Supernova Cosmology in the Near-Infrared with Hierarchical Bayesian Light Curve Models

Kaisey Mandel
CfA Supernova Group \& iCHASC
Harvard-Smithsonian
Center for Astrophysics

Astrostatistics Seminar 25 Jan 2016

Collaborators (they get the data)

- CfA Supernova Group (R. Kirshner, P. Challis, A. Avelino, A. Friedman)
- Ryan Foley (U. Illinois), Dan Scolnic (KICP/ Chicago), Armin Rest (STSci), Gautham Narayan (Arizona, NOAO)...
- Pan-STARRS \& RAISIN1 team
- Dark Energy Survey \& RAISIN2 team

Outline

- Introductory Background and Scientific Motivation: Supernova Cosmology in the NIR
- Hierarchical Bayesian Statistical Modeling of Supernova Light Curves
- New Application: Tracing the History of Cosmic Expansion with NIR observations of Distant Supernovae using the Hubble Space Telescope

The History of Cosmic Expansion

Expansion History (and Future) of the Universe: Determined by its Physical Energy Content
$\Omega_{M}=$ Matter Density; $\Omega_{\Lambda}=$ Dark Energy Density

Supernovae Trace the History of Cosmic Expansion

Cosmological Energy Content

What is Dark Energy?
Dark Energy Equation of state $\mathrm{P}=\mathrm{w} \rho$
Is $w+\mid=0$? (Cosmological Constant: $w=-I)$

Supernovae Trace the History of Cosmic Expansion

But we don't actually measure these things! Time \rightarrow Distance (μ)
Relative Size of Universe \rightarrow Redshift (z)

Expansion of the Universe: Redshifts

Spectral Lines are observed at longer wavelengths than originally emitted by the supernova: redshift

Expansion of Space "stretches" out wavelengths of light

Determining Astronomical Distances using Standard Candles

I. Estimate or model Luminosity L of a Class of Astronomical Objects
2. Measure the apparent brightness or flux F
3. Derive the distance D to Object using Inverse Square Law: $F=L /\left(4 \pi D^{2}\right)$
4. Optical Astronomer's units: $\mu=m-M$
($m=$ apparent magnitude, $M=$ absolute magnitude,
$\mu=$ distance modulus [log distance])

Type la Supernovae (SN la) are Almost Standard Candles

- Progenitor: C/OWhite Dwarf Star accreting mass leads to instability (single / double degenerate)
- Thermonuclear Explosion: Deflagration/Detonation
- Nickel to Cobalt to Iron Decay + radiative transfer powers the light curve

Credit: FLASH Center

SN la Hubble Diagram (Distance Moduli vs. redshift):

The Universe is accelerating $\left(\Omega_{\wedge}>0\right)$!

The Accelerating Universe 2011 Nobel Prize in Physics

Saul PerImutter

Brian P. Schmidt

Adam G. Riess

The Nobel Prize in Physics 2011 was divided, one half awarded to Saul Perimutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".

Distant Type la Supernovae

Current State of Play

- Current optical surveys are now limited by systematic uncertainties, e.g. photometric calibration error and modeling error, rather than "statistical" (number of supernovae).
- Standard analysis method does not distinguish between intrinsic SN variations and extrinsic effects of host galaxy dust and reddening
- Scolnic et al. 2014 : a different modeling interpretation of the data results in a 4% systematic shift in w
- Modeling and/or mitigating host galaxy dust effects is important for accurate cosmological constraints

Interstellar Dust is a real physical effect

Optical light
Near Infrared Wavelengths

B-band

J-band

H-band

K-band

Seeing through interstellar dust

What about the

host galaxy dust?

Dust Absorption vs. Wavelength of Light

Fig. 3.-Comparison between the mean optical/NIR R_{y}-dependent extinction law from eqs. (2) and (3) and three lines of sight with largely separated R_{V} values. The wavelength position of the various broad-band filters from which the data were obtained are labeled (see Table 3). The "error" bars represent the computed standard deviation of the data about the best fit of $A(\lambda) / A(V)$ vs. $R_{v}{ }^{-1}$ with $a(x)+b(x) / R_{v}$ where $x \equiv \lambda^{-1}$. The effect of varying R_{v} on the shape of the extinction curves is quite apparent, particularly at the shorter wavelengths.

- Absorption of light (dimming) depends on λ, causing reddening
- Interstellar lines of sight to SN in different galaxies can pass through different random amounts of dust
- Key Parameters of Interstellar Dust (different for each SN)
- $A v \sim$ Amount of Dust Absorption (dimming)
- Rv ~Wavelength Dependence of Dust Absorption
- Don't really know a priori which SN are unaffected by dust; must model probabilistically

Strategy: Go to the infrared!

- Dust extinction is significantly diminished (by ~ 5) in the rest-frame NIR (i.e.YJHK) compared to optical
- SN la are excellent candles in the NIR (small variance in absolute magnitude)
- Wavelength Range of Optical+NIR data helps constrain dust absorption \& reddening better
- CfA, CSP groups are building up large samples of nearby SN la light curves in the NIR
- Latest data release: CfAIR2 (94 SN la LCs in JHK, Friedman et al., 2015, ApJ) - ground-based data
- RAISIN1+2: 200 HST orbits to observe ~50 SN la in the NIR at $z=0.2-0.6$ discovered with PanSTARRS and Dark Energy Survey

Telescopes collect light of different wavelengths

Optical

The Data:
Type la Supernova Apparent Light Curve (time series)

Light Curve \& Luminosity Variations and Correlations

Optical:
Intrinsically Brighter SN la have broader light curves and are slow decliners (Phillips Relation)

Near-Infrared:
Doubled Peaked Light Curve Variations

(credit: Arturo Avelino)

Statistical inference with SN la

- SN la cosmology inference based on empirical relations
- Statistical models for SN la are learned from the data
- Several Sources of Randomness \& Uncertainty
I. Photometric measurement errors

2. "Intrinsic Variation" = Population Distribution of SN la
3. Random PeculiarVelocities in Hubble Flow
4. Host Galaxy Dust: extinction and reddening.

- Apparent Distributions are convolutions of these effects
- How to incorporate this all into a coherent statistical model? (How to de-convolve?)

My Thesis Work (ISBA Savage Award Winner):
Hierarchical Bayesian Models for SN la Light Curve Inference

- Intrinsic Randomness
- Dust Extinction \& Reddening
- Peculiar Velocities
- Measurement Error

Generative Model

Global Joint Posterior

 Probability DensityConditional on all SN Data
"Training":
Learn about Populations from nearby SN la set

23 Directed Acyclic Graph

Directed Acyclic Graph for SN la Inference: Distance Prediction

Distance Estimates: Optical vs Optical+Infrared

Nearby Optical+NIR Hubble Diagram

(Opt Only) rms Distance Prediction Error $=7.5 \%$ (0.15 mag) (Opt+NIR) rms Distance Prediction Error $=5 \%$ (0.11 mag)

Overall Improved Precision $\sim(7.5 / 5)^{2} \approx 2$!
(Relative Weight in Hubble Diagram)

New Much Larger Dataset to retrain model： ～ 100 Nearby SN la in the NIR with PAIRITEL

	こ：	$\simeq:^{116 y}$	\cdots	$\underbrace{11 \mathrm{lao}}$	－－${ }^{1120}$	$\bigcirc{ }^{111 \mathrm{~K}}$	：$=11 \mathrm{l}$	$E \underbrace{10 \mathrm{~kg}}$		$\approx \underbrace{10 \mathrm{juin}}$
	$\underbrace{\text { ITiw }}$		${ }^{10 \mathrm{e} \times}$		\because					$\underbrace{\text { IOag }}$
8	$\cdots,$			$)^{\text {Onna }}$	091	$x^{\text {orf }}$	$\therefore 幺^{\text {Ơqa }}$	Ooqk		im
$+$	${ }^{\text {ap9ig }}$	$\because{ }^{\text {O9x }}$		$x^{\text {ogds }}$	$=$		$\therefore \text { ㅇoal }$	\therefore	$\Sigma^{\text {ogad }}$	\because
0	－2090	$\underbrace{08 \mathrm{Bby}}_{8}$			$)^{\text {ormm }}$		\cdots			
En				$\therefore 8 \mathrm{osat}$	a^{082}	${ }^{0.08 c}$	$\because=1{ }^{12^{3 x}}$		$\sigma^{\text {are }}$	
Σ	$\underset{y}{5}$	076		$-^{0700}$	$\pm=\underbrace{0.0 \mathrm{ca}}$	$\pm \underbrace{0075}$	$\approx \underbrace{066}$	± 2		
			$\theta_{\text {baca }}$	ㄴagx	$8{ }^{\text {Oon }}$	$\because 8$		$\stackrel{0}{\text { 0515 }}$		
	$\operatorname{pas}_{5}^{059}$	$\underbrace{\text { asel }}$	涼		$三^{0.500}$		$=1 \mathrm{Ide}$	こ，${ }^{\text {11aaa }}$	$z_{-}^{\text {ogdc }}$	
\％	08ae				． 05 hk		${ }^{\text {OGE }}$	ミioma		

CfAIR2：Andrew Friedman，et al．2015，ApJS，220， 9

How can we leverage the good NIR properties at high-z?

Only in space!

Rest frame IR measurements of $z^{\sim} 1$ supernovae are not possible from the ground
Go as far into the IR as technically feasible!
Sky is very bright in NIR: >100x brighter than in space
Sky is not transparent in NIR: absorption due to water is very strong and extremely variable

RAISIN (R. Kirshner, R. Foley, P. Challis, K. Mandel, + PSI SN la group, et al.) Tracers of cosmic expansion with SN la in the IR with the Hubble Space Telescope (HST)

Large HST program executed 2012-14 with 100 orbits to observe ~ 23 SN la at $z \sim 0.35$ discovered by Pan-STARRS

Combining NIR HST observations with (ground-based)
Optical improves statistical uncertainty by $\sim 2 x$ Reduces systematic sensitivity to dust error

PanSTARRS: A Supernova Discovery Machine

Medium-Deep Fields

Good light curves at $z^{\sim} 0.4$
Every 4 days griz
7 square degrees 0.26 "/pixel
Dozens of supernova candidates every month!

Discover Supernovae with Pan-STARRS and Difference Imaging

Trigger ToO HST observations

SN Ia $2=035$

Observed through FI25W (I.25 $\mu \mathrm{m}$) and FI60W $(1.60 \mu \mathrm{~m})$ on WFC3/IR

Usually need to return much later to

Pan-STARRS + RAISIN1 data with BayeSN Analysis

HST/WFC3 NIR J \& H bands

Pan-STARRS
 Optical bands

Improving dust and distance estimates with HST/WFC3/IR and BayeSN

Distance Precision improved by ~ $(0.183 / 0.116)^{2}=$ $2.5 x$ using NIR

RAISIN2 (ongoing 2015-20I7):

 I00 HST orbits for NIR observations of$$
\mathrm{z} \sim 0.5 \mathrm{SN} \mathrm{la}
$$ discovered by Dark Energy Survey (DES)

Dark Energy Survey (DES) Supernova Search

DES SN la discoveries

Example DES Optical Light Curve

RAISIN2 Collaboration with DES: Trade Spectra for Targets

(credit: Pete Challis)
Use Spectrum to Confirm Supernova and Measure Redshift

Latest RAISIN2 Hubble Image of DES Supernova at z = 0.43

(credit: Pete Challis)

Goal:

Cosmological Hubble Diagram of SN la in NIR

Simulation

(credit: Arturo Avelino)

WFIRST ~ 2025

Science Planning for the

Wide-Field Infrared Space Telescope

