o2 = (0.12,0.1%2,0.1%) and the individual trace variances are all set to be [g,(gl)} g
0.01. Since in real applications, the transition matrix appears to be highly diagonal,

i.e. cross-state transitions are rare, thus we consider a 3 x 3 transition matrix with

diagonal elements (1 — 2P;9) and off-diagonal elements Pjo, which takes values in
{0.15,0.125,0.1,0.075, 0.05,0.025, 0.01, 0.005, 0.0025, 0.001}.

Figure 2.6 shows boxplots of the relative estimation error |]512 — Pja|/ P12 versus the

true P values, where each box represents the results from 100 repeated simulations.
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Figure 2.6: Relative absolute error of estimating P, the true values are labeled on the x-axis.
Each box represents 100 repeated simulations in which T = 20 and N; = 1000 for 1 <[ < T.

The results show that the relative estimation error of the very small transition

probabilities turns out to be less than 10% as long as the transition probability does
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not fall below 0.025. However, this number changes if the number of observations or
the number of traces changes. In principle, the hierarchical HMM captures rare tran-

sition probabilities effectively with reasonably large observations.

2.5 SUMMARY

In this paper, we elaborated the Bayesian hierarchical HMM and introduced a Matlab
package implementing the model fitting for scientists. The proposed method is robust
to varying lengths, various signal-to-noise ratio and is proven powerful in detecting
rare events and providing an automatic model selection for heterogeneous traces.
Furthermore, the Matlab package ‘HHMM’ also implements the fittings of individ-
ual HMMs with the EM algorithm, which gives the maximum likelihood estimators
of the model parameters, and the Gibbs sampling algorithm, which gives the poste-
rior distribution of the model parameters. A recommended number of hidden states
for the Bayesian hierarchical HMM is given, too, which is calculated based on the ma-
jority rule of a widely adopted model selection method for single-trace HMMs, the

Bayesian information criterion (BIC), similar to that applied in Chen et al. (2016).
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There is nothing so practical as a good theory.

Ludwig Boltzman

The nature of reality is this: It is hidden, and it
is hidden, and it is hidden.

Rumi, 13th-century Sufi poet

Order Selection of Hidden Markov
Models

3.1 INTRODUCTION

It has been well recognized that hidden Markov models (HMM) and general state

space models provide useful frameworks for describing noisy observations from an
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underlying stochastic process. They are popular for processing time series data and
widely used in fields like speech recognition, signal processing and computational
molecular biology.

The fundamental components of a hidden Markov model include the observations
{Y; = y;;1 < i < n} and the corresponding hidden states {X; = x;,1 < i < n},
which is a Markov chain. Throughout the paper, we use upper cases {Y, X} to denote
the random variables and the corresponding lower cases {y, x} to denote the realiza-
tions (observations). In this paper, we consider discrete state space hidden Markov
models, i.e., the hidden states have a finite support, observed at discrete time points
{t1,...,tn}, or {1,...,n} for notational simplicity. The size of the support of hid-
den states, denoted by K, is the number of hidden states of an HMM. In most real-
world problems, the number of hidden states is not known beforehand but conveys
important information of the underlying process. For example, in molecular biol-
ogy, K could be the number of distinct conformations of a protein; in chemistry, K
could be the number of distinct chemical species in a biochemical reaction. Existing
methods to estimate K either suffer from lack of theoretical guarantee or unfeasi-
ble/impractical implementation, which we review in details in Section 3.1.1. The goal
for this paper is to provide a consistent method, the marginal likelihood method, to de-
termine the number of hidden states K based on the observations {y1,...,y,} of an

HMM, which is computationally feasible for practitioners with minimal tuning.

3.1.1 BRIEF LITERATURE REVIEW

It has been recognized that the model parameters of an HMM are not identifiable
when the number of hidden states is over-estimated (Chapter 22 of Hamilton, 1994;

Ferguson, 1980; Rydén et al., 1998). Thus, determining the number of hidden states,
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also called the order selection in the machine learning literature, is an important
problem for conducting valid inferences on model parameters of hidden Markov mod-
els. There is a vast literature on the model selection for hidden Markov models. We
briefly review some of the most widely adopted methods here.

A special case of HMMSs is finite mixture models, where all entries in the transi-
tion matrix are equal. The model selection of finite mixture models are mostly based
on penalized likelihood, also known as information-theoretic approaches (Chen &
Kalbfleisch, 1996; Lo et al., 2001; Jeffries, 2003; Chen et al., 2008; Chen & Tan, 2009;
Chen & Li, 2009; Chen & Khalili, 2012; Huang et al., 2013; Rousseau & Mengersen,
2011; Hui et al., 2015).

When the observations {y1,...,yn} are supported on a finite set (i.e., when they
are discrete-valued) , we call it a finite-alphabet hidden Markov process (MacDon-
ald & Zucchini, 1997). Information-theoretic approaches for the order estimation of a
finite-alphabet hidden Markov processes are widely adopted. Finesso (1990) proposes
a penalized likelihood estimator, which is proved to be strongly consistent for finite-
alphabet HMMs under certain regularity conditions. Ziv & Merhav (1992) derives the
estimator by minimizing the under-estimation probability, which is shown to be not
consistent (Kieffer, 1993; Liu & Narayan, 1994). Liu & Narayan (1994) gives a mod-
ified version which is shown to be consistent given an upper bound of the order of a
finite-alphabet HMMs. Kieffer (1993) gives a strongly consistent estimator that resem-
bles the Bayesian information criterion (BIC) in Schwarz (1978) for finite-alphabet
HMMs. Gassiat & Boucheron (2003) proves strong consistency of these penalized
maximum likelihood estimations without assuming any upper bound on the order for
finite-alphabet HMMSs, with smaller penalties than previous works. See Rydén (1995);

Ephraim & Merhav (2002) for more detailed discussions about the literature on order
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selection of finite-alphabet HMMs.

However, when the observations {yi,...,yn} are supported on the real line, as in
the Gaussian HMM, where each observation follows a Gaussian distribution con-
ditioning on its hidden state, the problem becomes more difficult. The major diffi-
culty comes from the fact that the overly-fitted mixture models are not identifiable
and that the likelihood ratio statistics becomes unbounded, see Gassiat & Rousseau
(2014).

The majority of the methodologies proposed in the literature rely on the idea of pe-
nalized likelihood, the consistency of which remains to be satisfactorily solved. These
methods generally resemble the Akaike information criterion (AIC, Akaike (1974)),
minimum description length (MDL, Rissanen (1978); Barron et al. (1998); Chambaz
et al. (2009)) or the BIC (Schwarz, 1978). Hung et al. (2013) gives a consistent esti-
mator of the number of hidden states using double penalizations when assuming that
the maximum likelihood estimators are consistent. Rydén (1995) introduces an esti-
mator that does not asymptotically under-estimate the order, given an upper bound
for the order. General consistency of order estimation of mixture models using pe-
nalized likelihood methods is proved in Leroux (1992a), whose regularity conditions,
however, are not satisfied for heterogeneous (unequal variances) Gaussian HMMs. Ap-
plications of the AIC and BIC to Gaussian mixture and hidden Markov models are
given in Leroux & Puterman (1992). Rydén et al. (1998) applies the bootstrap tech-
nique to perform likelihood ratio test for the order estimation of hidden Markov mod-
els for a real example. Gassiat & Keribin (2000) investigates the likelihood ratio test
for testing a single population i.i.d. model against a mixture of two populations with
Markov regime. MacKAY (2002) estimates the order and the parameters together by

minimizing a penalized distance function of the empirical distribution with all finite
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mixture models. Information theoretic approaches makes it possible to add heavier
penalties as opposed to that of the BIC (Gassiat, 2002; Gassiat & Boucheron, 2003;
Chambaz et al., 2009).

Bayesian methods, which does not depend on the maximum likelihood estimator,
also plays an important role in the HMM model selection literature. Reversible jump
methods (Green & Hastie, 2009; Fan et al., 2011) have been successfully adopted in
practice (Green & Richardson, 2002; Boys & Henderson, 2004; Robert et al., 2000;
Spezia, 2010), with a lack of theoretical justification. Gassiat & Rousseau (2014) pro-
vides a frequentist asymptotic evaluation of Bayesian analysis methods, purely from
a theoretical perspective: under certain conditions on the prior, the posterior concen-
tration rates and a consistent Bayesian estimation of the number of hidden states are
given; practical implementation, guidance of tuning of the algorithm and numerical
results are not provided therein.

Some authors have studied approaches that are related to our marginal likelihood
method. Chambaz & Rousseau (2005) uses marginal likelihood ratio for the order
estimation of mixture models, and obtained similar results for the marginal likeli-
hood ratio: O(e~“") for underestimation, and O(n~/?%9) for overestimation. Wang &
Bickel (2015) adapted the penalty approach to stochastic block models, with a similar
“path-ignorance” result, i.e. a set of irregular paths can be asymptotically ignored, as
in our Theorem 2; see Lemma 2.6 in Wang & Bickel (2015). Though the afore men-
tioned studies share similarity with the results in this paper, it is worth noting that
in these models, the hidden state variables are assumed to be independent and iden-
tically distributed (i.i.d.), which is not true for HMMs. This additional complexity
requires us to provide alternative techniques to manipulate the likelihood function of

an HMM as shown in Theorem 2.
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3.1.2 REeEcar oF HMM AND NOTATIONS

Consider the following hidden Markov model (HMM): let X = {X;,i > 0} be an
ergodic (positive recurrent, irreducible and aperiodic) Markov chain on a finite state
space Xx = {1, -, K} with transition matrix Qx = {qu,1 < k,l < K} € Qg, i.e.,
g = P(Xiy1 = 1|X; = k) for all @ > 0. Conditioning on X, Y = {V;,i > 1} are
independent random variables on ), and the distribution of Y; given X; = k is f(+|0)
for i > 1 and k € Xk, where 0, € ©. We assume that f is distinguishable on 0, i.e.,
the measure of the set {y : f(y|0r) # f(y|0;)} is greater than 0 for all 1 < k <[ < K.
We denote the model parameters by ¢x = (Qx;01,...,0k) € Qg x OF = oy
Suppose Xy = zg is known and we observe y1., = {y1,92, - ,yn} € V", but the
underlying process X1., = {x1,22, -+ ,z,} remains hidden (unobserved). The joint

likelihood of (y1.n,X1.n) given the parameters ¢ is

p(Yl:n,XO:n‘(wa) = p(y1:n’X0:n; 91, .. 70K)p(X0:n’QK) (31)
K n
- H H f(vilOr) ¢ < {qulx}

The likelihood after integrating out the hidden states is

PY1nldK) = Y P(yinXonlPK), (3.2)

X1:n EX};

where X% denotes the product space of n copies of Xk.
The maximum likelihood estimators (MLE) of a hidden Markov model given K,
the number of hidden states, can be obtained through the Baum-Welch/ Expectation-

Maximization (EM) algorithm (Baum & Petrie, 1966; Baum et al., 1970; Dempster
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et al., 1977). The consistency of the maximum likelihood estimator of HMMs are es-
tablished in Leroux (1992b); Bickel et al. (1998), given the correct K, under certain

regularity conditions.

3.1.3 GAUSSIAN HIDDEN MARKOV MODELS

In this section, we reveal some difficulties of the order selection of HMMs using a
concrete example that is widely adopted in applications, the heterogeneous Gaussian
HMM.

In a heterogeneous Gaussian HMM, given X; = k, y; follows a Gaussian distribu-
tion with mean i, and variance o7. Thus ¢x = (Q; {tk, 0% }1<k<r) and the joint

likelihood is

o 1 (yi — px)? -
p(y1:n7 XO:nM’K) X H H o exXp | — 20_2 X H Qu; 125 ( -
k i=1

k=1 | izi=k O F

Note that this likelihood is unbounded: if one takes pg+ = y;, for some iy and k*,
then as o« — 0, p(¥1:n, X0:n|@K) — o00. This can be a serious issue when one over-
fits an HMM — the extra component could concentrate on only one single observation
with zero variance, which blows up the likelihood. Therefore, methods of model selec-
tion for Gaussian HMM based on penalized likelihoods, which requires the consistency
of the maximum likelihood estimator, become problematic. General consistency re-
sults of model selection based on penalized likelihoods have to exclude this case in
the required regularity conditions (Leroux, 1992a). Therefore, the BIC, though widely
adopted in practice, is theoretically questionable for its validity as a model selection
criterion for HMM (Gassiat & Rousseau, 2014; MacDonald & Zucchini, 1997). This

is the same issue as the unbounded likelihood for heterogeneous Gaussian mixture
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models (Chen & Khalili, 2012). In fact, Gaussian mixture models can be obtained by
setting ¢;; = 1/K for all i,j € {1,2,..., K}, thus is a special case of HMMs.
Furthermore, as noted in Gassiat & Rousseau (2014), for overly fitted HMMs, or
other finite mixture models, the model parameters become non-identifiable. In an
overly fitted HMM, the neighborhood of the true transition matrix contains transition
matrices arbitrarily close to non-ergodic transition matrices. Adding hard thresholds

to entries in the transition matrix does not satisfactorily solve the problem.

3.1.4 OUTLINE

The remainder of the paper has four sections. In sections 3.2 and 3.3, we propose and
prove the consistency of the marginal likelihood method for general HMM order se-
lection, including the heterogeneous Gaussian HMM. The difficulties mentioned in
section 3.1.3 are addressed by introducing the concept of asymptotic path ignorance —
neglecting the irregular hidden state trajectories that blow up the likelihood or mak-
ing the parameters non-identifiable. In section 3.4, we describe the computational
method, demonstrate the effectiveness of the marginal likelihood method using nu-
merical experiments, and conclude with discussions on the theoretical consistency of

our practical implementation. Section 3.5 summarizes the paper.

3.2 MODEL SELECTION VIA MARGINAL LIKELIHOOD

As discussed in Section 3.1.1, the existing model selection methods for HMM either
has no theoretical guarantee or is theoretically justified only for a very restricted fam-
ily of HMMs, excluding the popular heterogeneous Gaussian HMM. We propose to

approach the problem of HMM model selection via the marginal likelihood, i.e., di-
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rectly comparing the probability of obtaining the observations under HMMs with dif-
ferent number of hidden states, after integrating out both the model parameters and
the hidden states. This method is consistent under weak regularity conditions that
are trivially satisfied by a wide range of HMMs, including the heterogeneous Gaussian
HMM.

3.2.1 MARGINAL LIKELIHOOD METHOD

Given the number of states K, we assume that each 8y is drawn independently from
the prior distribution 7(0|a) and that Qx is drawn from the prior distribution vi (Qx|BKk),
independent of the 0y; a and Bx are the hyper-parameters, which are assumed to be

fixed constants. Denote po(¢x) the joint prior, which is expressed as

K
po(@K) = po(Pxle, Br) = vk (Qk |BKk) H (Ok|cv).

The marginal likelihood under a K-state HMM is defined as

pic (Y1) = [b (¥ 1m0 )p0( D) dic. (3.3)

We then choose the K that maximize the marginal likelihood:

A

K, = arg maXKpK(Yl:n)~

3.2.2 DISCUSSIONS OF MARGINAL LIKELIHOOD METHODS

The marginal likelihood has been used in the model selection literature. Ratio of

marginal likelihoods is known as the Bayes factor (Kass & Raftery, 1995), a popular

72



model selection criterion. The BIC is in fact an approximation of the marginal likeli-
hood using the Laplace method. Ghahramani (2001) discussed the practical applica-
bility and calculation of the Bayes factor. Bauwens et al. (2014) applies the marginal
likelihood method for model selection of Markov-switching GARCH and change-point
GARCH models. Du et al. (2016) uses the marginal likelihood method to determine
the number and locations of change-points of a stepwise signal.

As discussed in section 3.1.3, the heterogeneous Gaussian HMM suffers from the
problem of having an unbounded likelihood surface. Adding a conjugate prior for the
variance parameters in Gaussian HMMs can fix the issue of unbounded likelihood sur-
face. Therefore, the proposed marginal likelihood method, which integrates out the
parameters and hidden states, does not suffer from irregularity of the likelihood sur-

face.

3.3 THEORETICAL STUDY OF THE MARGINAL LIKELIHOOD ESTIMATOR

We show theoretically the consistency of the proposed marginal likelihood estima-
tor for HMM order selection, including the rate of convergence of the marginal like-
lihoods, in section 3.3.1. The asymptotic properties of the marginal likelihoods cru-
cially depends on an asymptotic path ignorance result which is detailed and demon-
strated with a simple example in section 3.3.2. We describe how the difficulties of
overly fitted HMMs are overcome in section 3.3.3. Section 3.3.4 points out the con-
nections of the order selection of HMMs with the model selection of finite mixture
models.
Throughout the remainder of the paper, we use op to denote convergence in prob-

ability and Op to denote stochastic boundedness. For any two sequences of random
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variables { X, Y, }n>1, we write X,, « Y, if and only if X,,/Y,, = Op(1) and Y,,/X,, =
Op(1) for all n > 1. We use #S to denote the cardinality of a finite set S. For a de-

creasing sequence {€y},>0 that converges to 0 as n — oo, we denote it by €, | 0.

3.3.1 CONSISTENCY AND RATE OF CONVERGENCE

Let K* be the true number of states and ¢* = (Q*; 67, ...,0}.) be the true param-
eters. Theorem 1 gives the consistency and rate of convergence of the marginal likeli-

hood method for HMM order selection, the proof is given in Appendix B.1.3.

Theorem 1. Assume that reqularity conditions 1)-5) are satisfied. Then for any K #

K*, asn — oo,

_ —1/2
=op(n logn).
pK*(yl:n) P( & )

Furthermore, if K* is bounded from above, i.e. there exists a finite positive constant

K > K*, then as n — oo,

~

P
K, :=arg MaT < k<K K (y1n) — K7,

where L denotes convergence in probability. The regularity conditions are
1) The prior density m(-|c) is continuous and positive at 07 (1 < k < K*).

2) There exists 6 > 0 such that Ni(0) (\Ni(0) = 0 for all1 < k <1 < K*, where
Ni(5) = {0+ |0 — 6:1] < 5.

3) The Markov chain governed by the true transition matriz Q* is irreducible, ape-

riodic and positive recurrent.

4) For all K, vi(-|BK) is positive and continuous in Q.
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5) Conditions (A1)-(A6), (B1)-(B2) and (C1)-(C2) in Appendiz B.1.1.

Condition 1) ensures that the prior distribution is well-behaved around the true
parameters of each state. Condition 2) ensures that the parameters from different
states are distinguishable. Condition 3) regularizes the dynamics of the Markov chain
through the true transition matrix. Condition 4) ensures that the prior v well be-
haves in Q. Condition 5) is used to govern the asymptotic behavior of posterior
distributions, especially for the over fitting case; see Appendix B.1.1 for detailed ex-
planations.

The consistency of HMM order selection in Theorem 1 overcomes the difficulties of
the HMM order selection discussed in the introduction through the asymptotic path
ignorance result, which provides important insights on the origin of the problem on

overly-fitted HMMs.

3.3.2 ASYMPTOTIC PATH IGNORANCE

One of the main difficulties in dealing with the marginal likelihood of HMM given

in (3.3) is that all possible paths x;., € X} are summed up, which consist of many
paths where the number of visits to some state does not go to infinity as the number
of observations goes to infinity, causing the asymptotic analysis to fail. The existence
of a path that contains only one single visit for some state is also the main reason of
unbounded likelihood, which invalidates the BIC or other penalized likelihood meth-
ods. To resolve this issue, we introduce Theorem 2, which allows us to asymptotically

neglect these undesirable paths.
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For any x1.,, define ng to be the number of visits to state k:
ng =nk(X1) = #{i: 1 <i<n,z; =k} (3.4)
forall 1 <k < K. Forany e >0 and 1 < k < K, define
X}%k,e = {X1m X1 € AR, ni(X1) < €n}, (3.5)

and let A% _ be the union of the X%, , ie.

K
X = |J Xne (3.6)
k=1

Theorem 2. Under the conditions (A1)-(A6) and (C1)-(C2) in Appendiz B.1.1, we
have, for all K > 1, any sequence of sets A,, C @, and any sequence of €, | 0, with

probability one, as n — oo,

Z‘X}}\Xﬁ',sn fAn p(}’1:n, X0:n ’¢K)p0 (¢K)d¢K

ZX}; fAn P(Y1:n5 X0 |95 )Po(Pr ) dP ke 1

In particular, if we set A, = ®g for all n, with probability one,

ZXI@\XI@’M P(Y1in, Xom|cv, Br)
ZX” p(y1:n7 XO:n‘aa BK)
K

— 1, (3.7)

where p(Yin, Xom|at, Br) = [, P(Y1in, X0 0k )P0 (DK )dD -

The proof of the theorem is in Appendix B.1.2.
Theorem 2 allows us to asymptotically discard the undesired paths in X . when

comparing the marginal likelihoods, thus playing a vital role in the proof of model
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selection consistency in Theorem 1. To illustrate this, we consider Example 1, which

is a special case of Theorem 1.

Example 1. Let K* = 1, i.e. the observations yi., are i.i.d. with density f(-|0*),
where 0* is the true parameter. Let 0 be the MLE, which converges to 8* as n — oo.
By the asymptotic normality of the posterior distribution under the i.i.d. scenario and

the Laplace method (Walker, 1969),

T2 f(vild) H? 1 [y ’A)
Vnp1(yin) \ff@ " f(yil0)m(0)do

= Op(1).
Suppose K = 2. Given x1., € X3!, let ny and ng be defined as in (3.4). Then

[pp2(}’1:mX1:n¢2)P0(¢2)d¢2

/ [T Fwil6r)m(d6n) / II f(wil62)m(db2) x / quz 12:72(dQ2).

za:—l iix;=2 Q2

Again, by the i.i.d. structure, for k =1,2,

[T, f (4il6h)
\/7f® le—kf yl‘e) ( ) do

= OP(1)7

where ék is the MLE obtained by the y; with x; = k. Thus ék also converges to 6*

when ny — co. Hence, if ™2 — oo when both ni,ny — 00 as n — oo,

f¢>2 D2 (Y1:n7 Xl:n‘¢2)p0(¢2)d¢2

3.8
P1(Y1m) (3.8)
Hi 1fe iy kf yzfek dek
= = Qxl x1V2 dQZ
f@ i= 1f (yil0)7( QQZI_II ! )
n
=0 / v V2(d
P< n1n2> Q?Hq s 2(dQ2),
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which is less than or equal to op(1) since gz, ,z, € [0,1].

The magor gap between equation (3.8) and Theorem 1 is that we need to sum up
(3.8) over all possible paths x1., € X3'. However, there always ezists x1., such that
n1(X1.y) is small, e.g. ny = 1, making Op(n/ning) # op(1). These “irreqular” paths
forbid us from summing up (3.8).

However, given ¢, | 0 as n — oo, Theorem 2 shows that, when summing up the
paths, we can essentially ignore the paths with n1 < ne, and no < ne,. After exclud-

ing these paths, the rest of the paths would yield a leading term

0r (\fi) <0 ( 1n> — 0,(1),

if we choose €, | 0 slow enough such that e2n — oo. Hence, with the help of Theo-

rem 2, we achieve the desired uniform convergence which leads to the order selection

consistency in Theorem 1.

The summation over paths as shown in Example 1 needs to be handled more care-
fully when K* > 1, the general case considered in Theorem 1. The proof, given in
Appendix B.1.3, involves an advanced version of Markov random walk representa-
tion technique (Fuh, 2003) to deal with the summation, as well as the characterization
of posterior distributions for an HMM with unknown number of states (Gassiat &

Rousseau, 2014).

3.3.3 IDENTIFIABILITY OF OVERLY-FITTED HMMS

In this section, we illustrate the identifiability issue of an overly-fitted HMM through

a numerical example and explain how we overcome this obstacle, which is a difficult
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problem in the HMM model selection literature (Wang & Bickel, 2015), by introduc-
ing a regularity condition (B2) stated and construed in Appendix B.1.1.

We contemplate a Gaussian HMM where Y;|X; = k «~ N(6k, 1). Suppose K* =1
and 07 = 0, i.e. the Y; are i.i.d. standard Gaussian. When K = 2, the over-fitting
scenario, any of the following three situations yields the same likelihood function as
that under the true model, indicating that there are multiple “true” parameters when

K> K*.
1. Identical states, i.e. 61 = 05 = 0, with arbitrary Q.
2. Redundant state 1, i.e. 81 = 0 and g2 = g2 = 0, with arbitrary 6s.

3. Redundant state 2, i.e. 82 = 0 and ¢11 = ¢21 = 0, with arbitrary 6.

The situation becomes more complicated with a larger K, as there might be numer-
ous combinations of “true” parameters.

A formal characterization is to consider a (K™* + 1) clustering of the K (> K*)
states, where clusters 1 to K* correspond to the true states 1 to K* and the last clus-
ter corresponds to the redundant state(s). To distinguish these “true” parameters, a
weak identifiability condition (B2, Appendix B.1.1), which is also adopted in Gassiat
& Rousseau (2014), is assumed. By defining a function that characterizes the first
two derivatives of the likelihood function, we are able to impose a regularity condi-
tion on this function to ensure identifiability. Heuristically, this is reasonable because
posterior convergence depends on the Taylor expansion to the second order. The con-
dition holds for a broad family of mixtures of exponential distributions, including the
location-scale Gaussian mixtures; see Gassiat & Rousseau (2014). The remarks for
condition (B2) in Appendix B.1.1 give more detailed descriptions about the indica-

tions of the weak identifiability condition on an overly-fitted HMM.
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3.3.4 (CONNECTIONS WITH MODEL SELECTION OF MIXTURE MODELS

In this section, we discuss the connections of the order selection for HMMs with the
model selection of mixture models. As mentioned in Section 3.1.3, the mixture model
can be considered as a special case of an HMM, the transition matrix of which has
all elements equal to each other. Consequently, the model selection of mixture mod-
els can follow the same procedure as the order selection for HMMs. Reversely, we can
use the model selection of mixture models to determine the order of HMMs. Through
a similar proof, we can show that the estimator of the order of an HMM is still con-
sistent if we “ignore” the Markov dependency, i.e. regarding the HMM as a mixture

model. This result is formalized in Theorem 3 and proved in Appendix B.1.4.

Theorem 3. Assume that all the conditions in Theorem 1 hold, except that condition
(B1) is replaced by (B1’) in Appendiz B.1.4, which restricts vi (-|fr) to be supported
on Qx ={Q : qux = qox = -+ = qi for all 1 < k < K}, i.e. assuming a prior for
a mizture model without state dependency. Then the consistency of K,, in Theorem 1

still holds.

As opposed to Theorem 1, the computational cost required by Theorem 3 is much
smaller: instead of fitting HMMs, we instead only need to fit mixture models which
live on lower dimensional spaces with nice independent structures on the latent vari-
ables.

In both Theorems 1 and 3, the convergence rate of the marginal likelihood ratio

—-1/2

is Op(n logn). However, Theorem 3 requires n to be large so that yi., shows a

“mixture model” behavior through the law of large numbers. This leads to a larger

1/2

constant term in front of n="/“logn for the marginal likelihood ratio of Theorem 3

as compared to Theorem 1, especially for nearly diagonal transition matrices. Fur-
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thermore, the regularity condition (B1) is replaced by a stronger, i.e. more restrictive,

condition (B1’); see Appendix B.1.4 for details.

3.4 COMPUTATION AND NUMERICAL EXPERIMENTS

In this section, we first introduce our method of estimating the marginal likelihood
and then provide numerical results comparing the marginal likelihood method and the
BIC; at the end of the section, we give a brief discussion about the choice of priors

and the order selection consistency of practical implementations.

3.4.1 COMPUTING THE MARGINAL LIKELIHOOD

Integration of the hidden states and the parameters over the joint likelihood is not
trivial and does not have a simple analytical solution. In this section, we describe our

procedure for computing the marginal likelihood as defined in Section 3.2.

MARGINAL LIKELIHOOD AS A NORMALIZING CONSTANT

Denote the joint distribution of y1., and ¢ by p(Y1.n, Px) = P(Y1m|PK)Po(PK),
where p(y1.,|¢K), defined in equation (3.2), is the likelihood after integrating out
the hidden states. Recall from (3.3) that the marginal likelihood of a K-state HMM,
Pr(Yin), is equal to [o  p(yin|@K) po(dK) ddi.

Our strategy is based on the following observation: the marginal likelihood px (y1.1),
in fact, can be regarded as the normalizing constant of the posterior density p(¢x|yin) =
P(Yin, @K )/Pr (Y1:n). Thus the problem can be recast as the estimation of normaliz-

ing constant of this posterior density.
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To do this, note that we can obtain posterior samples from p(¢x|y1.,) using any
Markov chain Monte Carlo (MCMC) algorithm (see Liu (2001) and references therein)
since the un-normalized posterior likelihood p(y1.n, @x) can be evaluated at any ¢
using the forward algorithm (Baum & Petrie, 1966; Baum et al., 1970), which inte-
grates out the hidden states. Alternatively, we can sample from the augmented space
by x A}, ie., sample model parameters and the hidden states iteratively till con-
vergence. This alternative approach corresponds to the data augmentation method
in Tanner & Wong (1987) and has been used for HMM model fitting (Rydén, 2008).

Given that we can sample from this posterior density, the question becomes: how
to estimate the normalizing constant based on (posterior) samples. This has been
studied by many researchers. We first give a brief review of the existing methods and

then detail what we use.

LITERATURE ON ESTIMATING NORMALIZING CONSTANTS

Early work involving Monte Carlo integrations include Ogata (1989) and Shao (1989).
When the density is approximately Gaussian with a single mode, the Laplace ap-
proximation and the Bartlett adjustment are shown to be effective (DiCiccio et al.,
1997). Methods based on importance sampling and reciprocal importance sampling
requires knowledge of a “good” importance function whose region of interest covers
that of the joint posterior to be integrated (Geweke, 1989; Oh & Berger, 1993; New-
ton & Raftery, 1994; Gelfand & Dey, 1994; Ionides, 2008; Neal, 2005; Steele et al.,
2006; Chen & Shao, 1997). Estimating the marginal likelihood based on MCMC out-
put has been developed in Chib (1995); Geyer (1994); Chib & Jeliazkov (2001, 2005);
de Valpine (2008); Petris & Tardella (2007). DiCiccio et al. (1997) and Chen & Shao

(1997) give general reviews of a variety of methods, including the Laplace approx-

82



imation, importance sampling, bridge sampling (Meng & Wong, 1996), path sam-
pling (Gelman & Meng, 1998), and methods based on MCMC output for computing

Bayes factors, which is the ratio of normalizing constants; see references therein.

ADOPTED ESTIMATION PROCEDURE

The importance sampling and reciprocal importance sampling are simple and fast
ways of estimating the normalizing constant if a good importance function close to
the target density can be specified. Since we already have posterior samples from the
unnormalized density, it can be utilized as a guidance of choosing a good importance
function for either the importance sampling or the reciprocal importance sampling.
Therefore, our strategy is to use the importance sampling or the reciprocal impor-
tance sampling to estimate the normalizing constant px (y1.,), where the importance
function is chosen based on the posterior samples from p(¢x|y1.,). Since the poste-
rior samples not necessarily gives enough information about the tail of the posterior
distribution, the importance function might be a poor approximation of the target
posterior distribution in the tail region, which might result in unstable estimators.
Therefore, we use the locally restricted importance sampling or reciprocal importance
sampling, which is more robust to the tail behavior of the target posterior distribution
p(PK|y1:n), see DiCiccio et al. (1997).

We now give our procedure for estimating the marginal likelihood pr (y1.1).

1. Obtain posterior samples. Sample from p(¢x|y1.,) using a preferred MCMC
algorithm, and denote the samples by {(j)g? £i1 (where N is often a few thou-

sand).
2. Find a “good” importance function. Fit a Gaussian mixture model using the
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samples {d)&? ﬁil, where the number of mixing components is given by either
(a) any clustering algorithm, or (b) a pre-fixed number which is large enough.
Construct the importance function g(-) by fitting a Gaussian mixture, or using
a heavier-tailed density as the mixture component; for example, using ¢ distri-
bution with a small degree of freedom, such as 2 or 3, with the same location

and scale parameters as the fitted Gaussian mixture components.

3. Choose a finite region. Choose {2 to be a bounded subset of the parameter
space such that 1/2 < fQK g(-) < 1. This can be achieved through finding an
appropriate finite region for each mixing component of g(-), avoiding the tail

parts.
4. Estimate px(y1.,) using either way as follows:
o Reciprocal importance sampling. Approximate pg(yi.n) by

N ) -1

L(RIS) 1 9(Px)
Pk (yl:n) = i (%) ) (39)
N Jo, 90) = plyrn, ) P55
—1if 40 .
where I¢§?€QK = 11if ¢}/ € Qx and zero otherwise.

e Importance sampling.
(a) Draw M independent samples from g(-), denoted by {wg)}lgjg M-

(b) Approximate px(y1.n) by

M (4)
(IS 1 P(Y1n, ¥)
P (Yrm) = P > (J.)K Iteq, (3.10)
Lyt 9(i) K

where Iw(j)GQK = 1if ¢%) € Qg and zero otherwise; Po = #S/N,
K

84



where § = {i : qb&? € Q;1 <i< N} and #S8 denotes its cardinality.

The purpose of Step 2 is to construct a reasonable importance function that cov-
ers the mode of the target density p(¢x|y1.n) thus the clustering algorithm, if ever
adopted, does not need to be “optimal” in any sense. Therefore, a conservative rec-
ommendation is to choose overly-fitted Gaussian (or student t) mixtures based on the
posterior samples obtained in Step 1. Moreover, the heavy tailed distribution and the
truncated regions both serve the purpose of obtaining a robust importance sampling
estimator. If reciprocal importance sampling is used, a heavy tailed distribution is not
recommended for sake of estimation robustness.

Simulation studies of various target densities (skewed, heavy-tailed, and high-dimensional)
with known normalizing constants validates the efficacy of the proposed procedure, re-
gardless of the shape of target density or the dimension of the parameter space. See

Appendix B.2 for detailed descriptions.

3.4.2 SIMULATION STUDIES FOR HMM ORDER SELECTION

In the numerical experiments, we fix the mean parameters of a K-state HMM to be

p = (1,2,...,K) and vary the variances > = (02,...,0?%). Equal variances is
adopted here for simplicity of the presentation of the results but this is not part of
the model assumptions. We consider four kinds of transition matrices, corresponding

to flat (P}((l )), moderate and strongly diagonal (P[((2 ), [((3 )) and strongly off-diagonal
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(P;?)) cases:

(1 i 2) B 0.2 0.2

PK = KEK, PK = |:0.8 K1 Iy + K—lEK, (3.11)
3) B 0.05 0.05

P = [0.95 K1 IK+7K— 1EK, (3.12)
@ 09 B 0.9 _

Py’ = K—lEK {K—l 0.1 I, (3.13)

where F is the K x K matrix with all elements equal to 1 and Ix is the K x K

identity matrix. For example, for K = 4, the four matrices are:

025 0.25 0.25 0.25 08 1/15 1/15 1/15
Pl _ 025 025 0.25 0.25 @ _ 1/15 0.8 1/15 1/15
025 025 0.25 0.25 1/15 1/15 08 1/15
025 0.25 0.25 0.25 1/15 1/15 1/15 0.8
0.95 1/60 1/60 1/60 01 03 0.3 0.3
b _ | 1/60 095 1/60 1/60 | ) | 03 01 0.3 03
4 ’ 4
1/60 1/60 0.95 1/60 0.3 03 0.1 0.3
1/60 1/60 1/60 0.95 03 03 03 0.1

The number of observations, n, varies from 200 to 2000, and the true number of
hidden states, K, ranges from 2 to 4. Figure 3.1 illustrates a few simulated HMM

traces. We conduct m = 200 repeated simulations, each of which compares the marginal

likelihood method with the BIC as follows.

1. Simulate n observations from the HMM with K states and the specified set of

parameters.
2. Apply the Baum-Welch algorithm with multiple starting points (in our case,
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Figure 3.1: Sample HMM traces. The left column shows three simulated HMM traces with n =

200 observations and K = 4 hidden states: ¢ = 0.3 and the transition matrix is P4(2). The right
column shows three simulated HMM traces with n = 2,000 observations and K = 3 hidden states:
o = 0.4 and the transition matrix is Pég).

50 randomly generated starting points) to obtain the maximum likelihood val-
ues for K-state HMM, thus giving the BIC of HMMs with K-states denoted by

BICn(f(), K =23,4,..;let kflo = arg maxf(BICn(I}').

3. Calculate the marginal likelihood of a K-state HMM based on the importance

sampling procedure detailed in Section 3.4.1, K = 2,3,4,...; let IAQ{LV[L =

arg max z Pr(y1:m)-

Note that when calculating the BIC, we avoid the cases when the maximum like-
lihood estimators converge to the boundary of the parameter space as mentioned in
Section 3.1.3. Moreover, we replicate the common practice of applying the BIC by
using multiple starting points for obtaining MLEs.

Table 3.1 summarizes the results from repeated simulations, showing the frequency

of correct identification of the true number of hidden states using the marginal likeli-
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hood method and the BIC.

From the simulation studies, it is evident that the marginal likelihood method out-
performs the BIC in several aspects. First, the frequency of correct identification of
the number of hidden states using the marginal likelihood method is much higher,
especially when the number of observations is small (200 as opposed to 2000). Sec-
ond, the marginal likelihood method is more robust to low signal to noise ratio, which
can be seen from Table 3.1. The success rates of the marginal likelihood method and
the BIC both drop as we increase the noise level o from 0.2 to 0.4. However, the suc-
cess rate of the BIC drops much faster as opposed to that of the marginal likelihood.
Third, since the number of (unknown) model parameters is quadratic in K, given the
same number of observations, the more number of hidden states, the harder the order
selection. The marginal likelihood method appears more robust to the true number of

hidden states than the BIC.

3.4.3 APPLICATIONS TO SINGLE-MOLECULE DATA

We apply the proposed methodology to the single-molecule data analyzed in Chen
et al. (2016).

Single-molecule experiments track the dynamic behaviors of individual molecules
through measuring in real time the energy transfer rates between two light sensitive
molecules labeled at different compartments of a molecule. The measurements, FRET
(fluorescence resonance energy transfer), is a monotone function of the corresponding
distances. In Chen et al. (2016), each FRET trace is modeled as an HMM. The num-
ber of hidden states of each HMM corresponds to the number of conformations of a
molecular complex, which is of immense significance in biology.

The marginal likelihood method gives very similar results as opposed to the BIC
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Q=P | Qx =P | Qx =P | Qx = P
ML BIC | ML BIC | ML BIC | ML BIC
0.2 200 | 100 100 | 100 100 | 100 100 | 100 100
0.3 200 | 100 100 | 100 100 | 100 100 | 100 100
0.4 | 200 | 100 100 | 100 100 | 100 100 | 100 100
0.2 200 | 100 100 | 100 100 | 95.0 96.0 | 100 100
0.3] 200 | 62.5 22.5| 100 99.5]96.0 94.5|99.0 92.5
0.4 ] 200 | 1.50 0.00 | 91.0 77.0|88.5 &88.0|25.0 10.5
0.2 200 | 100 90.0 | 100 100 | 81.0 76.0 | 100 97.5
0.3 200 | 4.00 0.00|97.0 850|650 60.0]22.0 0.50
0.4 200 | 0.00 0.00|45.0 21.0(375 37.0]0.00 0.00
0.2 200 {99.0 15.5]99.5 950550 44.0]99.5 29.0
0.3 200 | 0.50 0.00|82.0 37.0(24.0 19.0| 1.00 0.00
0.4 200 | 0.00 0.00|10.5 1.00 | 7.00 4.50 | 0.00 0.00
0.2 | 2000 | 100 100 | 100 100 | 100 100 | 100 100
0.3 | 2000 | 100 100 | 100 100 | 100 100 | 100 100
0.4 | 2000 | 100 100 | 100 100 | 100 100 | 100 100
0.2 | 2000 | 100 100 | 100 100 | 100 100 | 100 100
0.3 | 2000 | 100 100 | 100 100 | 100 100 | 100 100
0.4 | 2000 | 98.5 72.0 | 100 100 | 100 100 | 100 100
0.2 | 2000 | 100 100 | 100 100 | 100 100 | 100 100
0.3 2000 |99.5 98.5| 100 100 | 100 100 | 100 100
0.4 | 2000 | 4.50 0.00 | 100 100 | 100 100 | 84.0 20.5
0.2 | 2000 | 100 100 | 100 100 | 100 100 | 100 100
0.3 200 | 95.0 23.5| 100 100 | 100 100 |99.0 87.0
0.4 | 200 | 0.00 0.00 | 100 100 | 100 100 | 2.00 0.00

o n

GL O O i B W W W N RO OO b W ww oo X

Table 3.1: The frequency (in %) of correct identification of the true number of hidden states, out
of 200 repeated simulations for each entry, using the marginal likelihood method (ML) and the
BIC. Both n = 200 and n = 2000 observations are considered. K (= 2,3,4) is the true number of
hidden states; o is the standard deviation of each hidden state around its mean; Qi denotes the
transition matrix: the matrices PS),PS),PI(?),PI(?) are defined in equations (3.11) to (3.13).
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applied in Chen et al. (2016) for majority of FRET traces. However, for very few
traces, e.g. the two traces in Figure 3.2, the marginal likelihood method and the

BIC do not agree: the marginal likelihood method gives a selection of 3 hidden states
whereas the BIC gives a selection of 2 hidden states for both traces. As demonstrated
in Chen et al. (2016), these two traces are indeed 3-state traces under the hierarchical
model, which combines information from multiple traces to identify some rarely oc-
curred states. Therefore, the marginal likelihood method is more sensitive as opposed

to the BIC in detecting rarely occurring states.
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Figure 3.2: Two traces from the single-molecule data in Chen et al. (2016).

3.4.4 DISCUSSIONS

In this section, we give recommended choices of the prior parameters based on em-

pirical evidence from simulation studies in Section 3.4.4. Section 3.4.4 discusses the

90



consistency of practical implementations, which could also guide the choices of other

tuning parameters.

CHOICE OF PRIOR DISTRIBUTIONS

From the asymptotic results in Section 3.3, the influence of priors vanishes as the
number of observations goes to infinity. However, in practice, the number of observa-
tions is a fixed number and the choice of priors would have an impact on the results.
Now we give our recommendations of the choice of prior distributions based on em-
pirical evidence in running simulation studies. Practitioners should be aware that the
best reasonable prior distribution often comes from incorporating scientific knowledge
of the specific problem in the field of study.

In the simulation studies in Section 3.4.2, we choose flat, conjugate priors and the
results look quite promising. The prior for each row of the transition matrix is an
independent Dirichlet distribution with parameters all equal to 1, corresponding to
a ‘flat prior’. The priors for the means {,uk}szl are set to be independent Gaussian
with means {uox}X_, and large variances, e.g. 100%. {pox H_, is chosen to be data-
dependent: the ugg are set as the equally spaced quantiles of the observations yi.,.
The priors for the variances of each hidden state {o?}5 | are chosen to be indepen-
dent inverse chi-squared distribution with degree of freedom 3 and and the scale can
be chosen based on empirical estimators of the variability in the data: we can simply
take the square root of the scale as the interquartile range of the observations divided

by K —1or K.
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CONSISTENCY OF PRACTICAL IMPLEMENTATION

In practice, we replace the marginal likelihoods in Theorem 1 by their corresponding
importance sampling estimators. Theorem 7 in Appendix B.3 indicates that the order
selection consistency still holds when we plug in consistent estimators of the marginal
likelihoods. The asymptotic property of the marginal likelihood estimators we adopt
depends on the number of posterior samples and the number of importance samples,
which are extra tuning parameters. This is quantified in Lemma 6. When combined
with the convergence rate of the marginal likelihood ratios in Theorem 1, Lemma 6
can serve as a guidance towards choosing the relevant turning parameters. Refer to

Appendix B.3 for rigorous descriptions and proofs of the results.

3.5 CONCLUSIONS

In this paper, we use the marginal likelihood to determine the number of hidden
states for hidden Markov models.

The proposed method is consistent theoretically under mild conditions. The diffi-
culties of overly fitted HMMs are circumvent by introducing and proving an asymp-
totic path ignorance result which enables discarding undesired hidden state trajecto-
ries that blows up the likelihood function.

Furthermore, we propose a computation algorithm to robustly estimate the order of
an HMM trace through the estimation of normalizing constants. Extensive simulation
studies verify our proposed approach and demonstrate its power against the widely

adopted approach, the BIC, which suffers from lack of theoretical justification.
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An approximate answer to the right problem is
worth a good deal more than an exact answer to

an approximate problem.

John Tukey

The primary product of a research inquiry
is one or more measures of effect size, not p

values.

Jacob Cohen

Evaluating Parallelisable Bayesian

Computation Methods

4.1 INTRODUCTION

Monte Carlo methods have become central tools for solving demanding computational

problems in a wide variety of scientific disciplines. Markov chain Monte Carlo meth-
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ods have been widely adopted as an effective way of obtaining random samples from
posterior distributions, revolutionizing the practice of Bayesian inference. Since the
introduction of the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,
1970) and Gibbs sampling (Geman & Geman, 1984), researchers have successfully de-
veloped various improved Markov chain Monte Carlo algorithms for achieving more
independent /effective samples with fewer iterations. Multiple-try algorithms (Liu

et al., 2000; Qin & Liu, 2001) explore multiple points of the sample space at each
iteration; the Hamiltonian Monte Carlo algorithm (Duane et al., 1987; Neal, 2011)
brings insights from the thermodynamic integration into the Markov chain Monte
Carlo steps and performs very well for highly-skewed density functions; the parallel
tempering algorithm (Swendsen & Wang, 1986; Neal, 1996) and the equi-energy sam-
pler (Kou et al., 2006) enables the Markov chain to jump among different modes in-
stead of being trapped in a local mode. Other developments include slice sampling (Neal,

2003) and reversible jump Markov chain Monte Carlo (Green, 1995).

4.1.1 WASTE-RECYCLING MARKOV CHAIN MONTE CARLO ALGORITHMS

While all the Markov chain Monte Carlo algorithms mentioned above obtain one sam-
ple at each iteration upon convergence of the Markov chain, the waste-recycling algo-
rithm, first introduced by Tjelmeland (2004) and Frenkel (2004) and later developed
by Frenkel (2006) and Douc & Robert (2011), uses all the proposed points, including
rejected ones, to perform posterior mean estimation. The algorithm is valid due to
the fact that the underlying Markov chain remains invariant. Intuitively, by assign-
ing a weight to each of the proposed points, the information from the rejected samples
can be used to obtain more precise estimates of the posterior. The weighted samples

serve as a Rao-Blackwellization of the original Markov chain Monte Carlo algorithm
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upon which waste-recycling is performed. However, the waste-recycling algorithm
does not always outperform the original algorithm in terms of asymptotic variance

of posterior mean estimators, see Delmas & Jourdain (2009).

4.1.2 PARALLELISABLE MARKOV CHAIN MONTE CARLO ALGORITHMS

Using parallel computing for effective Bayesian inference is a growing and promis-
ing field. The bottleneck comes from the inherent sequential nature of Markov chain
Monte Carlo algorithms, i.e. relying on a Markov chain to draw dependent samples,
one sample at each iteration. One possible route forward would be a combination of
both the Markov chain Monte Carlo algorithm and the importance sampling: explor-
ing the target density surface using a Markov chain whereas incorporating the local
weighting into each iteration.

Calderhead (2014) proposed a parallelisable Markov chain Monte Carlo algorithm
to draw multiple samples from each iteration while evaluating the target densities
at multiple proposed points using different cores in parallel. Taking the Metropolis-
Hastings algorithm as a special case, the parallelisable algorithm proposes multi-
ple points at each iteration and resample multiple of these points with replacement
according to a weighting scheme that yields the detailed balance condition of the
Markov chain. This gives a general scheme usable within many existing Markov chain
Monte Carlo algorithms. However, with all the efforts made for parallelising the com-

putation, several new questions arise.

1. Calderhead (2014) recommends choosing the number of proposals at each iter-
ation based on the number of cores available; but how many resampled points

should we collect at each iteration of the algorithm?
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2. At each iteration, multiple correlated samples are collected, meaning the exist-
ing method for estimating the effective sample size is no longer applicable. Can
we generalize the effective sample size estimation for this new data structure to

quantify the effectiveness of obtaining multiple samples per iteration?

3. Is it worthwhile taking the trouble to call multiple cores at each iteration? The
efficiency of such algorithms for posterior mean estimation as compared to that
of regular Markov chain Monte Carlo algorithms without parallelisable struc-

ture needs to be characterized.

To answer these questions, we provide a general framework for parallelisable waste-
recycling Markov chain Monte Carlo algorithms under which the effective sample size
of such parallelisable Markov chain Monte Carlo algorithms can be estimated easily
using moment estimators. This finite-sample property, i.e. evaluation of the precision
of posterior mean estimators based on finite number of iterations, is more applicable
than the asymptotic properties given in Delmas & Jourdain (2009); Douc & Robert

(2011) for waste-recycling algorithms.

4.1.3 PARALLELISABLE WASTE-RECYCLING MARKOV CHAIN MONTE CARLO

ALGORITHMS

Our work naturally shows that eliminating the resampling step in Calderhead (2014)
and keeping track of all the proposals and the weights will improve the posterior es-
timation efficiency (section 4.2.3). Moreover, by separating the proposal and weight-
ing, we allow for a flexible choice of multi-proposal kernels and the weighting scheme
(section 4.2.2). We refer to the resulting algorithm as the locally weighted paral-

lel Markov chain Monte Carlo algorithm. In this algorithm, weighted samples are
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obtained at each iteration of the Markov chain Monte Carlo algorithm where the
weights of the samples can be calculated in parallel.

These algorithms provide a general framework for constructing parallelisable Markov
chain Monte Carlo algorithms. Compared with the algorithm in Calderhead (2014),
the proposed algorithm is guaranteed to give more efficient posterior mean estimators.
Further, we give a simple generalization of the effective sample size for Markov chain
Monte Carlo algorithms (Kass et al., 1998; Liu, 2001, p. 126). We can also use all the
proposed points and their weights to estimate the efficiency gain/loss of our proposed
algorithm compared to its regular Markov chain Monte Carlo counterpart where only
one accepted sample is collected; thus giving guidance for when to adopt or discard
such parallelisable Markov chain Monte Carlo algorithms.

We recommend keeping record of all the weights and proposed points when running
parallelisable Markov chain Monte Carlo algorithms when the storage is permissible.
The benefit is two-fold: the first is the variance reduction of posterior mean estima-
tors over Calderhead’s estimators, which will be shown in section 4.2.3; the second
is that the proposed points with their weights can be used to quantify performance
through the generalized effective sample size.

The rest of the paper has four sections. We review the parallel Markov chain Monte
Carlo algorithm in Section 4.2.1; describe the idea of the locally weighted algorithm in
a general context in Section 4.2.2; and then present in Section 4.2.3 some properties of
the new algorithm and its estimators: unbiasedness, relative statistical efficiency, and
the generalized effective sample size. We then apply the algorithm to the Hamiltonian
Monte Carlo transition kernel in Section 4.2.4. Section 4.3 illustrates the methodolo-
gies proposed in this paper using numerical simulations. Section 4.4 concludes. The

appendix contains the relevant proofs.

97



4.2 LocALLY WEIGHTED PARALLELISABLE MARKOV CHAIN MONTE CARLO

Assume that we wish to estimate pp = Er{h(x)} by sampling from the target dis-
tribution 7(-) defined on @ C R, known up to a normalizing constant; h(-) is any
function with finite first moment with respect to 7 (), i.e. E-{|h(z)|} < oo. We have
two kinds of Markov kernels: the proposal kernel from a sample x to y (which can be
a single sample or vector of multiple samples), denoted by K (x,y), can be any kernel
that propose (potentially multiple) points y from the current position z; the transi-
tion kernel from z to 2/, denoted by T'(x,z’), is a Markov kernel that is m-invariant.
We use z_; to denote the collection of z’s after removing the ith element. The num-
ber of iterations is denoted by n and the number of proposals at each iteration is de-

noted by M. l'l(»j ) denotes the ith proposal in the jth iteration.

4.2.1 RECAP OF PARALLEL MARKOV CHAIN MONTE CARLO

The parallel Markov chain Monte Carlo algorithm in Calderhead (2014) with n itera-
tion and M proposals, N samples per iteration has the following steps. Our descrip-

tion of this algorithm is slightly different for ease of later comparisons.
Algorithm 1. Parallel Markov chain Monte Carlo

Set :c(()l) to be the initial value

Forj=1toj=n
Draw proposals {l‘gj), el acg\i[)} from K($((]j), )
Calculate w(:(:(j)), . ,w(xg\]}) as defined in Eq (4.1) or Eq (4.2)
Fori=1toi=N

Draw yl(j) from {iL‘(()j), e acg\j/[)} with probabilities {w(x(()j)), .. ,w(xg\j/[))}
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Draw x(()jH) from {x(()j), ce a:g\jj} with probabilities {w(a:[()j)), . ,w(ng/[))}

Output{yz(j) ci=1,...,N;j=1,...,n}

() G) ..() M
) ) K (27 2 55) 0 ()
w(x;”) = min{1, =}, (=1,...,M); w(zy')=1- E w(x;”’)
Q0 x((J]) K(x(])7 (—J[))) =1

() () ..()
INK (2, 2V
mle K@ es) (i=0,...,M). (4.2)
S (@ K (29, 219)

Points y-(j )

;. fori=1,...,N,j=1,...,n are collected according to Algorithm 1 so

that ju, could be estimated by i7" = L > i PR h(yi(j)).

4.2.2 MAIN IDEA OF LOCALLY WEIGHTED PARALLEL MARKOV CHAIN MONTE

CARLO

Now we describe the locally weighted parallel Markov chain Monte Carlo algorithm in

a very general framework, allowing flexible weighting scheme and propagation kernels.
Define the 1st and 2nd version of w(mij))
(9)

7

same as Eq (4.1) and (4.2), respectively.
Collect points x;”/ with weights w(:cl(.j)) fori=0,...,M,j=1,...,n according to Al-

gorithm 2 so that yy, could be estimated by /P = 30 M h(x,gj))w(:cgj)).
Algorithm 2. Locally weighted parallel Markov chain Monte Carlo

Set :1:81) to be the initial value
Forj=1toj=n
Draw proposals {ng)7 e ,xg\]}} from K(gy;(()j)7 )

In parallel, calculate w(x(j))7 e ,w(:cgé,)) as defined in Eq (4.1) or Eq (4.2)
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Draw x(()jH) from a transition kernel T(a:(()j), -) to propagate Markov chain

Output xgj) with weights w(xgj)) fori=0,....M;j=1,...,n
Remark 1. In the propagation step, we have the flexibility of choosing the transition
kernel T(xéj), z'), as long as the detailed balance condition holds. Of course we can
simply choose the transition according to the weights as in Algorithm 1. Empirically

from simulation studies, this separation of the transition from the weighting scheme,

when applied appropriately, boosts the efficiency of posterior mean estimators.

Remark 2. Setting M = 1 gives the waste-recycling Metropolis-Hastings algorithm,

see Frenkel (2004) and Tjelmeland (2004).

4.2.3 PROPERTIES OF THE ALGORITHM AND THE GENERALIZED EFFECTIVE

SAMPLE SIZE

In this section, we first study unbiasedness and statistical efficiency of locally weighted
algorithms against regular Markov chain Monte Carlo algorithms for estimating means
of (nonlinear) functions with a finite number of iterations. Next, we introduce a gen-
eralized effective sample size for the proposed algorithms and describe its estimation
using all proposals and weights when the number of iterations is large.

Throughout this section, we denote i} "™, /lilwp " and [ be the posterior
mean estimators of h(-) using Calderhead’s parallel, our locally weighted, and stan-
dard Markov chain Monte Carlo algorithms respectively. For all these algorithms n
denotes the number of iterations, M is the number of proposals within each itera-

tion in parallel and locally weighted parallel Markov chain Monte Carlo, and N is the

number of samples obtained within each iteration in the former.
Unbiasedness and Efficiency Comparisons
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In theorems 4 and 5, we show that not only do we obtain unbiased estimators us-
ing Algorithm 2, but that we reduce the variance of the posterior mean estimator as
compared to Algorithm 1 with the same transition kernels. Proposition 1 gives a sim-
ple moment estimator of the relative reduction of variance using local weighting as
opposed to parallel Markov chain Monte Carlo. The proofs are in the Appendix.

Theorem 4. (Unbiasedness) When in equilibrium, the estimators produced by Algo-

rithm 2 are unbiased, i.e. E([Llhwpmcmc) = Lp-

Theorem 5. (Variance Reduction) Given the same transition kernel, Algorithm 2
is a Rao-Blackwellization of Algorithm 1, thus yielding smaller variance for the esti-

mated mean, i.e. Var(ﬂﬁ:ﬂpmcmC) < Var(ﬂ]imcmc).

Proposition 1. (Efficiency Gain) Define the efficiency gain of posterior mean

estimators of h(-), ,&Zﬂpmcmc against (""", as the relative reduction of variance:
~ ~lwpmeme
j i var (i ") — var( )
EG (b {al, w(@) Yizo, . arjmtns N ) = (4.3)
var(fiy, )
The moment estimator of the efficiency gain of ﬂlhwpmcmc againt fif"™ " is:
: : E(g) — E{(h)*}
56 (1 (69 w9 o, argor i V) = R R
{xz ’lU(.’IJl )}Z 0,....M;5=1,...n N Val“(h) ( )

upon convergence of the Markov chain, var(h) is estimated by the sample variance

of quantities {Zi]\io w(mz(»j))h(a;gj))}jzl,_“’n; E(g), E{(h)?} are estimated by sample
means of quantities {Zf\iow(xij))h(a:l(j))Q}j:L,,,,n and [{Zf\iow(xl(j))h(xl(j))}2]j:17m,n
respectively.

Remark 3. Under the same proposal and transition kernels, as N — oo, i.e. re-

sampling infinite number of proposals at each iteration, the parallel Markov chain
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Monte Carlo algorithm converges to the locally weighted algorithm:

EG(h; {z9 w@) Vico, . arjer, . ms N) = 0, var(@Pmeme) fyar (p2) — 1.

Generalizing the Effective Sample Size

In the Monte Carlo literature, the notion of effective sample size is widely adopted
to evaluate the performance of a sampling procedure (Liu, 2001, p. 269; Gelman et al.,
2013, p. 286). If 4™“™¢ is the standard estimator of the mean, effective sample size for

Markov chain Monte Carlo algorithms is defined as

0'2 n

Var(ﬂmcmc) 142 Zk Pk7

ESSmeme = (4.5)

n
j:17

where py, is the lag-k autocorrelation of the Markov chain {méj ) the samples from
the target distribution 7(-) with o2 as the variance of (). It can be estimated using
moment estimators and the spectral density at frequency 0 (see e.g. Andrews, 1991;
Miiller, 2014).

The weighting scheme of our proposed algorithm or the correlated multiple samples
of Calderhead’s parallel algorithm make the original effective sample size estimation
inappropriate. Thus we derive a more general measure of the effective sample size.

Recall that the output of Algorithm 2 is n(M + 1) weighted samples, producing the

mean estimate

i
=0

n M
1 : j Ny
ﬂlwpmcmc _ g ZE(J)’ where .’Z'(j) = Z’LU(.%'(J));(;SJ)
j=1 '

102



Theorem 6. The effective sample size for Algorithm 2 can be written as

O'2 7’L(T2

ESS, = = ’
lwpmeme Var(ﬂlwpmcmc) Var(j;) (1 + 2 Zk ’Yk;)

(4.6)

where 7y, s the lag-k autocorrelation function of {:E(j)}?zl and var(zV)) = var(z) for

all 1 < j <n by the stationarity of the Markov chain upon convergence.
Corollary 1. The effective sample size for Algorithm 1 can be written as

2
o . ESSlwpmcmc

= 4.7
var(ipmeme) 1+ EG ~’ (47)

ESSpmcmc =

where EG is the efficiency gain as defined in Equation 4.3 and estimated as in Propo-

sition 1.

The proofs of the theorem and corollary are given in the appendix.

A good kernel K will typically make var(z) small, while the transition rule is im-
portant in making 1425, v, small. The intuition here based on the ESSppmeme for-
mula provides useful guidance for designing effective locally weighted parallel Markov
chain Monte Carlo algorithms. The next proposition gives a simple way of estimating

ESSiuwpmeme using all proposed samples and weights.

Proposition 2. ESSjpmeme can be estimated by substituting var(z)(1 + 2>, Vi)
with an estimate of the spectral density of {a‘c(j)};l:l at frequency 0, and o with its

moment estimator.

As a sanity check, we compared the above estimator to an estimate of o2 /var(jlwrmemne)

based on repeated experiments. It does indeed estimate the correct quantity, and its

coefficient of variation is similar to that of the estimator of ESS;,cme. Due to the es-
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timators’ similarities, our estimator also has the same potential issues as the standard
estimator. For further details see the supplementary material.

In the case of the usual Metropolis-Hastings algorithm and its multi-proposal ex-

tensions, w(x(()j)) =1 and w(acgj)) =0fori=1,...,M. Then z\¥) = x(()j) and g;(()j) ~ T
for all j upon convergence, so that var(z)) = var(z) = o2 for all j. Moreover,

Y = pr where p; is the lag-k autocorrelation of the Markov chain {x(()j ) i—1- Thus

we have the following proposition.

Corollary 2. When M = 1 and w(x(()j)) = 1, ESSiwmeme 15 equal to ESScme in

formula 4.5.

4.2.4 A SpPEcIAL CASE: LocALLy WEIGHTED HAMILTONIAN MONTE CARLO

From the derived properties of proposed algorithm, the real benefit arises when mul-
tiple good points are proposed within each iteration, thus obtaining less degenerate
weights and more effective samples. We illustrate one such algorithm, called locally
weighted Hamiltonian Monte Carlo (Algorithm 3 below), where the leapfrog inte-
gration path that arises in Hamiltonian Monte Carlo algorithm (Duane et al., 1987;
Roberts & Tweedie, 1996; Neal, 1994; Qin & Liu, 2001) is taken as the proposals in
Algorithm 2.

Denote ¢(-) be the (multivariate) Gaussian density with mean zero and covariance

matrix W. Let H(z,p) = —logm(z) + 2p” W~1p. Define w(acij)) as Eq (4.8) below.

w(al) = exp{-H(z”.pi”)) , (i=0,...,M). (4.8)

S Mo exp{—H(z?, p?)}
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Define the rejection probability from J:gj ) to xl()j ) as

exp{—H(z{", p)}

. . . 4.9
exp{—H (", p?)} )

()

Collect points x;”” with weights w(xij)) fori =0,...,M,j = 1,...,n according to

Algorithm 3 so that j, could be estimated by filvhme = %2?21 Zi]‘io h(a:f;j))w(xl(-j)).

Algorithm 3. Locally weighted Hamiltonian Monte Carlo algorithm

Set x to be the initial value

Forj=1toj=n
Draw a momentum vector p(()j), e ,pg\i,) ~ ¢
Sample | uniformly from the set {0,..., M} and set :cl(j) =z
Run following two steps in parallel:

Leapfrog integrate backward in time for | steps, generating {x(()j ) yeen ,xl(J_ )1

Leapfrog integrate forward in time for M — [ steps, generating {xl(j_)l, e ,x(j)}

In parallel, calculate w(m(()j)), ce w(mg\]}) as defined in Eq (4.8)
Seta=0ifl>M—1 and a = M otherwise
Change x to be 29 with probability r(xl(j),ng)) as defined in Eq (4.9)

Output xgj) with weights w(xz(»j)) fori=0,....M;j=1,...,n

Like other algorithms of this type, the locally weighted Hamiltonian Monte Carlo
algorithm works well for highly-skewed density functions like the banana-shape den-
sity (Gelman & Meng, 1991), which significantly improves regular Markov chain Monte
Carlo algorithms. The reason why we include this particular example as a special case
is that the intermediate steps on the leapfrog path are good proposals in their own

right, and are therefore likely to provide useful information about the target density.
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The algorithm can be viewed as using the leapfrog algorithm as a numerical integra-
tor on top of the underlying Markov chain. The efficiency of locally weighted Hamil-
tonian Monte Carlo therefore depends on the efficiency of this numerical integrator.
For densities that exhibit certain kinds of symmetry about its mean, the leapfrog
integration is an efficient numerical integrator and E.SSjymeme typically increases
quadratically as a function of M. This feature does not hold for standard Hamilto-
nian Monte Carlo. For fixed M the performance of the leapfrog algorithm as a numer-
ical integrator depends on the tuning parameters.

Similarly, we can modify other Markov chain Monte Carlo algorithms to their locally-
weighted parallelisable versions, e.g. a locally-weighted parallelisable version of Multiple-

try Markov chain Monte Carlo (Liu et al., 2000). We omit the details here.

4.3 NUMERICAL EXAMPLE

In this section, we apply the quantities defined in Section 4.2 to compare the perfor-
mance of the algorithms discussed in this paper using a time series example. We use

upper case to denote random variables and the corresponding lower case to denote

their realizations. Let Xo = 0 be fixed, the observations y1.7 = (y1,...,yr)’ are
obtained through the following process:

}/lf:Xt+€t7 Xt:Xt—1+77t (tzl,,T), (410)
where €;,7; are independently Gaussian with mean zero and variances 05 and o2 re-

spectively. The joint likelihood of the observations y;.7 and hidden process 1.7 =
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2 2

(x1,...,27)" given the parameters (o2, o,) is

2 2
203 20%

_ZtT:1(yt —x)® S (= m1)? } .

We can calculate the marginal likelihood L(yy.7 | 02, Ug) = [pr Ly, 217 | o2, og)d:rl:T
using the Kalman filter (Kalman, 1960; Kalman & Bucy, 1961). We assume indepen-
dent scaled inverse-chi-squared priors for 0325 and UZ , with hyper-parameters (v, si)
and (vy, 312/) respectively. We apply Metropolis-Hastings, parallel and locally weighted
parallel Markov chain Monte Carlo, and locally weighted Hamiltonian Monte Carlo
algorithms to obtain posterior samples of o2 and 05. In the simulations, we choose

T = 1,000 as the length of observations. The model parameters are chosen as o, =
0.1, 0y, = 1. The hyper-parameters are v, = v, = 1, s2 = 0.01, 85 = 1. When im-
plementing Metropolis-Hastings, parallel and locally weighted parallel Markov chain
Monte Carlo, we choose independent Gaussian proposals centered at the current point
with standard deviations d,, 6, for log(o2), log(oz) respectively. The burn-in is chosen
to be the first 10,000 iterations and n = 10,000 posterior samples are collected.

Table 4.1 summarizes the results with effective sample size from each algorithm. M
is the number of proposals at each iteration, N is the number of samples collected at
each iteration.

Furthermore, we implemented the locally weighted Hamiltonian Monte Carlo algo-
rithm with M = 20 proposals at each iteration. We chose the leapfrog step size to be
0.03 and W matrix to be diagonal with diagonal elements (2,1). The effective sample
size for o2 and O'Z are 454 and 4, 793 respectively; which are much larger than that of
the Metropolis-Hastings and the parallel Markov chain Monte Carlo algorithms with

M = 20 proposals at each iteration as listed in Table 4.1.
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Effective sample size for o2

MH pMCMC LWPMCMC
M 1 20 100 1 20 100
N 1 5 5 NA NA NA
0, =011 74 14 7 76 14 7
0, =031 173 82 45 185 82 45
0, =0.5] 208 | 208 74 210 204 74
Effective sample size for o,
MH pMCMC LWPMCMC
M 1 20 100 1 20 100
N 1 5 5 NA NA NA
6, =0.1]1227 | 707 187 | 1265 727 188
6, = 0.3 | 1023 | 1015 1345 | 1000 1127 1413
0, = 0.5 | 489 | 1695 1728 | 500 1885 1898

Table 4.1: Effective sample size results for the linear time series example using the Metropolis-
Hastings (MH), parallel Markov chain Monte Carlo (pMCMC) and locally weighted parallel Markov
chain Monte Carlo (LWPMCMC) algorithms with n = 10,000 samples. M is the number of pro-
posals at each iteration, IV is the number of samples collected at each iteration. J, and ¢, are the
step-sizes of the symmetric random walk proposals of log(c?) and log(o7) respectively.
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From the simulation above, we can see that parallelisable waste-recycling Markov
chain Monte Carlo algorithms indeed give bigger effective sample size, i.e. more effi-
cient posterior estimators as compared to the Metropolis-Hastings algorithm and the
parallel Markov chain Monte Carlo algorithm, but at a cost of more computation as
opposed to the Metropolis-Hastings algorithm. Note that the locally weighted par-
allelisable Markov chain Monte Carlo has the same computation cost as compared
to the parallel Markov chain Monte Carlo algorithm but with larger effective sam-
ple size, thus the former is superior to the latter considering both the statistical and
computational efficiency. A good transition kernel is crucial for performance, as can
be seen from the results of locally weighted Hamiltonian Monte Carlo. Our effective
sample size measurements provide quantitative guidance for the trade-off between the
statistical efficiency and computational efficiency, and the choice of proper transition

kernels for the most efficient algorithm.

4.4 CONCLUSIONS

In this paper we have developed the locally weighted parallelisable Markov chain
Monte Carlo algorithm, built upon waste-recycling Markov chain Monte Carlo and
parallel Markov chain Monte Carlo algorithms, which dominates its parallel Markov
chain Monte Carlo counterpart theoretically. We show how to compute the effective
sample size of the algorithms’ output and illustrate their performance on a toy exam-
ple. The locally weighted algorithm is well suited to modern computer architectures
with massive numbers of cores, which can possibly dramatically increase statistical
efficiency with parallel computing.

The algorithm provides a general framework with highly flexible choice of propos-
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ing kernels and transition kernels, thus readily adaptable for any Markov chain Monte
Carlo algorithms with cleverly chosen proposing or transition kernels. We have demon-
strated this with the Hamiltonian Monte Carlo algorithm in this paper, in which the
results are promising.

Furthermore, we promote the usage of locally weighted parallelisable Markov chain
Monte Carlo algorithms over unweighted parallel Markov chain Monte Carlo algo-
rithms because it provides easily-estimable quantities that guides practitioners to bal-
ance the trade-off between the statistical efficiency and computational cost for parallel

computing.
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Conclusion

In summary, this thesis (i) contributes a general statistical methodology to analyzing
experimental replicates from single-molecule experiments based on fluorescence imag-
ing, (ii) proposes a consistent and easily computable estimator for the order of hidden
Markov models, and (iii) defines a measure that evaluates the effectiveness of a wide

family of parallelisable Markov chain Monte Carlo algorithms.
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5.1 OPEN QUESTIONS ABOUT SINGLE-MOLECULE DATA

There are several remaining interesting questions about the analysis of single-molecule

fluorscence imaging data. Here we briefly summarize some of them.

1. The current analysis of single-molecule data is based on FRET, which is defined
as the acceptor signal divided by the sum of the acceptor signal and donor sig-
nal. Rigorous study of the advantages and disadvantages of using the FRET

versus analyzing the donor signal and acceptor signal separately is desired.

2. The single-molecule experiments shown in chapter 1 obtain measurements at a
30 millisecond frequency and the total observational time roughly ranges from
10 seconds to 90 seconds. Given that the observational time is limited, what
is the ‘optimal’ frequency of taking the observations? This is a question asked
from the perspective of the experimental design — we aim for preserving neces-

sary information with minimum labor or experimental data.

3. Is 30 millisecond good enough to capture the stochastic dynamics of the molecules?

In other words, how can we quantify the missed fast transitions?

4. The biological process is known to be a continuous time stochastic process, al-
though the experimental data is taken at discrete time points. What kinds of
conclusions about the continuous process can be drawn from the discrete time
observations remain open. It will be interesting to also consider embedding the

discrete time observations into a continuous time stochastic process.

5. The experimental replicates maybe correlated with each other, a natural con-

sequence of the experimental procedures. How to detect or measure this corre-
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lation among molecules and how to use the correlations to obtain more robust

inference are intriguing questions for both statisticians and biologists.

5.2 OPEN QUESTIONS ABOUT PARALLEL MCMC

Besides the parallelisable MCMC scheme discussed in this thesis, more innovative and

efficient sampling algorithms that utilize parallel computation are desirable.

1. The current paralelisable framework requires frequent communications among
different workers, i.e. collecting all the weights at each iteration before moving
forward, which significantly compromises the computational gain from paral-
lelisation. Generalizations of the multiple-proposal scheme to the asynchronous
framework, in which workers do not wait for each other before moving forward
with the next iteration, will be an intriguing problem to pursue. The literature
on asynchronous optimization algorithms and the asynchronous Gibbs sampling

provide important hints towards solving this problem.

2. We propose to evaluate the efficiency of parallelisable MCMC algorithms us-
ing the generalized effective sample size, which, under the current definition,
does not take the correlations of different dimensions into account. In other
words, right now we calculate the effective sample size one dimension at a time.
It would be more reasonable to consider the correlations, which is available

through the samples, when quantifying the efficiency of sampling.

3. In addition to sampling efficiency, the mixing rate is an important factor in
evaluating such algorithms. It would be ideal if we can provide in-depth theo-

retical studies of the mixing rates of parallelisable MCMC algorithms.
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Computational Algorithms of HMM

A.1 BaAuM-WELCH/EM ALGORITHM FOR HMM

For a given value of K, the total number of states, we can use the EM algorithm (Demp-
ster et al., 1977), a.k.a. the Baum-Welch algorithm for HMM (Baum & Petrie, 1966;

Baum et al., 1970), to infer 8. For the ease of presentation, we assume here that the
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initial distribution of the first hidden state z; is flat. The full likelihood function is

N N K N
T.
L(a) = Hp(zn‘zn—l,P) Hp(yn|znvﬂ7o'2) = H ijfk : HN(ynQUznvagn)7
n=2 n=1 j,k=1 n=1

where T}, denotes the total number of transitions in z from state j to state k, and
N (y; i, 0%) denotes the normal density with mean p and variance o2 evaluated at y.

For the EM algorithm, in the E-step, the expectation step, we have

K N K N
Elog L(6]6°) = 3 > wajulog P+ > unilog N (yn; s, o7)
Jrk=1n=2 k=1n=1

where u,, ;, = p(zn, = k|y, 0°'%) and Unjk = P(Zn—1 = J, 2n = kly, 0°'?) can be expressed

in terms of a(z) = p(Yrn, 5010") and B(zn) = p(Weur1vlzn 079

Un,z, = a(zn)B(Z’Vl)/p(yl:N‘eOld)?

Un,zn,l,zn - a(z"Z—1>ﬂ(zn)p(yn’znv GOld)p(Zn‘Zn—lu GOld)/p(ylzN’001d>-

a(z,) and B(z,) can be efficiently calculated by the forward-backward algorithm (Ra-
biner, 1989), a recursive formula that allows fast computation: evaluating the a’s for-

wardly from 1 to N and the 8’s backwardly from N to 1:

K
a(z,) = p(@/n|zn>001d) Z a(zn—1>p(zn’zn—1>0dd)a (A1)
Zn—1=1
K
B(zn> = Z /B(Zn+1)p(yn+1|zn+lvOOZd)p(Zn+1’2n700ld)7 B(ZN)EI (AQ)
Zn4+1=1

In addition, the forward-backward algorithm gives the marginal likelihood evaluated

at the maximum likelihood estimate p(y|6) = Yoy alen) =20 p(yrn, Zn|0).
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In the M-step of the EM algorithm, which maximizes F log L(0|0°%) over 0, we

Onew

obtain according to

N N N
. Zn:Q Un,j,k . Zn:l YnlUn, k 2 anl un,k(yn - Mk)z
ij - y Mk = ——n > O = N .
anl Un,k

K N N
D k1 Don=2 Vnjk > =1 Unk

A .2 (GIBBS SAMPLING FOR HMM

In addition to the EM algorithm, which quickly obtains the MLE of the parameters,

we can also use Bayesian MCMC sampling (Liu, 2001) to assess the entire (posterior)
distribution of the parameters. Our MCMC sampling can be viewed as a special case

of data augmentation (Tanner & Wong, 1987): augment the parameter space 8 with
the hidden states z, and iteratively sample one given the other (i.e., sample 0 given z
and sample z given ).

Specifically, in our MCMC sampling, we adopt flat priors for P and ug, k=1,..., K,

and independent inverse-x? priors with parameters v, s for al% (the prior on p is flat

over the region 0 < pu1 < -+ < ug < 1). The posterior distribution is

p(0,zly) = azw)po( )po(m)po(a?)

(
K N

O'k,l/ S

||::]N

It follows that in our (group Gibbs) sampler, the conditional distribution of the jth
row of the transition matrix Pj. = (Pj1, Pj2, ..., Pjk) is a Dirichlet distribution, the
conditional distribution of p is a multivariate normal distribution, the conditional

distribution of o2 is a multivariate inverse-y? distribution and that the hidden states
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z can be sampled sequentially from 1 to N through the following recursion:

P(Zn — k‘zn—l — ja 05 y) x P ik N(yTu HE, Uk) (yn+1:N|ZTL - k:)

= Pjp N(yn; p,0k) B(k), n=1,2,...,N,

where (k) is the the backward probability defined in equation (A.2).

A.3 MCMC SAMPLING OF THE HIERARCHICAL HMM

The posterior distribution is proportional to

(1o, M3, s Hp O 20110, 10, 6O, P) x T o1 |10, 15, 1)p((0 @), 87, 1)p(11).
l

We use the Gibbs sampler to update a group of parameters at a time, conditioning on

the others, and iterate until convergence. The sampling details are given below, where

I(w) and I, denote the indicator function.

1. Initialization. Fit each trajectory independently using the EM algorithm in Ap-

pendix A.1 and set the initial values of {u(), 0"} at the corresponding MLEs.

The initial values of {I} are set to be {1,..., K}.

2. Update global parameters g, 778, s2. For1 <k <K,

Sample fig) from (Zl 1kel® ,“k /(Zl 1 lerw), "o, k/(Zl 1 ee1m))s
Sample 72, from Inv-x*(3/4 e, — 2,5 rer@ (1 — Hok)® /(L Teerw
Sample s? from {vi Zl 1 Ikel(l)/(ak )23t de df = v Zl 1 leeray + 2.
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3. Update transition probabilities P according to

p(P) o HPi]Zl Ni(’l‘}/ 11 [T (" Py)rer® N
Y]

IW£{1,2,.. K} icI® kel®
4. Update parameters for individual trajectories.
« Update {u® oe®}. For ke 1® 1 =1,...,T,

pok /My, + 22,0, ) /(o)))? 1
l ? !
Unge + X0 /(00 1+ 0 1/(0))

N l l z

(U(l))2 ~ Inv—x* v+ El 1z = k) vgsj, + Zn(yﬁz) - u,(f))QI(zﬁl) = k)
k k n y 0 - )
n=l vk + 22, 1(zn” = k)

n o~ N

« Update {z()}. This is essentially the same as introduced in Appendix A.2
except that when 1) #{1,2,..., K}, the transition matrix is a re-normalized

submatrix of P according to which states are present in trajectory [.

« Update {I®}. 1" is equal to A C {1,2,..., K} with probability propor-

tional to
pyOp®, 0@ P, 1O = A)p(u®|po, n2, 1V = A)p((V)?|v, s2, 10 = A)

where A stands for {1,2,3}, {1,2}, {1,3} or {2,3} when K = 3, and

{1,2,3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2}, {1,3}, {1,4}, {2,3},
{2,4}, or {3,4} when K = 4.

5. Iterate Steps 2 to 4 until convergence.
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Theoretical Results of HMM Order

Selection

B.1 PROOFS OF CONSISTENCY THEOREMS

We use the same notations as Section 3.1.2. Throughout the proof, we use 1q to de-

note the indicator function for any set 2, and we use ¢ to denote the complement
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of . In addition, for a vector or matrix A, let A* be its transpose. We use || - || to

denote the Euclidean norm.

B.1.1 REGULARITY CONDITIONS

There are three groups of regularity conditions: (A1) - (A6), which ensure the asymp-
totic properties of the posterior distributions under the true number of hidden states
K* (de Gunst & Shcherbakova, 2008), (B1) - (B2), which regulate the asymptotic
properties of the posterior distribution when the number of states K is larger than
the true number of states K* (Gassiat & Rousseau, 2014), and (C1) - (C2), which en-
ables representing the full log likelihood of an HMM as an additive functional of an

ergodic Markov chain (Fuh, 2003).

REGULARITY CONDITIONS FOR ASYMPTOTIC ‘TRUE’ POSTERIOR

(A1) © is a compact set in R? and the true parameter 07 is an interior point of ©

foralll1 <k < K*.
(A2) g;; >0forall 1 <k,l <K*
(A3) The function § — f(-|f) is twice continuously differentiable in ©.
(A4) Let P* and E* denote the probability and expectation under the true probabil-

ity model ¢* respectively. For all 1 < k < K*|

E*[log f(V1]0)] < oo; (B.1)
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furthermore, there exists € > 0 such that

R f(V1)0)
P sup ———=0|X1 =k <L B.2
{IIO'—9*|<6, <<k f(Yal0r) ! (B.2)

(A5) Let v denote the measure on ) that we defined the density f(-|0) with respect

to. Then, for any 6 € O, we suppose that there exists € > 0 such that

E* | sup (log f(V1]0))"| < oo, (B.3)
10/—6]<e
E*| sup ||Vglog f(Y1|6)|]?*| < oo, (B.4)
6/—6]<e |
E* | sup |[[Djlog f(11]6)|*| < oo, (B.5)
[167—6]<c |
/ sup Vof(yld)|v(dy) < oo, (B.6)
V|| 60'—-0]<e
[ sup Dirtulen) vty < . (B.7)
V| 167—6]<e

In addition, there exists a > 0 and b > 0 such that, for any sufficiently large M,

sup / V0 £ (410)][v(dy) < M. (B.5)
10 <M

(A6) For any two 6 # 0" in ©, \{y : f(y|0) # f(y|0")} > 0, where \? is the Lebesgue

measure of RY.
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REGULARITY CONDITIONS FOR ASYMPTOTIC OVERLY-FITTED POSTERIOR
The first condition (B1) regulates the prior for the transition matrix.

(B1) The prior distribution on the transition matrix can be written as v (Qr) =

Hle (qk1, Qk2, - - - , Qkr ). Moreover, there exists C > 0, a; > 0, -+, axg > 0
such that
0 < o(ur,ug, - ug) < Cuf tug2= Qx5 (B.9)

for all (uy,ug, - ,uk) satisfying

K
min(uy, ug, -+ ,ug) >0, and Zuk =1.
=1

Furthermore, suppose that Zszl ap > K(K+d-1).

The second condition (B2) ensures the identifiability under overestimation, which

needs some additional definitions. Define
K= {/%’: (kiy ko, k) € {1, KK o hy < hing,i= 0, - ,K*—l}.
Forall 1 <¢ < K*+1 with kg =0 and kg~41 = K, set
L ={kisi+1,--- ki}.

For any keK , consider
1. a; €R, b € R% and ¢; € R for 1 <i < K*.

2. mp € {RU{0}} for kg~ +1<k <K,
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3. zi € RYand o € Rfor 1 <4 < K* and k € I; such that |[zj|| = 1, aip > 0

and Zkelj ajr =1forall 1 <j<K*
4. 0, c© — {0/, 1 <I< K*} for kg-+1<k < K.

Let P be the space of all possible (a;, b;, ¢;, Tk, ik, @ik, O ). For any p € P, define

‘F(y’p) = ]:(y|ai7bi7ci77rkvzik‘7aik50k)

K K* K*
= > mfCl0) + ) (afC167) + VIV FCI0) + D e Yzl D F(165) zine
kaK*+1 =1 =1 kel;

(B2) The set {p:p € P, F(ylp) =0 Vy € YV} is equal to

{p:pep,(ai,bi,ci):(_f VI<i<K*m =0 Vkmﬂgkgf{}.

Remark 4. The prior condition (B1) is designed for the Dirichlet prior. The weak
identifiability condition (B2) holds for any miztures of reqular exponential families,

see Gassiat & Rousseau (2014).

Remark 5. Condition (B2) needs some explanation. As discussed in Section 3.3.3,
the problem is the existence of multiple “true” parameters. More precisely, it can be
shown, that, for all ¢r € ®x such that p(-|px) = p(-|px+), there exists a k € K such

that, up to a permutation of the state labels:
e 0, =07 foralliec{1,2,--- ,K*} and k € I,.
o ier, au =gy foralli,j € {1,2,--- K*}, k€ I; and | € I;.

e =0 foralll <k< K andl > kg~.
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In other words, ¢ is obtained by duplicating state i into states k;—1 + 1,--- , k;, with
some redundant states kg~ + 1,--- , K* which are impossible to reach. For a fized ke

K, for any ¢y, € g, consider the following parameterization, up to a permutation,

gD = (01)' o 79kK*)7

QR = (ekK*+17 e JQK)7
kJ’EI]'

rp = e 1<k<Klel,j<K"
Zk'elj Ak’

Qr = (le)lgkgK,l>kK* .

Note that the true parameter ¢* corresponds to

O = (07, 05,05, .05, ,0%), (B.10)
AL=0,1<j<K. kel;;1<i<K", (B.11)
R =0, (B.12)

where in (B.10), 0; is repeated k; — k;—1 times; and arbitrary ri; and 0}5 as long as
Zlelj riy = 1 foralll < j < K*. This means that we would like to have an “iden-
tifiability” in which ¢ is considered to be the same as ¢+« when (B.10)-(B.12) are
satisfied. The condition (B2) is designed to take care of this: a; = ¢; = 0 corresponds
to Aji, = 0, b; = 0 corresponds to 0p = 51’5, and p; = 0 corresponds to QR = 0. The
(zik, i) and Oy correspond to ry; and gR, thus no regularity condition is required. See

Gassiat €& Rousseau (2014) for more detailed discussions about the (B2) condition.
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REGULARITY CONDITIONS FOR ADDITIVE REPRESENTATION OF HMM

Let F; be a K x K diagonal matrix with diagonal elements (f(yi|601),- - , f(vi|0k))

and set MZ = Mz(¢K) = FlQ%, 1 < /) <n.

(C1) The set {¢ : ¢ € @, M;(¢) is invertible P?-almost surely} has probability one
under the prior, where P? denotes the probability measure determined by the

parameter ¢.

(C2) For any ¢ € ®x and 1 < k < K, E?[|Y1]|X1 = k] < oo, where E? denotes the

expectation under P?.

B.1.2 PROOF OF THEOREM 2

The proof of Theorem 2 requires Lemmas 1 and 2, which studies the asymptotic be-
havior of the log-likelihood and the modified (path-ignored) log-likelihood respec-
tively. The proofs of Lemmas 1 and 2 are given in Sections B.1.2 and B.1.2.

Define L(y1:n|¢x) := logp(yin|¢k). For the set of paths X% in (3.6), define

Le(y1:n|¢K) = logpe(ylsnM)K)’ where

pe(Yl:n|¢K) = Z p(Yl:n7X0:n|¢K)~

xO:nGX}Té’E

Lemma 1. If (A1)-(A6) and (C1)-(C2) hold, then for any ¢k, there exists p =

w(dr) € R such that n ™ L(y1.n|¢K) — p almost surely.

Lemma 2. If (A1)-(A6) and (C1)-(C2) hold, then for any fized w € (0,1): for any

e €(0,1) and any ¢ € Pk,
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(i) there exists i/ = ' (¢pr) € R such that with probability one,

lim sup n_lLe(yl:n\qbK) < i — elogw.

n—o0

(i) W (pK) < (@pK), where u(¢px) is defined in Lemma 1.

We now present the proof of Theorem 2.

Proof. Fix w € (0,1). By Lemma 1, there exists a function u : ®x — R such that
N L(yY1n|0) =2 u(¢). By Lemma 2 (i), there exists a function ' : &5 — R such
that limsup,,_,o 7~ ' Le(y1:n|0) < 1/'(¢) — elogw almost surely. Lemma 2 (ii) shows
that p’ is strictly smaller than g on @ . Thus for each ¢ € P, there exists a neigh-
borhood B = B(¢) C ®k such that p/(¢) < infoep pu(p) — ¢ for some ¢ > 0. Therefore,
we can choose € = €(¢) > 0 such that p/(¢) — €(¢) logw < infuep pu(p) — 5. As a result,

for any ¢ € & and any ¢ € B = B(¢), with probability one,
) 1 1 , e
limsup = Le(g) (1l #) = - L(yrnle) < 1 (6) = €(9) logw — ulp) < =5 < 0.

This shows that, for any ¢ € ® g, with probability one as n — oo,

Pe(9) (ylzn‘¢) < Pe(g) (yl:n|¢)

fq;K P(Y1:nlp)po(@)de — fB(¢)p(y1:n’¢)po(g0)dga — 0. (B.13)
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For any €, L 0 as n — o0, let &, :={¢: ¢ € Pk, e(¢) > €,}. Then,

f«pK Pe, (Y1:n|0)po(@)do
f<1>K (Y1nle)po(p)dp
Pen, (Y1:n|0) Pe. (Y1m|)
¢)d d
/n fq>K ylnlso po(p)dy ¢+/ Jor P(YLalP)Po(9 )d¢p0(¢) ¢
y1"|¢) pen ym!qﬁ)
¢)d c do.

P(Y1:n|P)Po(H)
P(Y1:nl@)po(p)dp

Since (1) both integrands are bounded above by Tor , which integrates
to 1 over ®g, (2) the first integrand goes to zero pointwise due to (B.13), and (3) the
second integrand goes to zero pointwise since &, T ®x gives lgc | 0; by dominated
convergence theorem, both terms are o(1) with probability 1. Thus equation (3.7)

holds. General cases can be proven similarly by considering an additional indicator

function 14, c 4, - O

PROOF OF LEMMA 1

Proof. The detailed proof is in Fuh (2003). We briefly present some of the relevant
concepts and notations. Denote I(k) = (0,0,---,0,1,0,---,0)*, where 1 is the k™"
element. Define the L;-norm of a column vector u = (uy,uz, - ,uq)t € R as |jul|; =

Zle |u;|. We can represent L(y1.|¢K) as

L(y1:n|dx) = log | My (px ) Mn—1(bK) - - M1(dx)I(x0)l1, (B.14)

where M; is defined before condition (C1) in Section B.1.1. Since {X; : ¢ > 0} is a
Markov chain on Xk« = {1,2,--- , K*} and {(X,,Y,) : n > 0} is a Markov chain

on Xg+ x Y, if we define GI(K,R) as the set of invertible K x K matrices with real
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entries and

Ty = Tn(PK) = Mp(Pr)Mp—1(¢K) - Mi(Px),

then {(X,,Y,,T,) : n > 0} is a Markov chain on Xx+ x Y x GI(K,R).
For any u € R? with |jul|; # 0, let @ := u/||ul|; be its normalization and denote

P(R?) be the projection space of R? which contains all such @. Let
Wi = Wi(¢k) := (Xz‘,Yz‘,Tz’(¢K)Io(xo)) -

Fuh (2003) proves that {W,, : n > 0} is a Markov chain on Xx+ x Y x P(RX) with an
invariant measure. From (B.14), L(y1.,|¢x) can be written as an additive functional

of the Markov chain {W,,(¢x) : n > 0}, i.e.

n

L(y1nlox) =) log

=1

Hﬁfgg %% - =20 (Wildw). Wia(6x)).  (B.15)

=1

where o (W;(¢k), Wi—1(¢pk)) = log % Therefore, by the law of large

numbers of the additive functional of a Markov chain, there exists u such that n='L(yy.,|éx) —

w1 almost surely. O

PROOF OF LEMMA 2

Proof. (i) For any € € (0,1) and X, defined in (3.5), define

PEWLnldK) == Y p(Y1m, Tom|d),

n
XK,k,e
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and L¥ = LF(y1.n|ox) = log p¥ (y1:n|dk). From (3.6),

=

y1n|¢K kz y1n|¢K <K I<T}€E%<XKPE(y1n\¢K)

Hence it suffices to prove that for all k, there exists pj € R such that

limsup n ™ LE (y1.m|dr) < ptf — elogw. (B.16)

n—o0

We first consider the case of k = K. Let F; be the K x K diagonal matrix with
diagonal elements (f(vi|01), -, f(vil@x—-1),wf(y:i|0K)), i.e., multiplying w in the K-
th diagonal element of F;. Similar to M;, define M; = Mi(@() = FZQ% A direct

computation shows that

| My (i) Mu—1(px) -+ Mi(dr)I (o)

K n
= Z H f(yi|Ox) x qui,lxi X WK
Xy

k=1i:x;=k i=1

P (Y1n|br) =

K n
> Z H f(yilOk) x quz;wi X wK

X}QK& k=11i:x;=k i=1
K n
> > T IT Fil6w) x I awioes x ™
X}é,K,e k=1i:x;=k i=1
_ ,en K
=W Pe (ylzn‘ﬁbK)a (B.l?)

where ng is defined in (3.4). The first equality is because w is multiplied each time
the Markov chain {z;} enters state K, and the total number of entrance to state K is
ng. The last inequality is because on Xy -, ng < en.

Define LK = ZK(ylmwK) = log p"X (y1.n|¢x). Then similar to the argument in
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(B.15), LX can also be written as an additive functional of a Markov chain. By the

law of large numbers of the additive functional of a Markov chain (Fuh, 2003), there

exists p such that n LK - Wy almost surely. Combined with (B.17), we have

K TK .
elogw + —~ < — == .
n n

Therefore, (B.16) holds for ¥ = K. For general 1 < k < K, the procedure above
applies except that the w in M; is multiplied on the k" row instead.

(ii) By (i), it suffices to prove that uj < p for k = K. Without loss of generality, we
assume that g = K. Let {Z; : i > 0} be a Markov chain governed by the transition
matrix Qg with Zy = K and it is independent of the original {(X;,Y;) : ¢ > 0}. Let
70 = 0, and recursively define 7; = inf{i : ¢ > 7,1, Z; = K}, i.e. the stopping time
that the chain {Z;} revisits state K. For any positive integer m, let M = Er,,. Fix
0 €(0,1), set m' = [(1 —d)m| and € = {7,y < M}. Conditioning on Y7.ps = y1.0s, the

only randomness comes from {Z;,7 > 1}. By the dominated convergence theorem, as
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m — 00, with probability one,

rM
1 1
ML(ZILMWK) ZﬂlogE Hlf(YiWZi)QZ“Z,. Yiiv = yl:M]
) T M
ZﬂlogE I:IIf(EIQZi)QZilzi;f Yiiv =yim| +0(1)
1 [ o
:M IOgE H H f(}/i|9Zi)QZi712z‘
j=Li=ry 41

Tt FIM =71

X H f(Yi|GZi)qu—1Zi;g

i:Tm/+1

Yiv=yim| + 0(1)

1 m’ Tj
:Mng H H f(}/i|ezi)qzi—lzi
‘7:11:7']'71"!‘1
‘rm/+‘Mme/|

X H f(}/’i|9Zi)qu—1Zi

iZTm/+].

YI:M =YuMm| + 0(1)

1 "
=—1logE [V} x Viwta

% Yiiv =vyim | +o(1),

j=1

where

7
Vi = H fYil0z,)az,_, z

i:Tj_1+1

for 1 <j<m/, and
Tyt HIM =71

Vm’+1 = H f(Yi|HZi)qu—1Zi'
jZTm/-‘rl

Since 7; is the recurrence time that the chain {Z;} revisits state K, the {r; — 7j_1,j =

1,2,---,} are iid.. As aresult, when {Y;,i=1,2,---} is conditioned on, {V;,1 < j

IN

m'} are independent. Since Z; , = K, Vi41 is independent of {V},1 < j < m/} .
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Hence with probability one, as m — oo,

!

1
7L(y1M|¢K> :M lOgE H V7 X Vm’+1
7j=1

i

1
= > log E[Vi|Yi = yru)
=1

1
+ i log B[V 1|Y1:m = y1:m] + 0(1)

=I+11+o0(1).

Similarly, with probability one, as m — oo,

1~
ML (Y1:mloK) = z;logE ViwYi:m = y1:0]
j
1 ~
+ 7 log B[V 1Y = y1:m] + o(1)
m’ /
Z log E[V;|Y1.m = y1:1] +—logw
1 ~
+ i log B[V 41|Yi:m = y1:m] + 0(1)
m/ ~
=1+ Mlogw + 11+ o(1),
where
Tm/+|M—Tm/|
V= [ f0Gl02)az 2055 < Vi,
i:T7n/+1

YI:M =Yi.m| + 0(1)

(B.18)

(B.19)

since w € (0,1). Therefore, IT < II. Recall that 7; — 7;_1 are i.i.d. and note that

e m F— .
Tm = 2.j21 Tj — Tj—1, we have

m'  [(1-8m] [1-dm] m 1-0
-~ Er, m mET - Emn ¢>9,

<
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as m — oo. Combined with part (i), as m — oo, with probability one,

1 ~ ~ /
Wy = limsup MLK(yl;MWK) = lim sup {I + 1T+ n]\}bgw}

M—o0 M—oc0

/ /
< limsup{I+II—|— nj\}logw} = limsup{l + I1} —I—Iimsup%logw

M—o0 M—oc0 M—o0

1
= lim sup ML(y1:M|¢K) +clogw = p+ clogw < p,

M—oo

since ¢ > 0 and w < 1. Similar proofs hold for ¥ # K, thus by definition x4/ =

max <g<i pj, < -

B.1.3 PROOF OF THEOREM 1

For simplicity, we give a detailed proof of the case with d = 1; the cases with higher
dimensions can be proved similarly. We further simplify the proof to the case of K =
K* + 1 by showing that the general case of K > K* and K < K™ can be derived
similarly in sections B.1.3 and B.1.3 respectively.

de Gunst & Shcherbakova (2008) shows that the posterior distribution under the
true number of states converges to a Gaussian distribution centered at the efficient

estimator, g, of the true parameters ¢*, i.e.

P(y1:n|¢3K*)
= 0p(1), B.21

where the number of parameters is (K*)? in a K* state HMM when d = 1. This gives
us the convergence rate for the denominator in (1). To obtain (1), we need a rate con-
trol for the numerator as well. Unfortunately, such kind of central limit theorem does

not exist for K > K™*. Hence next we attain a weaker rate for the numerator with the
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help of Theorem 2 and Gassiat & Rousseau (2014).
Let 7 = m,(Qx) be the invariant measure for state k given transition matrix Q.

For all w = u,, | 0, consider the collection of states
J(Qr,up) ={k:1<k< K mp>up};

ie., J(Qx,uy) represents the states with significant probability weight under Q. For

any vy, J 0 and ¢ € Pk, for each k € J(Qx, uy), let

Ap(dxc, un,vn) = {1 : 1 € J(Qx,un), 0k — 01" < vn},

i.e., Ar(dk,un,vy,) collects all states | with significant probability weight under Qg
and with parameter 6; close enough to 6. Define the number of clusters K’n = f(n (PKcs Un,y Vp)

as
min{n: 31 <k <ky<--- <k, <Kst VlecJQr,un),l € Ay, (px, un,vy) for some t},
and consider the set of parameters with K,, = K*, the true number of states,

o = {QSK (o € O = of x QK,[N(n(gbK,un,vn) = K*}
For any € = ¢, | 0, consider the set

O :={ox: o € Py, m > eforalll <k < K}.
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Lemma 3. If uyv, | 0 slow enough (Gassiat € Rousseau, 201/),

P (Yrm) - A L palom (o) don

Lemma 4. If ¢, > uy, then for all g € ® N P, there exists a partition P =
P(odr) := {P1,Pa, -+ ,Pr+} of {1,2,--- | K} such that none of the Py is empty,
UPr ={1,2,--- , K}, and for all ky,ka € P, |0k, — O, |> < vn.

The proofs of Lemmas 3 and 4 are in B.1.3 and B.1.3 respectively.

For any partition & = {S1,--+ ,Sk+} of {1,---, K}, define

Os :={¢r : P(or) =S},

where P(-) is defined in Lemma 4. Then ® N &, = (Jg {CI:) Nd.N CIJS}.

For any Qg, let ¢k = (q1k, %K, ,4KK,4K1,9K2, " " s KK ), i.€., all transition
probabilities from state 1 to K. Let Vi be the space of all possible ¢k, and V, be
the projection of ®. on Vi. Let Q_x = {qxi}1<k,i< K, namely, the sub-matrix of Qg
excluding row K and column K. Denote ¢_x = (0, Q_x) and write Qg = (Q—_k, qx)

and ¢ = (V—Kk,qx) = (0,Q—Kk,dx). For a fized v € V,, consider the subspace
(I)K,e,v = {(bK - (97Q—Kav) : ¢ S (i N q)e N (I)S}7

ie., all ¢ with gx = v. Let QASU = (é, Q_x, v) be the maximum likelihood estimator of

the K-state model in the space ®x ., i.e.,

¢U = (9, Q*K; U) = argmanbKeq)K’e’vpK(yl:n‘qbK)'
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Lemma 5. When K = K* + 1, the only possible S is the one with exactly one S
that contains exactly two elements, and each other Si contains one single element. If

Sk =AHk} forall1 <k < K*—1, and Sk~ = {K*, K* + 1}, then

/ P(Y1:n|0K)po(PK)
NP NP

dr = O ( ~Uea )
= K=Up|n 2 ogn | .
P(Y1nl o)

The proof of Lemma 5 is given in B.1.3.

The result above is under the partition S = {{1},{2},--- ,{K* — 1}, {K*, K* + 1}}.
Note that the argument also holds for any other possible partition S, and the total

number of possible § is finite. Combined with (B.21), we have

3 PK (Y1:n]|P )P0 (PK)
pK(yln) o f‘bﬂ‘bgeﬂ‘@s pK(yl:nI(Z)v) d¢K

P+ (Y1) P+ (Y1n) /P> (Y1 | DK+
(&2 |
2 ogn | _1
—OP W —OP(TL 210gn).

Remark 6. Choice of €,. In Example 1, we briefly present how we apply Theorem
2 to prove Theorem 1 by giving an uniform bound through the choice of €, | 0 with
e2n — oo. However, as shown in the proof of Theorem 1, to give a uniform lower

bound across paths, we need to choose €, | 0 slow enough to exclude the case of m, <

uy, for some state k.
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PROOF OF LEMMA 3

Proof. When u,v, | 0 slow enough, Gassiat & Rousseau (2014) shows that K, —» K*

in probability under the posterior distribution, i.e.,

P (Y1) = [p P(Y1nl b5 )P0 (D) A P(y1nl 1Yo (1) d .

Moreover, for € = ¢, | 0, Theorem 2 gives

[@ P(y1nl 61 P06 )do1c = [p S D1 Tonlbx P06 )i

ml:nex}é

- P(W1on: 0l )P0 (05 .
@ $1:nEX}}—X}}’E
In addition, consider the set ®., since the likelihood on the right-hand-side above only

sum up paths in A7 — X }% ¢» it is clear that

/ P (Y1 T 6P (1) A

n n
ml:nEXK—XK’e

m/é Z P(Y1:n, Ton| 1 )P0 (OF ) A xc -

MPe ) meXp—Xp

Again, by Theorem 2, we have,

/ S (@ Tomlér)po(x)dbx

Pe gy exp—Xg

N ny n d
[m S pren, Tomm b )po(é) Ak

€ 1 EXE

- / P(G1nl61)P0 (D) A

PNP.
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PROOF OF LEMMA 4

Proof. When ¢, > u,, note that on ®, K,, = K*; but since K > K*, either some state
k has 7, < uy, or there exists 1 < k < K* and multiple states 1 < k1 < ko < K such
that |6k, — 9k2|2 < v,. However, the first case is not possible on ®. since 7, are all
greater than €, > u,. Hence, we only have the second case, which yields the desired

result. O

PROOF OF LEMMA 5

Proof. We consider the case with Sy = {k} foralll < k < K* — 1, and Sk~ =
{K*, K* 4+ 1}. Though we fit a K state HMM, the state K* and state K* + 1 have
very similar parameters thus behave almost like one single state. So we compare it to
the case where two states are merged into one.

The conditional maximum likelihood ¢, = (é, Q_xk, v) converges to the “true” pa-

rameter ¢f, = (6*,Q* ., v) given by
0" = (07,05, , 0%, O%c~)

and
Q1 = T
Qo + Ghie = Terces

~% ~% ~k o~k % *
Qer+qK+1 T Qerdx = Qer9K+1
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forall 1 <k, < K* — 1 since the “estimated” states K* and K = K* 4 1 are actually
splitting the “true” state K* into two.
Denote py(¢) = cypo(¢), where ¢, is a normalization constant so that p, is a proba-

bility measure on ®g . Similar to (B.21), we have

(K241

n 2 f(I)KE,U p(y1:n|¢K)pv(¢K)d¢K _
p(yl:n|¢zv) B

Op(1). (B.22)

In other words,

(B.23)

fq)K,e,U P(yanK)po((Z)K)dqﬁK ( (K*)2+1>
T n- 2 )
p(yl:n|¢v) P

Note that, in equations (B.23), the order of the Op term is —%

. Originally, for
a K-state model, we have K (K — 1) parameters for the transition matrix and K pa-
rameters for 6 (recall that we present the case with d = 1 here). However, since we
“locked” ¢k = v, which fixes K — 1 parameters for (q1x, g2k, -, ¢(xk—1)k) and another
K — 1 parameters for (qx1,qx2, " ,qx(x—1)- Hence, there are K(K —1)+ K —2(K —
1) = K2 — 2K + 2 = (K*)? + 1 free parameters left to be determined, recall that

K = K* 4+ 1 here.

Now we integrate (B.23) over all possible v. For any fized and sufficiently small

€ > 0, since Vs is a bounded and closed set, we can extend (B.23) to

/ f@KeUp(ylznfﬁbK)poWK)dqbK < _(K*)2+1>
— = dv=0p|n .
Ve P(Y1:n|dv)

Since this holds for any sufficiently small € > 0, for any a,, T oo, we can choose € =
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€n {4 0 slow enough such that

v

/ p(y1;n1¢K)]fo(¢K)d¢K :/ Jor., p(ylznygbK?pO((ﬁK)d(ﬁKd
nens  P(YLn|o) e P(Y1n|bv)

_(K*)2+1
=0Op (n 2 an> .

. . . _(E2
In particular, setting a,, = logn gives a rate of Op (n 2 log n)

GENERAL OVERFITTING CASE

We have detailed the proof for K = K* + 1. The general case for K > K* is simi-
lar. The only major difference is that the possible configurations of & would be more
complicated. For example, when K* = 2 and K = 4, there might be partitions like
{{1,2},{3,4}} and {{1},{2,3,4}}. By such, instead of simply condition on a single
qk , one would need to condition on multiple components so that each set in the par-
tition have only one element left unconditioned. For example, for S = {{1,2},{3,4}},
one would need to condition on both @& and ¢y; as for S = {{1},{2, 3,4}}, one would
need to condition on ¢3 and ¢j. Despite of this complexity, the total number of unde-
termined parameters are still (K*)2 + 1, so (B.22) still holds. Also, the total number

of possible S is still finite, so the arguments for the rest of the proof are still valid.
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GENERAL UNDERFITTING CASE

The proof of K < K* is much simpler. For any ¢ = (0,Q) € ®, consider ¢’ =

(0',Q") € g+ defined by

0, = Oy,

O = O = b = Ok,

q/ _ qdkK
MT™ K« —K+1

QZk = 4Kk

foralll < k < Kand K <[] < K*; ie., state K in ¢ is equally split into states

K,K+1,--- ,K*in ¢/. A direct calculation shows that px (y1.,|¢) = pr*(Y1:n]d).

Since ¢ must have 0% = 6} | = --- = 0., we have
K*
' — ¢*|| > inf 0 —0;| > i 0; — 05 := 8 > 0. B.24
D SR WU {E TR S UEY

By Lemma 3.1 in de Gunst & Shcherbakova (2008), there exists ¢ > 0 such that

sup  p(@) < p(¢7) — e,
l|¢'—¢*||>6

which implies

po(@)d¢ < Op(e™™).

fq)K pK(ylm|¢)p0(¢)d¢ _ 1 / Pk~ (yl:n|¢,)
Pk~ (yl:n|¢*)p0(¢*) B P0(¢*) o PK* (yl:n|¢*)
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Combined with the fact that

Pr(Y1:n|0")po(¢”) _ Op(n(K*)2/2)
Pk~ (ylzn) ’

we obtain

PE(Y1n) _ Jo,. P (Y1:n|@)po(¢)de o Pree(Yia|6")po(67)
Pic+ (Y1:n) K+ (Y1:n|0* )P0 (0%) i+ (Y1:n)

—Op (n<K*>2/2> X Op (=) = Op (n(x*>2/ze_cn) 7

which completes the proof.

B.1.4 REGULARITY CONDITIONS AND PROOF OF THEOREM 3

In Theorem 3, we assume the same regularity conditions as in Theorem 1 except for

replacing condition (B1) with

(B1’) The prior distribution on the transition matrix is in the form of

o(qui,qu2, - akk)0(Qk), Qx € Ok

vk (QK) = -
0, Qr ¢ Pk
where O = {Q : quj = qor, = -+~ = qip for all 1 < k < K}, and 4(-) is the delta
function. Moreover, there exists C > 0, a3 > 0, ---, ax > 0 such that
0 < our,ug, - ug) < Cuf g2t gfx T, (B.25)
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for all (u1,ug, - ,ugk) satisfying

K
min(uy, ug, -+ ,ug) >0, and Zuk =1.
=1

Furthermore, suppose that minf_; oy, > d/2.

Proof of Theorem 3. As n — o0, by the law of large numbers, W

converges
to the invariant measure of state k& with probability one. Therefore, we can treat the
data as coming from a mixture model with K* mixture components, with the prob-
ability weight of the k' mixture component equal to the invariant measure of state
k.

We then go through the same procedure as in the proof of Theorem 1. Theorem
2 still applies thus we can ignore the irregular paths. Since the log-likelihood in this
case is already in additive form, Lemma 1 and Lemma 2 can be obtained easily. The
only remaining part is the two cases we divided using u,, and v,, through Gassiat

& Rousseau (2014), which we switch to the corresponding results in Rousseau &

Mengersen (2011) instead.

Remark 7. One can compare this result to Chambaz € Rousseau (2005), who present

similar rate of convergence.

B.2 SIMULATION STUDIES FOR ESTIMATION OF NORMALIZING CONSTANT

We use models with known normalizing constants to test the performance of the esti-
mation of normalizing constant proposed in Section 3.4.1. The first family of models
is d-dimensional Gaussian mixture models with three distinct components whose co-

variance matrices are diagonal with diagonal elements all equal to 0.1, 2 < d < 30;
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the normalizing constant is set to be C1 = exp(10). The second family of models,
with normalizing constant Co = exp(2), has three independent dimensions: the first
dimension is Gaussian with mean 1 and variance 1, the second dimension is student-t
distribution with degree of freedom 2, and the third dimension is Gamma distribution
with shape parameter 6 and scale parameter 2.

We perform repeated simulation studies with the two families of models as follows:
first simulate N;, samples independently from the model, apply the importance sam-
pling algorithm mentioned in Section 3.4.1 with N;s samples from the fitted impor-
tance function, the Gaussian tail and the t-tail. For comparison, we also use the recip-
rocal importance sampling with fitted Gaussian mixture as the importance function
and multivariate t-distribution mixture as the importance function. The results are

summarized in Table B.1.

B.3 SIMULATION ROBUSTNESS

Theorem 7. Assume that the true number of hidden states is K*. Let Pk ,, = px(Y1:n)
be the marginal likelihood with K hidden states. Let {ppm : m = 1,2,--- My} be
i.i.d. samples from g, i (-), the chosen importance function which approximates the
posterior distribution pr(¢x|yin). Then, the estimated marginal likelihood using the

importance sampling is given by

yl y PK
Py, = Pt (Y1ins {0 km M<m<nr,) = Z o m)‘

nm nK(SOKm)

Similarly, we can give the locally restricted version of this estimator. If for any finite
K # K*, Pk n/Pg+n — 0 in probability as n — oo, then PKW,MH/PK*%M” — 0 in

probability as n — oo.
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M D Nsim NZ Oll CIQ OIg O[4

2 3 2000 4,000 [0.042,0.023] [-0.035,0.028] [-0.378,-0.237] [0.091, 0.265]
2 3 10,000 10,000 [-0.014,0.013] [-0.017,0.016] [-0.366,-0.282] [0.112, 0.210]
1 4 2000 4,000 [-0.055,0.042] [-0.069, 0.043] [-0.056, 0.035] [0.548, 0.643]
1 6 2000 4,000 [-0.063,0.046] [-0.070,0.046] [-0.076,0.014] [0.645, 0.738]
1 8 2000 4,000 [-0.073,0.021] [-0.076,0.026] [-0.106,-0.011] [0.672, 0.791]
1 10 2,000 4,000 [-0.075,0.018] [-0.087,0.045] [-0.108,-0.023] [0.659, 0.833]
1 10 10,000 10,000 [-0.027, 0.020] [-0.035, 0.023] [-0.030, 0.001] [0.774, 0.847]
1 15 10,000 10,000 [-0.039, 0.012] [-0.047, 0.026] [-0.049, -0.015] [0.777, 0.924]
1 20 10,000 10,000 [-0.040,0.012] [-0.052, 0.028] [-0.073,-0.032] [0.525, 0.975]
1 25 10,000 10,000 [-0.042, 0.003] [-0.069, 0.024] [-0.109, -0.067] [0.598, 1.010]
1 30 10,000 10,000 [-0.050, 0.003] [-0.064, 0.016] [-0.143,-0.104] [0.122, 1.069)]

Table B.1: Simulation results of estimating normalizing constants of models 1 and 2 (M = 1,2
in column 1) using the algorithm in Section 3.4.1: the last four columns are the 95% confidence

intervals of log(C'/C), where C is the estimator and C is the true value, in 100 repeated simula-

tions using the importance sampling with Gaussian tail (C1I;), the importance sampling with t tail
with degree of freedom 2 (CIy), the reciprocal importance sampling with Gaussian tail (CI3) and
the reciprocal importance sampling with t tail degree of freedom 2 (C14). Ng;yy, is the number of
observations and N, is the number of samples from the importance function; D is the dimension

of the space.
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Proof. Let P be the joint distribution of (Yi.n, {¥x m}1<m<n,) and Py be the marginal
distribution of Y7.,. Note that we do not write explicitly the dependency on K for
simplicity of notations. From Corollary 3 following Lemma 6, there exists a sequence

of positive constants {c, i }n>1 with lim,, o ¢y x = 0 such that
Py {Var[f’K,n,Mn} < Cn,KP[%,n} — 1 as n — oc. (B.26)

Let {bn,k }n>1 be a sequence of positive constants such that lim,, o by ke gk =7 < 1

and lim, o by x = 00. For any n, from the Chebychev’s inequality,

P {‘PKJL,M” — Pl > b;{?(VGT[PK,n,Mn‘Yl:n]l/Z

Yl:n = yl:n} < b;l[(

As a consequence,

pli_p2 Var[Pg i, | Yin]'/? < Prcna, <14l Var(Pr s, | V1]
n.K PK,n o PK,n o nK PK,n

=1-P {!PK,n,Mn — Prp| > b;{f(var[PKn,MnyYLn]l/?}

1 /P |PKin,Mn — Pk, S pl/2
Var[Pgn, |Yin)/2 5

Zl—b;lK—>1asn—>oo.

Yl n = Y1: n} dPY(yl:n)

Together with Equation B.26, we have

1/2 1/2 Kn,M, 1/2 1/2
P{l_bn/K n/K<ﬁ<1+b”/K n/K}—>1asn—>oo. (B.27)

146



By replacing K with K* in Equation B.27, we have

/2 1/2 Prcs .M, /2 1/2
P{l—bn{K*cn{K*SPKZL§1+bn{K*cn{K*}—>1asn—>oo.
,n

We complete the proof by noticing that (1) Pk /Pk+, — 0 in probability as n — oo,

(2) limn_>oo mecn,K — v < 1, lim,, oo me*Cn’K* — 7 < 1. O

Lemma 6. Assume that x1,...,xN are independent random samples from an un-

normalized density w(0) defined on ), the normalizing constant is denoted by C =

Jom(0)d0. {gs(-)} is a family of densities indexed by parameter ¢. Let bn = argmax,{gy(x1, . . -

Assume that yi,...,yn are independent samples from g(z;N(-), thus C can be approxi-
mated by either the importance sampling estimator CA'n, N or the locally restricted im-

portance sampling estimator C‘fffv defined as

n

CA'n,NZEZ W(%)l)’ éﬁfj\/: } [Z W(géj)')lyjeﬁr}

n =1 g‘lgN Y

where Q. C Q is any bounded subset, PQT = % Zf\il 1z,e0,. Then there exists finite
positive constants {«, 8,7}, which only depends on gqu('), Q,., and the normalized
density 7(-) := w(-)/C, such that for n, N large enough, the following are approxi-

mately true:

~

Var[Cy, N] = n~1C%q; Var[CA'f{ﬁV] =n"1C?B+ N~1C?.

A special case is when n = N, both these variances can be expressed as C*n~'5, where
6 is a finite, positive constant that only depends on gqu(-), Q,., and the normalized

density 7(-).
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Proof. From the law of total variance, we have

Var (C’nN> =Var

1~ m(y:)
E( 2 50

n =1 gQASN i
T(y) |2 ™y)
var <g(,;N<y>"f’N> z|f 9y 1]‘

Next, we calculate the variance of CA'fZOC , which is the ratio of two independent random

CQ

n

S
n

: 1 n 7(y;)
variables > %, T (07)

1 N
]‘yjeﬂr and N Zi:1 ]'mieQr‘

e 7 i

"o Yo

¢)]
—F ;/ﬂ g?;j(y;)dy] - % (/rﬂx)dx)?
1/ () dy —02% (/ ﬁ(x)dx>2.

nJjq, gqu(y)

=C%E
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For n, N large, the delta method gives

Var [TIL 21 g;rliy(J;j)lyiEQT]
{E (% Zi\il lwieﬂrﬂ i

N n s 9
ol S e 15

Var(Clo,) ~

2
)

' B (35 )]
o[l ] ey
| (o, 7). N Ve

Corollary 3. Using the same notations as in Theorem 7, for any K < oo, there exists

a sequence of positive constants {cn i tn>1 with limy, o ¢ gk = 0 such that

Py {Var[]f’KmyMn] < cn,KPIZQn} — 1 asn— oo.

Proof. From Lemma 6, we have, for any given y.,, Var[PKm’ M, =M, IP]?né , Where

6 > 0 is a constant depending on the normalized posterior distribution and the impor-

tance function. Therefore,

Py {Var[me,Mn] < cn,KP%n} =Py [5Mn_1 < ch] —1asn— oo,

if we choose, for example, ¢, g = O(Mn_l/z).
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Theoretical Properties of PMCMC

C.1 PROOFS AND SUPPLEMENTARY MATERIAL

C.1.1 PROOF OF THEOREM 4

Before proving the theorem, we first prove the following lemma.
Lemma 7. Samples obtained according to Algorithm 1 given below are draws from .

Proof. {m(()j ) j = 1,...,n} is a standard Markov chain Monte Carlo sampler by
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construction of the transition kernel T'. Since Calderhead’s algorithm is valid for ver-
sions 1 and 2 of the weighting scheme, we know step 1 draws samples from 7 given
that x(()j ) follows 7. Combining these two arguments we establish that the samples

{ygj) c1=1,2,...,N;j=1,2,...n} all have marginal distribution 7. O
Proof. Let yi(j) be a point drawn according to Algorithm 1. Let z(9) = {x(()j), e ,:v%}},

so that

C.1.2 PROOF OF THEOREM 5

Proof. Let z09) = {:c((]j), e ,asg\]/[)} and y\) = {y%j),...,y](\j,')}.

n N n N N N N
1 ‘ ) | ) |
var{ —— ZZ}L(%{J)) = <3 Zvar{ E h(yl(i))} + s § :COV {2 :h’(yz(]))’ Zh(yz(k))} '
j=11i=1 j=1 i=1 j=1 i1 =1
k=1
i<k

By the law of total variance, for the first of these terms we have

n

1 . ) | |
N2 Zvar {Z h(yl(ﬂ))} > N Zvar E {Z h(yz(])) | a:(])}]
=t =1 j=1 i=1

1 n M ] ]
= Z var {Z w(xgj))h(xz(»]))} .
j=1

=0
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For the second, we will show that

9 N ) N 9 M ' ' M
2Nz oY {Z h(yi(J))v § h(yz(k))} = 5oV { E w(xgj))h(xgj)), Zw(:cz(k))h(xl(k))} . (G #k).
=1 =1 =0 =0

Assume j < k without loss of generality. By the law of total covariance we then have

L~y Ly
COV{NZh(yiJ )’Nz:h(yZ )}

i=1 i=1

N
1 (9) i k 1 (k) ) .
NE{Zh(yi ) | 2@, z® N E E h(y™) | 20), 2®)

= COV

where the last equality follows from the conditional independence structure of y@)
from all the other samples and proposals given (/). Summarizing these results, we

can conclude that

Var{n?\fz ‘ h(yz-(j))} >Var{

n M
]:1 =1 =0

SRS

w(scE”)h(xE”)} .

=14
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C.1.3 PROOF OF PROPOSITION 1

Proof. From the derivations in proof of theorem 5, we have

j=11i=1 P
Ly - () o)
= S h(y?) |20 V| = L N | 20
nQNZZ;E Var{‘ 1h(y )z } = 2NE[va]r{h(y )| @ }]
i= i=
1 <« M M 9
= o B | wla by - {Zwuf”)h(xﬁm}
j:]_ 1=0 o

Therefore, the relative efficiency gain by using locally weighted parallel Markov chain

Monte Carlo instead of parallel Markov chain Monte Carlo is

var { g 520 S au?) | —var {505, M wia)h) )
var {1570, S w(at ()}
i B S we ) - S ne)| | ey R}

1
N Sy var {2 w(eP)h?)) SN var(h)

The last equality is true since at equilibrium, for j =1,...,n, E(g) = E{Zf\iow(xgj))h(xgj)y},
B{(h)*} = B w@?)h(@))?), varlh] = var{SM  w(z?)h(z?)}; thus we

can obtain moment estimators of E(g), E{(h)?},var(h) using all the proposals and

weights.
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C.1.4 PROOF OF THEOREM 6

Proof.
2 n n n
A . 1 S var(z) + 2 N cov(@), 34
ESS n 2 4 2 ’
j=1 7j=1 i<k
n—1 _ n—1

1 _ 2 _ var(Z) k

= _ Z 1—— = 142 1—-—
nVaT(@“) T 321 < ) Yevar(Z) o { + 1?—1 ( n) ’Yk} ;

where the second inequality follows from stationarity. By the Cesaro summability

theorem
n—1 k
i 3 (1) =D
k=1 k
For sufficiently large n, we therefore substitute the right hand side of this equality

into the expressions derived above. Rearranging the terms will give the desired result.

O]
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