Detection: Overlapping Sources

David Jones
Harvard University Statistics Department

November 12, 2013

Introduction

Model

Example

Simulation study

Chandra data

XMM data

Summary and discussion

Introduction

- X-ray data: coordinates of photon detections, photon energy
- PSFs overlap for sources near each other
- Aim: inference for number of sources and their intensities, positions and spectral distributions
- Key points: (i) obtain posterior of number of sources, (ii) use spectral information

Basic Model and Notation

$y_{i j}=$ spatial coordinates of photon j from source i
$k=\#$ sources (components)
$\mu_{i}=$ centre of source i
$n_{i}=\#$ photons detected from source i

$$
\begin{aligned}
y_{i j} \mid \boldsymbol{\mu}_{i}, n_{i}, k & \sim \operatorname{PSF} \text { centred at } \boldsymbol{\mu}_{i} j=1, \ldots, n_{i}, i=0, \ldots, k \\
\left(n_{0}, n_{1}, \ldots, n_{k}\right) \mid w, k & \sim \operatorname{Mult}\left(n ;\left(w_{0}, w_{1}, \ldots, w_{k}\right)\right) \\
\left(w_{0}, w_{1}, \ldots, w_{k}\right) \mid k & \sim \operatorname{Dirichlet}(\lambda, \lambda, \ldots, \lambda) \\
\boldsymbol{\mu}_{i} \mid k & \sim \operatorname{Uniform} \text { over the image } i=1,2, \ldots, k \\
k & \sim \operatorname{Pois}(\theta)
\end{aligned}
$$

- Component with label 0 is background and its "PSF" is uniform over the image (so its "centre" is irrelevant)
- Reasonably insensitive to θ, the prior mean number of sources

3rd Dimension: Spectral Data

We can distinguish the background from the sources better if we jointly model spatial and spectral information:

$$
\begin{aligned}
e_{i j} \mid \alpha_{i}, \beta_{i} & \sim \operatorname{Gamma}\left(\alpha_{i}, \beta_{i}\right) \text { for } i=1, \ldots, k \text { and } j=1, \ldots, n_{i} \\
e_{0 j} & \sim \text { Uniform to some maximum for } j=1, \ldots, n_{0} \\
\alpha_{i} & \sim \operatorname{Gamma}\left(a_{\alpha}, b_{\alpha}\right) \\
\beta_{i} & \sim \operatorname{Gamma}\left(a_{\beta}, b_{\beta}\right)
\end{aligned}
$$

Using a (correctly) "informative" prior on α_{i} and β_{i} versus a diffuse prior made very little difference to results.

Computation: RJMCMC

- Similar to Richardson \& Green 1997
- Knowledge of the PSF makes things easier
- Insensitive to the prior on k e.g. posterior when $k=10$ and $\theta=3$:

	Posterior of number of sources (k)						
	7	8	9	10	11	12	13
Mean	0.029	0.058	0.141	0.222	0.220	0.157	0.082
SD	0.018	0.019	0.022	0.029	0.027	0.021	0.014

Used posterior probabilities given by 10 chains

Example

3 Weak Sources

- Region occupied by the three sources (2 SD) is about 28% of the area and contains about 41\% of the observations
- Within this sources region around 48% is background
- Positions $(-2,0),(0,1),(1.5,0)$ with intensities $50,100,150$ respectively

Posterior of k

Spectral data ignored

Spectral data included

- Mean over 10 chains of the posterior probabilities (range indicated)
- When the spectral data is ignored we do not find the faintest source

Parameter Inference

	μ_{11}	μ_{12}	μ_{21}	μ_{22}	μ_{31}	μ_{32}	w_{1}	w_{2}	w_{3}	w_{b}	α	β
Truth	-2	0	0	1	1.5	0	0.038	0.077	0.115	0.769	3	0.5
Spectral data ignored												
Mean	-1.266	0.839	0.401	0.549	1.798	-0.054	0.049	0.067	0.086	0.798	NA	
SD	0.069	0.125	0.067	0.068	0.030	0.046	0.002	0.002	0.003	0.001	NA	
MSE	0.543	0.718	0.165	0.207	0.090	0.005			NA			
SD/Mean							0.050	0.027	0.032	0.001	NA	NA
Spectral data included												
Mean	-1.790	-0.101	-0.234	1.042	1.584	-0.044	0.040	0.077	0.115	0.768	2.827	0.459
SD	0.037	0.064	0.033	0.026	0.019	0.022	0.001	0.001	0.002	0.000	0.013	0.003
MSE	0.045	0.014	0.056	0.002	0.007	0.002					0.030	0.002
SD/Mean							0.036	0.018	0.014	0.000	0.004	0.006

- The effects are less pronounced when the sources are more easily distinguished from the background

Allocation of Photons

Table: Allocation breakdown: (a) ignoring spectral data

Source (intensity)	No. Photons	Allocation Breakdown			
		Background	Left	Middle	Right
Background (10/sq)	1015	0.876	0.035	0.040	0.049
Left (50)	38	0.798	0.121	0.067	0.014
Middle (100)	97	0.502	0.168	0.189	0.141
Right (150)	152	0.481	0.043	0.159	0.317

Table: Allocation breakdown: (b) using spectral data

Source (intensity)	No. Photons	Allocation Breakdown			
		Background	Left	Middle	Right
Background (10/sq)	1015	0.894	0.024	0.038	0.045
Left (50)	38	0.531	0.278	0.165	0.026
Middle (100)	97	0.293	0.122	0.346	0.239
Right (150)	152	0.305	0.028	0.141	0.526

- Background is more easily distinguished from the sources when we include the spectral data

Simulation Study: PSF (King 1962)

- King density has Cauchy tails
- Gaussian PSF leads to over-fitting in real data

Simulation Study: Data Generation

- Bright source:

$$
n_{1} \sim \operatorname{Pois}(1000)
$$

- Dim source:

$$
n_{2} \sim \operatorname{Pois}(1000 / r)
$$

where $r=1,2,10,50$ gives the relative intensity

- Background per 'source region':

$$
n_{0} \sim \operatorname{Pois}(b d 1000 / r)
$$

where relative background $b=0.001,0.01,0.1,1$. Here $d=0.52$ is the proportion of photons from a source within the region defined by density greater than 10% of the maximum (essentially a circle with radius 1)

Simulation Study: Data Generation

Simulation Study: Example

Two sources: separation 1, relative intensity 1, background 0.01

- 50 datasets simulated for each configuration
- Analysis with and without energy data
- Summarize posterior of k by posterior probability of two sources

Posterior Probability at $\mathrm{k}=2$: No Energy

Posterior Probability at $\mathrm{k}=2$: Energy

Average MSE of Positions: No Energy

Average MSE of Positions: Energy

Chandra Data

Chandra k Results

Locations

XMM Data

XMM Data Subsett

- Additional question: how do the spectral distributions of the sources compare?

k posterior

- Mean over 10 chains of the posterior probabilities (range indicated)
- Spectral information focuses posterior on 2 sources

Parameter Inference

Table: Parameter estimation for FK Aqr and FL Aqr (using spectral data)

	μ_{11}	μ_{12}	μ_{21}	μ_{22}	w_{1}	w_{2}	w_{b}	α	β
Mean	120.988	124.891	121.366	127.376	0.808	0.182	0.009	3.182	0.005
SD	0.001	0.002	0.016	0.027	0.001	0.001	0.000	0.000	0.000
SD/Mean	0.000	0.000	0.000	0.000	0.001	0.005	0.011	0.000	0.000

Componentwise posterior spectral distributions

Posteriors of source spectral parameters

Shape parameters

Summary

- Coherent method for dealing with overlapping sources that uses spectral as well as spatial information
- Flexibility to include other phenomenon
- How to combine Chandra datsets?
- Other models/computation possible
- Approximation to full method could be desirable
S. Richardson, P. J. Green On Bayesian analysis of mixtures with an unknown number of components (with discussion), J. R. Statist. Soc. B, 59, 731792, 1997; corrigendum, 60 (1998), 661.

a
I. King, The structure of star clusters. I. An empirical density law, The Astronomical Journal, 67 (1962), 471.
C. M. Bishop, N. M. Nasrabadi, Pattern recognition and machine learning, Vol. 1. New York: springer, 2006.A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B (Methodological) (1977): 1-38.

固
S. P. Brooks, A. Gelman, General Methods for Monitoring Convergence of Iterative Simulations, Journal of Computational and Graphical Statistics, Vol. 7, No. 4. (Dec., 1998), pp. 434-455.

XMM data spectral distribution

Four models

