# Model Selection for Galaxy Shapes

Chunzhe Zhang

### Advisor: Thomas C.M. Lee Collaborators: Vinay Kashyap, Andreas Zezas

May 24, 2016







Image: Image:



## 2 Model Selection Method

**3** Simulation Studies

#### Our goal: match the images with the correct models.



#### Figure: Simulated from three different models

Sersic Profile is an intensity profile:

$$I(R) = I_e \exp\{-k[(\frac{R}{R_e})^{\frac{1}{n}} - 1]\}$$

where  $I_e$  is the intensity at the effective radius  $R_e$  that encloses half of the total light from the model. *n* is the Sersic index which controls the degree of curvature of the profile, usually ranging from  $\frac{1}{2}$  to 10. *k* depends on *n*.

• We assume a Poisson model to fit the image:

 $y \sim \text{Poisson}(\lambda),$ 

where y is the pixel value,  $\lambda = I(R)$ .

• In Astronomy, a galaxy can be a mixture of two Sersic Profiles with different *n*:

$$I(R) = I_1 \exp\{-k_1[(\frac{R}{R_1})^{\frac{1}{n_1}} - 1]\} + I_2 \exp\{-k_2[(\frac{R}{R_2})^{\frac{1}{n_2}} - 1]\}.$$

• For the Poisson model with a mixture *I*(*R*), we call it a mixture model(four parameters, *I*<sub>1</sub>, *I*<sub>2</sub>, *R*<sub>1</sub>, and *R*<sub>2</sub>.). Otherwise, we call it a single model(two parameters). Our job here is to select the "correct" model behind a given image.



## 2 Model Selection Method

**3** Simulation Studies

• The model selection method used here is BIC.

```
BIC(M) = k * \log(n) - 2\log(L),
```

where k is the number of parameters in the model, L is the likelihood, and n is number of observations you have. We always prefer the model with the lowest BIC.

- Why BIC? BIC is good for model selection, while AIC is good for prediction accuracy. Second reason: empirical results.
- What is the challenge? Initial values of parameters during the likelihood maximization process.

- Making use of the physical meanings of the parameters.
- Since  $R_e$  is the radius which encloses half of the total intensity, choose the radius  $R_0$  which encloses half of the total intensity of the image as the initial value for  $R_e$ .
- Since  $I_e$  is the intensity on the circle with radius  $R_e$ , choose the average intensity  $I_0$  on the circle with the radius  $R_0$  found before as the initial value for  $I_e$ .
- How about the mixture model?

# How to choose the initial values?

- For a mixture model. The outer part of the galaxy is mainly impacted by the component with smaller *n*, while the inner part of the galaxy is mainly impacted by the component with bigger *n*.
- In our study, we investigate a typical mixture model with  $n_1 = 1$  and  $n_2 = 4$ .

$$I(R) = I_1 \exp\{-1.68[\frac{R}{R_1} - 1]\} + I_2 \exp\{-7.67[(\frac{R}{R_2})^{\frac{1}{4}} - 1]\}.$$

• One natural idea is to divide the whole galaxy into two parts. Use the inner part to fit an n = 4 model, the estimated  $I_e$  and  $R_e$  will be used as the initial values for  $I_2$  and  $R_2$ . The outer part will be used to fit an n = 1 model, and the estimated  $I_e$  and  $R_e$  will be used as the initial values for  $I_1$  and  $R_1$ .

- How to divide the whole image?
- Use the 80% quantile of the radius with non-zero pixels as the threshold between inner and outer parts.
- Why 80%? Empirical results.

## Problem Definition

## 2 Model Selection Method



Chunzhe Zhang (UCDavis)

Model Selection

May 24, 2016 12 / 20

The experimental designs used here was proposed by Vinay. The following tables describe the 32 designs for  $I_1, I_2, R_1, R_2$ .

| -     |       | -     |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|
| $I_1$ | $I_2$ | $R_1$ | $R_2$ | $I_1$ | $I_2$ | $R_1$ | $R_2$ |
| 30    | 30    | 2     | 2     | 30    | 15    | 2     | 2     |
| 30    | 30    | 5     | 5     | 30    | 15    | 5     | 5     |
| 30    | 30    | 10    | 10    | 30    | 15    | 10    | 10    |
| 30    | 30    | 50    | 50    | 30    | 15    | 50    | 50    |
| 30    | 30    | 5     | 2     | 30    | 15    | 5     | 2     |
| 30    | 30    | 10    | 5     | 30    | 15    | 10    | 5     |
| 30    | 30    | 50    | 10    | 30    | 15    | 50    | 10    |
| 30    | 30    | 50    | 5     | 30    | 15    | 50    | 5     |

| $I_1$ | $I_2$ | $R_1$ | $R_2$ |
|-------|-------|-------|-------|
| 80    | 80    | 2     | 2     |
| 80    | 80    | 5     | 5     |
| 80    | 80    | 10    | 10    |
| 80    | 80    | 50    | 50    |
| 80    | 80    | 5     | 2     |
| 80    | 80    | 10    | 5     |
| 80    | 80    | 50    | 10    |
| 80    | 80    | 50    | 5     |

| $I_1$ | $I_2$ | $R_1$ | $R_2$ |
|-------|-------|-------|-------|
| 80    | 40    | 2     | 2     |
| 80    | 40    | 5     | 5     |
| 80    | 40    | 10    | 10    |
| 80    | 40    | 50    | 50    |
| 80    | 40    | 5     | 2     |
| 80    | 40    | 10    | 5     |
| 80    | 40    | 50    | 10    |
| 80    | 40    | 50    | 5     |

Image: A math a math

2

# Simulation Studies: No PSF



#### Figure: Image Size: 101\*101



Figure: Image Size: 51\*51



Figure: Image Size: 21\*21

э

- ∢ ∃ ▶

# Simulation Studies: With Gaussian PSF, $\sigma = 0.5$

Kernel: gaussian - Sigma = 0.5





Figure: Image Size: 101\*101

# Simulation Studies: With Gaussian PSF, $\sigma = 0.5$



#### Figure: Image Size: 51\*51



Figure: Image Size: 21\*21

- What is the appropriate PSF to be used in simulation study?
- What is the next step?

# The End

э.

Image: A math and A