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Bayesian Statistical Analyses: Likelihood

Likelihood Functions: The distribution of the data given the
model parameters. E.g., Y ' Poisson(\g):

likelihood(\s) = e *sA\%/ Y!

Maximum Likelihood Estimation: Suppose Y = 3

0.20

The likelihood
and its normal
approximation.

likelihood
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Can estimate \s and its error bars.
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Bayesian Analyses: Prior and Posterior Dist'ns

Prior Distribution: Knowledge obtained prior to current data.

Bayes Theorem and Posterior Distribution:

posterior(\) o likelihood(\)prior(\)

Combine past and current information:
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Bayesian analyses rely on probability theory
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Why be Bayesian?

@ Avoid Gaussian assumptions
e Methods like x? fitting implicitly assume a Gaussian model.
e Many other methods rely on asymptotic Gaussian
properties (e.g., stemming from central limit theorem).

@ Bayesian methods rely directly on probability calculus.

@ Designed to combine multiple sources of information
and/or external sources of information.
@ Modern computational methods allow us to work with
specially-tailored models and methods.
e Selection effects, contaminated data, observational biases,
complex physics-based models, data distortion, calibration
uncertainty, measurement errors, etc.
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Simulating from the Posterior Distribution

@ We can simulate or sample from a distribution to learn
about its contours.

@ With the sample alone, we can learn about the posterior.

@ Here, Y & Poisson(Ag + A\g) and Yg it Poisson(CAp).
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Model Fitting: Complex Posterior Distributions
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Highly non-linear relationship among stellar parameters.
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Model Fitting: Complex Posterior Distributions

Mass

Highly non-linear relationships among stellar parameters.
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Model Fitting: Complex Posterior Distributions

| Primary Mass: Star 28

184 188 192 196

The classification of
certain stars as field
or cluster stars can
cause multiple
modes in the
distributions of other
parameters.
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Complex Posterior Distributions
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Complex Posterior Distributions

energy of photon 2 (keV)

Jousysod
_ Jousysod

energy of photon 1 (keV)
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Using Simulation to Evaluate Integrals

Suppose we want to compute

= / 9(0)H(6)db,

where f(0) is a probability density function.
If we have a sample

o), oM ),

we can estimate / with
h=1 zn:g(t‘)‘”)'
N3
In this way we can compute means, variances, and the

probabilities of intervals.
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We Need to Obtain a Sample

Our primary goal:

Develop methods to obtain a sample from a
distribution

@ The sample may be independent or dependent.
@ Markov chains can be used to obtain a dependent sample.

@ In a Bayesian context, we typically aim to sample the
posterior distribution.

We first discuss an independent method:
Rejection Sampling

David A. van Dyk MCMC
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Rejection Sampling

Suppose we cannot sample f(¢) directly, but can find g(#) with
f(0) < Mg(0)

for some M.
@ Sample § % g(0).
Q@ Sample u ™' Unif(0, 1).

Q If

/\;;9()9) i.e., if uMg(f) < £(d)

accept §: 6() = 0.
Otherwise reject 6 and return to step 1.

How do we compute M?

David A. van Dyk MCMC
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Rejection Sampling

Consider the distribution:

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

theta

We must bound f(6) with some unnormalized density, Mg(6).
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Rejection Sampling
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@ Imagine that we sample uniformly in the red rectangle:
0 ' g(0) and y = uMg(6)
@ Accept samples that fall below the dashed density function.

How can we reduce the wait for acceptance??
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Rejection Sampling
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How can we reduce the wait for acceptance??

Improve g(0) as an approximation to f(0)!!
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What is a Markov Chain

A Markov chain is a sequence of random variables,
9@ oM ) .
such that
p(0D10=1 ot=2) 90y = p(p(D)]p(t=1)),
A Markov chain is generally constructed via
0 = (o= ylt=1))

with UM, U@ .. independent.
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What is a Stationary Distribution?

A stationary distribution is any distribution f(x) such that
F(o1) = / (0D [0-D)f(50=1) =)

If we have a sample from the stationary dist'n and update the
Markov chain, the next iterate also follows the stationary dist’n.

What does a Markov Chain at Stationarity Deliver?
Under regularity conditions, the density at iteration t,

n
f0(96(®)) — f(#) and %Z h(0D) — E[h(6))]
t=1
We can treat {#()t = N,... N} as an approximate correlated
sample from the stationary distribution.
GOAL: Markov Chain with Stationary Dist’'n = Target Dist’n.
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The Metropolis Sampler

Draw 99 from some starting distribution.

Fort=1,2,3,...
Sample: 6* from Jy(6*6(—1)

Compute: r = p(’;((fjl’)’l)y)

Set- g0 {0* with probability min(r, 1)

9(t=1)  otherwise

Note
@ J; must be symmetric: J;(0*|0(=1)) = Jy(41=1)|6%).
o If p(6*|y) > p(6*~y), jump!

David A. van Dyk MCMC
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The Random Walk Jumping Rule

Typical choices of J;(6*|6(=")) include
@ Unif (4(=1) — k,0(=1) 4 k)
@ Normal (90— ki)
[+ tdf(e(t_ﬂ,k/)
J; may change, but may not depend on the history of the chain.

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

How should we choose k? Replace / with M? How?
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An Example

A simplified model for high-energy spectral analysis.

@ Model:
Consider a perfect detector:

@ 1000 energy bins, equally spaced from 0.3keV to 7.0keV,
© Y ' Poisson (aEi_ﬁ) , with 6 = (o, B),

@ E; is the energy, and
indep.

Q (a,3) ' Unif(0,100).

@ The Sampler:
We use a Gaussian Jumping Rule,

e centered at the current sample, 6
e with standard deviations equal 0.08 and correlation zero.

David A. van Dyk MCMC
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Simulated Data

2288 counts were simulated with o = 5.0 and 5 = 1.69.

red curve——expected counts

counts

Energy
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Markov Chain Trace Plots

Time Series Plot for Metropolis Draws
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Chains “stick” at a particular draw when proposals are rejected.
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The Joint Posterior Distribution

Scatter Plot of Posterior Distribution
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Marginal Posterior Dist'n of the Normalization

Autocorrelation for alpha

Hist of 500 Draws excluding Burn—in
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E(alY) ~ 5.13, SD(a|Y) ~ 0.11, and a 95% Cl is (4.92,5.41)
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Marginal Posterior Dist'n of Power Law Param

Autocorrelation for beta Hist of 500 Draws excluding Burn—in
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E(8|Y) ~ 1.71, SD(8|Y) ~ 0.03, and a 95% Cl is (1.65,1.76)
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The Metropolis-Hastings Sampler

A more general Jumping rule:

Draw 99 from some starting distribution.

Fort=1,2,3,...
Sample: 6* from J;(6*6(-1)

R T YA )
COMPULE: 1= BGr=1ly) (o™ ]o)

9(t=1)  otherwise

Set: 60 {9* with probability min(, 1)

Note
@ J; may be any jumping rule, it needn’t be symmetric.
@ The updated r corrects for bias in the jumping rule.

David A. van Dyk MCMC
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The Independence Sampler

Use an approximation to the posterior as the jumping rule:

Ji = Normaly(MAP estimate, Curvature-based Variance Matrix).

MAP estimate = argmax,p(6|y)

2 —1

, 0
Variance ~ ~ 5090 log p(0]Y)

Note: J;(6*|6(=1)) does not depend on (=),

David A. van Dyk MCMC
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The Independence Sampler

The Normal Approximation may not be adequate.
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@ We can inflate the variance.
@ We can use a heavy tailed distribution, e.g., lorentzian or t.
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Example of Independence Sampler

A simplified model for high-energy spectral analysis.

@ We can fit («, 8) with a general mode finder (e.g.,
Levenberg-Marqardt)
@ Requires coding likelihood (e.g. Cash statistic), specifing
starting values, etc.
@ Base choice of parameter on quality of normal approx.
e MLE is invariant to transformations.
e Variance matrix of transform is computed via delta method.
@ Can use the jumping rule:
Ji = Normalx(MAP est, Curvature-based Variance Matrix).

David A. van Dyk MCMC
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Markov Chain Trace Plots

Time Series Plot for Metropolis Hastings Draws
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Very little “sticking” here: acceptance rate is 98.8%.
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Marginal Posterior Dist'n of the Normalization

Autocorrelation for alpha

Hist of 500 Draws excluding Burn—in
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Autocorrelation is essentially zero: nearly independent sample!!
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Marginal Posterior Dist'n of Power Law Param

Autocorrelation for beta Hist of 500 Draws excluding Burn—in
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This result depends critically on access to a very good
approximation to the posterior distribution.
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Has this Chain Converged?

1.0

0.8

psi
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0.4
I

0.2

iteration

Image credit: Gelman (1995) In “MCMC in Practice” (Editors: Gilks, Richardson, and Spiegelhalter).
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Has this Chain Converged?

axd Q

06
6

psi
psi

iteration iteration

Image credit: Gelman (1995) In “MCMC in Practice” (Editors: Gilks, Richardson, and Spiegelhalter).

Comparing multiple chains can be informative!
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Transformations and Multiple Modes

Using Multiple Chains

chain 1 chain 2 chain 3
© [{e} ©
< < <
= = =
g« I I" | g« l” ”I” o
o o R
0 10000 20000 0 10000 20000
iteration

iteration

0 10000 20000

iteration
@ Compare results of multiple chains to check convergence.

@ Start the chains from distant points in parameter space.
@ Run until they appear to give similar results

e ... or they find different solutions (multiple modes).

David A. van Dyk
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The Gelman and Rubin “R hat” Statistic
Consider M chains of length N: {¢)pm,n=1,... N}.

N &
ZWZ(IDm*
m—1
;M N
= MZsﬁq where s2 = Z Vpm —
m=1 n=1

Two estimates of Var(zY):
@ W: underestimate of Var(y | Y) for any finite N.
Q var' (v | Y) =YW+ LB: overestimate of Var(y | Y).

f_ [ w]Y)

W 4 1 asthe chains converge.

David A. van Dyk MCMC
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Practical Challenges and Advice

Choice of Jumping Rule with Random Walk Metropolis

Spectral Analysis: effect on burn in of power law parameter

sigma = 0.005, 0.08, 0.4

3 acceptance rate=87.5%

o Lag one autocorrelation=0.98
3o
59
3

@

o

- [ 500 1000 1500

iteration

N acceptance rate=31.6%

o Lag one autocorrelation=0.66
PO
2
2o
53
3

©

- [y 560 1000 500

iteration
acceptance rate=3. 1

] Lag one autocorre\at?r‘)’n:l).%
3
3
Eo
53
3

<

0 500 1000 1500
iteration




Diagnosing Convergence
Choosing a Jumping Rule

Pratical Challenges and Advice Transformations and Multiple Modes

Higher Acceptance Rate is not Always Better!

sigma = 0.005, 0.08, 0.4
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Aim for 20% (vectors) - 40% (scalars) acceptance rate
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Statistical Inference and Effective Sample Size

@ Point Estimate: F)n = %Z h(H(t)) (estimate of E(h(0)|x)!))

~ 02 14p

@ Variance Estimate: Var(l_v,,) ~ Tﬁ With (ot var@)n)

o2 = Var(h(6)) estimated by 62 = 1= "7, [h(6D) — h,)2,
p = corr [h(9D, h(9{=1)] estimated by
P 1 > 1o [h(6M) — A [A(8"=1) — hn]
NS AO0) — B2 S0[A(00) — B2

@ Interval Estimate: hy, + ty4/Var(h,) with d = nm —1

. P 1—p
The effective sample size is ni5-

David A. van Dyk MCMC



Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

lllustration of the Effective Sample Size

Sample from N(0, 1)
with random walk Metropolis with J; = N(6(9, 7).

What is the Effective Sample Size here? and ¢?

Markov Chain
-1 0
|

-2
|

-3

0 200 400 600 800 1000

iteration
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
0
|

0 200 400 600 800 1000

iteration

David A. van Dyk MCMC



Diagnosing Convergence
Choosing a Jumping Rule

Pratical Challenges and Advice Transformations and Multiple Modes

lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
0
|

0 200 400 600 800 1000

iteration
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
0
|

0 200 400 600 800 1000

iteration
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Lag One Autocorrelation

Small Jumps versus Low Acceptance Rates
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Effective Sample Size

Balancing the Trade-Off

effective sample size

log(sigma)




Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Acceptance Rate

Bigger is not always Better!!

acceptance rate

log(sigma)

High acceptance rates only come with small steps!!

David A. van Dyk MCMC
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Finding the Optimal Acceptance Rate
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Random Walk Metropolis with High Correlation

Practical Challenges and Advice

A whole new set of issues arise in higher dimensions...

Tradeoff between high autocorrelation and high rejection rate:
@ more acute with high posterior correlations
@ more acute with high dimensional parameter

o

David A. van Dyk MCMC
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Random Walk Metropolis with High Correlation

Practical Challenges and Advice

In principle we can use a correlated jumping rule, but
@ the desired correlation may vary, and
@ is often difficult to compute in advance.

™

~ 4 ,\

David A. van Dyk MCMC
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Random Walk Metropolis with High Correlation

Practical Challenges and Advice

What random walk jumping rule would you use here?

Remember: you don'’t get to see the distribution in advance!

David A. van Dyk MCMC
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Practical Challenges and Advice

Parameters on Different Scales

Random Walk Metropolis for Spectral Analysis:

Scatter Plot of Posterior Distribution Autocorrelation for alpha

175 1.80
ACH

170

1.65

o _rAnnmnmnamnmnamnm e -

1.60

a Lag

Why is the Mixing SO Poor?!??
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Parameters on Different Scales

Practical Challenges and Advice

Consider the Scales of « and f:

Scatter Plot of Posterior Distribution Scatter Plot of Posterior Distribution

1.80

175

170

1.65

1.60

A new jumping rule: std dev for a = 0.110, for 8 = 0.026, and corr = —0.216.

avid A. van Dyk MCMC



Practical Challenges and Advice

Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Improved Convergence

Original Jumping Rule:

Autocorrelation for alpha

Hist of 500 Draws excluding Burn—in

1.0

ACF

—— Posterior Density
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Practical Challenges and Advice

Improved Convergence

Improved Jumping Rule:

Autocorrelation for alpha Hist of 500 Draws excluding Burn—in
= o
g d <d - Posterior Density
4
4
-
o
T T ; T ; T T T T T T
0 20 40 60 80 100 4.8 5.0 5.2 5.4 5.6

COriginal Eff Sample Size = 19, Improved Eff Sample Size = 75, with n = 500.
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Parameters on Different Scales

Strategy: When using

@ Normal (8(=1) kM) or better yet
o tdf(e(t_”,k/\/’)

try using the variance-covariance matrix from a standard fitted
model for M

... at least when there is standard mode-based model-fitting
software available.

David A. van Dyk MCMC
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Practical Challenges and Advice

Transforming to Normality

Parameter transformations can greatly improve MCMC.

Recall the Independence Sampler:
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The normal approximation is not as good as we might hope...
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Practical Challenges and Advice

sforming to Normality

But if we use the square root of 6:
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Practical Challenges and Advice

Transforming to Normality

And...
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The normal approximation is much improved!
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Transforming to Normality

Working with with Gaussian or symmetric distributions leads to
more efficient Metropolis and Metropolis Hastings Samplers.

General Strategy:
@ Transform to the Real Line.
@ Take the log of positive parameters.
@ If the log is “too strong”, try square root.
@ Probabilities can be transformed via the logit transform:

log(p/(1 — p)).

@ More complex transformations for other quantities.
@ Try out various transformations using an initial MCMC run.
@ Statistical advantages to using normalizing transforms.

David A. van Dyk MCMC



Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

Removing Linear Correlations

Linear transformations can remove linear correlations
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Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

Removing Linear Correlations

... and can help with non-linear correlations.
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Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Multiple Modes

@ Scientific meaning of
multiple modes.

@ Do not focus only on
the major mode!

@ “Important” modes. N \

@ Challenging for - o
Bayesian and
Frequentist methods. . |

@ Consider Metropolis & /
Metropolis Hastings. .
@ Value of excess
dispersion. - - o 2 .

David A. van Dyk MCMC



Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Multiple Modes

@ Use a mode finder to “map out” the posterior distribution.
@ Design a jumping rule that accounts for all of the modes.
@ Run separate chains for each mode.
© Use on of several sophisticated methods tailored for
multiple modes.

© Adaptive Metropolis Hastings. Jumping rule adapts when
new modes are found (van Dyk & Park, MCMC Hdbk 2011).

@ Parallel Tempering.

© Many other specialized methods.

David A. van Dyk MCMC
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Outline

e Overview of Recommended Strategy

David A. van Dyk MCMC



Overview of Recommended Strategy

Overview of Recommended Strategy

(Adopted from Bayesian Data Analysis, Section 11.10, Gelman
et al. (2005), Second Edition)

@ Start with a crude approximation to the posterior
distribution, perhaps using a mode finder.
@ Simulate directly, avoiding MCMC, if possible.

© If necessary use MCMC with one parameter at a time
updating or updating parameters in batches:
Two-Step Gibbs Sampler:

Step 1: Sample 6(1) ‘#3 p(6 | o1, Y)
Step 2: Sample ¢() ' p(¢ | 6, Y)
© Use Gibbs draws for closed form complete conditionals.

David A. van Dyk MCMC
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Overview of Recommended Strategy- Con’t

© Use metropolis jumps if complete conditional is not in
closed form. Tune variance of jumping distribution so that
acceptance rates are near 20% (for vector updates) or
40% (for single parameter updates).

© To improve convergence, use transformations so that
parameters are approximately independent.

@ Check for convergence using multiple chains.

© Compare inference based on crude approximation and
MCMC. If they are not similar, check for errors before
believing the results of the MCMC.

David A. van Dyk MCMC
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