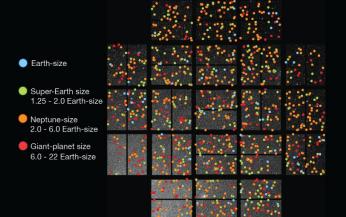


## Locations of Kepler Planet Candidates



## Scientific method: hypothetico-deductive approach

- Form hypothesis (based on theory/past experiment)
- Devise experiment to test predictions of hypothesis
- Perform experiment
- Analysis  $\rightarrow$ 
  - Devise new hypothesis if hypothesis fails
  - Devise new experiment if hypothesis corroborated

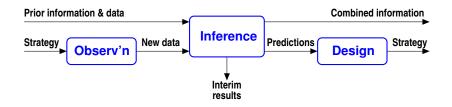
### The sequential alternative

Herman Chernoff on sequential analysis (1996):

I became interested in the notion of experimental design in a much broader context, namely: what's the nature of scientic inference and how do people do science? The thought was not all that unique that it is a sequential procedure...

Although I regard myself as non-Bayesian, I feel in sequential problems it is rather dangerous to play around with non-Bayesian procedures.... Optimality is, of course, implicit in the Bayesian approach.

## **Bayesian Adaptive Exploration**



Bayesian inference + Bayesian decision theory + Information theory

(Plus some computational algorithms...)

# Optimal Scheduling of Exoplanet Observations via Bayesian Adaptive Exploration

Tom Loredo Dept. of Astronomy, Cornell University

Based on work with David Chernoff, Merlise Clyde, Jim Berger & Bin Liu

Supported by the NSF MSPA-Astronomy program

## Agenda

1 Decision theory & experimental design

**2** BAE: Information-maximizing seq'l design

**3** Toy problem: Bump hunting

**4** BAE for exoplanet RV observations



## Agenda

### 1 Decision theory & experimental design

- **2** BAE: Information-maximizing seq'l design
- **3** Toy problem: Bump hunting
- **④** BAE for exoplanet RV observations
- **6** Jetsam

## **Naive Decision Making**

A Bayesian analysis results in probabilities for two hypotheses:

$$p(H_1|I) = 5/6;$$
  $p(H_2|I) = 1/6$ 

Equivalently, the odds favoring  $H_1$  over  $H_2$  are

$$O_{12} = 5$$

We must base future actions on either  $H_1$  or  $H_2$ .

Which should we choose?

Naive decision maker: Choose the most probable,  $H_1$ .

## Naive Decision Making—Deadly!

#### Russian Roulette



 $H_1 =$ Chamber is empty;

 $H_2 =$ Bullet in chamber

What is your choice now?

Decisions should depend on consequences!

Unattributed JavaScript at http://www.javascriptkit.com/script/script2/roulette.shtml

## **Experimental Design as Decision Making**

When we perform an experiment we have choices of actions:

- What sample size to use
- What times or locations to probe/query
- Whether to do one sensitive, expensive experiment or several less sensitive, less expensive experiments
- Whether to stop or continue a sequence of trials

• . . .

We must choose amidst uncertainty about the data we may obtain and the resulting consequences for our experimental results.

 $\Rightarrow$  Seek a principled approach for optimizing experiments, accounting for all relevant uncertainties

## **Bayesian Decision Theory**

#### Decisions depend on consequences

Might bet on an improbable outcome provided the payoff is large if it occurs and/or the loss is small if it doesn't.

#### Utility and loss functions

Compare consequences via *utility* quantifying the benefits of a decision, or via *loss* quantifying costs.

Utility = U(a, o)

*o* =Outcome (what we are uncertain of)

Loss  $L(a, o) = U_{\max} - U(a, o)$ 

#### Russian Roulette Utility

|              | Outcomes               |                         |  |  |
|--------------|------------------------|-------------------------|--|--|
| Actions      | Empty ( <i>click</i> ) | Bullet ( <i>BANG!</i> ) |  |  |
| Play         | \$6,000                | -\$Life                 |  |  |
| Play<br>Pass | 0                      | 0                       |  |  |

Uncertainty & expected utility

We are uncertain of what the outcome will be  $\rightarrow$  *average over outcomes*:

$$\mathbb{E}U(a) = \sum_{i=1}^{n} P(o|\ldots) U(a,o)$$

outcomes

The best action *maximizes the expected utility*:

$$\hat{a} = \arg \max_{a} \mathbb{E}U(a)$$

I.e., minimize expected loss.

Axiomatized: von Neumann & Morgenstern; Ramsey, de Finetti, Savage

Russian Roulette Expected Utility

| Outcomes |                        |                         |                 |  |
|----------|------------------------|-------------------------|-----------------|--|
| Actions  | Empty ( <i>click</i> ) | Bullet ( <i>BANG!</i> ) | $\mathbb{E}U$   |  |
| Play     | \$6,000                | -\$Life                 | \$5000-\$Life/6 |  |
| Pass     | 0                      | 0                       | 0               |  |

As long as \$Life > \$30,000, don't play!

## **Bayesian Experimental Design**

Actions =  $\{e\}$ , possible experiments (sample sizes, sample times/locations, stopping criteria . . . ).

Outcomes =  $\{d_e\}$ , values of future data from experiment *e*.

Utility measures value of  $d_e$  for achieving experiment goals, possibly accounting for the cost of the experiment.

Choose the experiment that maximizes

$$\mathbb{E}U(e) = \sum_{d_e} p(d_e|\ldots) U(e, d_e)$$

To predict  $d_e$  we must consider various hypotheses,  $H_i$ , for the data-producing process  $\rightarrow$  Average over  $H_i$  uncertainty:

$$\mathbb{E}U(e) = \sum_{d_e} \left[ \sum_{H_i} p(H_i | \ldots) p(d_e | H_i, \ldots) \right] U(e, d_e)$$

## A Hint of Trouble Ahead

Multiple sums/integrals

$$\mathbb{E}U(e) = \sum_{d_e} \left[ \sum_{H_i} p(H_i|I) p(d_e|H_i, I) \right] U(e, d_e)$$

Average over both hypothesis and data spaces

Plus an optimization

$$\hat{e} = \arg \max_{e} \mathbb{E} U(e)$$

Aside: The dual averaging—over hypothesis and data spaces—hints (correctly!) of connections between Bayesian and frequentist approaches

## Agenda

### **1** Decision theory & experimental design

### **2** BAE: Information-maximizing seq'l design

- **(3)** Toy problem: Bump hunting
- **④** BAE for exoplanet RV observations



## **Information-Based Utility**

Many scientific studies do not have a single, clear-cut goal.

Broad goal: Learn/explore, with resulting information made available for a variety of future uses.

Example: Astronomical measurement of orbits of minor planets or exoplanets

- Use to infer physical properties of a body (mass, habitability)
- Use to infer distributions of properties among the population (constrains formation theories)
- Use to predict future location (collision hazard; plan future observations)

Motivates using a "general purpose" utility that measures what is learned about the  $H_i$  describing the phenomenon

## Information Gain as Entropy Change

#### Entropy and uncertainty

Shannon entropy = a scalar measure of the degree of uncertainty expressed by a probability distribution

$$S = \sum_{i} p_{i} \log \frac{1}{p_{i}}$$
 "Average surprisal"  
$$= -\sum_{i} p_{i} \log p_{i}$$

#### Information gain

Existing data  $D \rightarrow$  interim posterior  $p(H_i|D)$ Information gain upon learning d = decrease in uncertainty:

$$\mathcal{I}(d) = \mathcal{S}[\{p(H_i|D)\}] - \mathcal{S}[\{p(H_i|d, D)\}]$$
  
= 
$$\sum_i p(H_i|d, D) \log p(H_i|d, D) - \text{Const (wrt } d)$$

Lindley (1956, 1972) and Bernardo (1979) advocated using  $\mathcal{I}(d)$  as utility

## **Helpful Conventions**

As an argument of a functional, let  $H_i|d, I$  stand for the whole distribution  $\{p(H_i|d, I)\}$ .

Use the Skilling conditional:

$$\mathcal{I}[H_i|d, I] = \sum_i p(H_i|d, I) \log p(H_i|d, I)$$
  

$$\rightarrow \mathcal{I}[H_i] = \sum_i p(H_i) \log p(H_i) \qquad || d, I$$

Continuous spaces (e.g., parameter space,  $\theta$ ) need a measure:

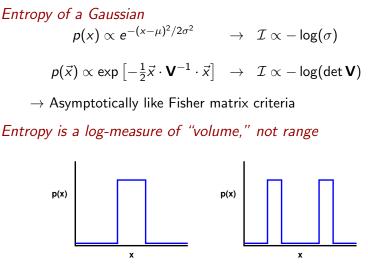
- Proper treatment as a limit
- Parameterization invariance
- Makes argument of log(·) dimensionless

$$\mathcal{I}[\theta] = \int d\theta \ p(\theta) \log \frac{p(\theta)}{m(\theta)} \qquad \qquad || \ d, I$$

For simplicity, we adopt a uniform measure and drop  $m(\cdot)$  below (changing it doesn't affect results).

Aside: Measuring information gain via Kullback-Leibler divergence between prior & posterior does not change results (MacKay 1992).

### A 'Bit' About Entropy



These distributions have the same entropy/amount of information.

#### **Prediction & expected information**

Information gain from datum  $d_t$  at time t:

$$\mathcal{I}(d_t) = \sum_i p(H_i | d_t, D) \log p(H_i | d_t, D)$$

We don't know what value  $d_t$  will take  $\rightarrow$  average over prediction uncertainty

Expected information at time t:

$$\mathbb{E}\mathcal{I}(t) = \int dd_t \ p(d_t|D) \ \mathcal{I}(d_t)$$

Predictive distribution for value of future datum:

$$p(d_t|D) = \sum_i p(d_t, H_i|D) = \sum_i p(H_i|D) p(d_t|H_i)$$
$$= \sum_i \text{Interim posterior} \times \text{Single-datum likelihood}$$

### **Computational challenge!**

Expected Information

$$\mathbb{E}\mathcal{I}(e) = \sum_{d_e} p(d_e|I)\mathcal{I}[H_i|d_e, I]$$
  
= 
$$\sum_{d_e} \sum_{H_i} p(H_i|I)p(d_e|H_i, I)$$
$$\times \sum_{H'_i} p(H'_i|d_e, I) \log [p(H'_i|d_e, I)]$$

There is a heck of a lot of averaging going on! Plus an optimization!

## Simplification: Maximum entropy sampling

#### Parameter estimation setting

- We have specified a model, M, with uncertain parameters heta
- We have data  $D \rightarrow$  current posterior  $p(\theta|D, M)$
- The entropy of the noise distribution doesn't depend on  $\theta$ ,

$$ightarrow \mathbb{E}\mathcal{I}(t) = ext{Const} - \int dd_t \ p(d_t|D, I) \log p(d_t|D, I)$$

Maximum entropy sampling (Sebastiani & Wynn 1997, 2000)

To learn the most, sample where you know the least

Nested Monte Carlo integration for  $\mathbb{E}\mathcal{I}$ 

Entropy of predictive dist'n:

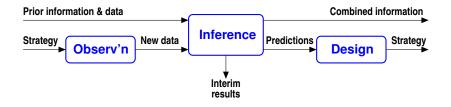
$$\mathcal{S}[d_t|D,M] = -\int dd_t \ p(d_t|D,M_1) \log p(d_t|D,M)$$

- Sample predictive via  $\theta \sim$  posterior,  $d_t \sim$  sampling dist'n given  $\theta$
- Evaluate predictive as  $\theta$ -mixture of sampling dist'ns

#### Posterior sampling in parameter space

- Many models are (linearly) separable → handle linear "fast" parameters analytically
- When priors prevent analytical marginalization, use interim priors & importance sampling
- Treat nonlinear "slow" parameters via adaptive or population-based MCMC; e.g., diff'l evolution MCMC

## **Bayesian Adaptive Exploration**



Greedy information-maximizing sequential design

- Observation Gather new data based on observing plan
- Inference Interim results via posterior sampling
- Design Predict future data; explore where expected information from new data is greatest

## Agenda

**1** Decision theory & experimental design

**2** BAE: Information-maximizing seq'l design

**3** Toy problem: Bump hunting

**④** BAE for exoplanet RV observations

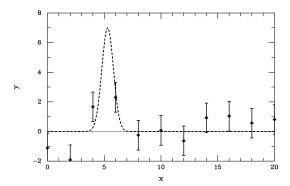
**6** Jetsam

### Locating a bump

Object is 1-d Gaussian of unknown loc'n, amplitude, and width. True values:

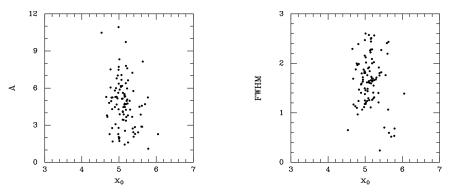
$$x_0 = 5.2$$
, FWHM = 0.6,  $A = 7$ 

Initial scan with crude ( $\sigma = 1$ ) instrument provides 11 equispaced observations over [0, 20]. Subsequent observations will use a better ( $\sigma = 1/3$ ) instrument.

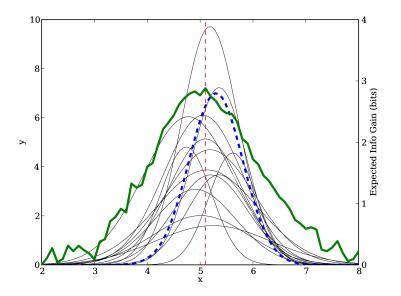


### **Cycle 1 Interim Inferences**

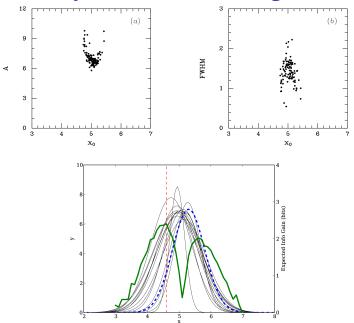
Generate  $\{x_0, FWHM, A\}$  via posterior sampling.



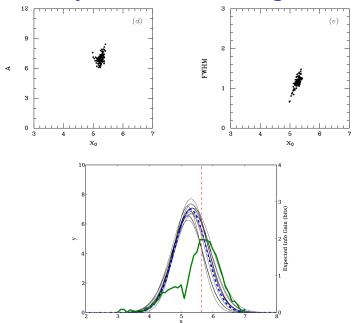
Cycle 1 Design: Predictions, Entropy



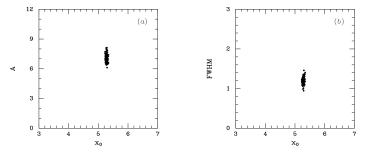
### **Cycle 2: Inference, Design**



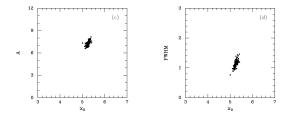
### **Cycle 3: Inference, Design**



### **Cycle 4: Inferences**



Inferences from non-optimal datum



### Agenda

**1** Decision theory & experimental design

**2** BAE: Information-maximizing seq'l design

**3** Toy problem: Bump hunting

**4** BAE for exoplanet RV observations

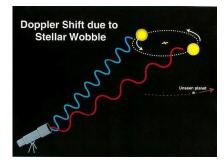
**6** Jetsam

### Finding Exoplanets via Stellar Reflex Motion

All bodies in a planetary system orbit wrt the system's center of mass, *including the host star*.

Astrometric Method Sun's Astrometric Wobble from 10 pc 1000 2020 4 1995 500 ingular Displacement (warcsec) 2010 1990 2015 2005 2000 -500 -1000 -1000 500 1000 r Displacement (warcse

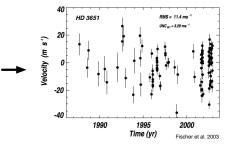
Doppler Radial Velocity (RV) Method Doppler Shift Along Line-of-Sight



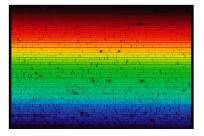
 $\approx$  490 of  $\approx$  530 currently confirmed exoplanets found using RV method RV method is used to confirm & measure transiting exoplanet candidates

### **RV** Data Via Precision Spectroscopy

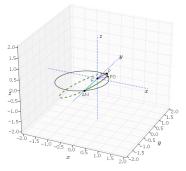
#### Millipixel spectroscopy

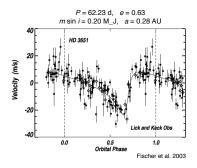


Meter-per-second velocities



# Keplerian Radial Velocity Model





#### Parameters for single planet

- $\tau =$ orbital period (days)
- *e* = orbital eccentricity
- *K* = velocity amplitude (m/s)

- Argument of pericenter  $\omega$
- Mean anomaly at t = 0,  $M_0$
- Systemic velocity v<sub>0</sub>

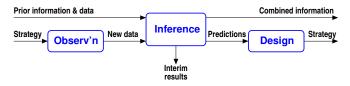
Requires solving Kepler's equation for every  $(\tau, e, M_0)$ —A strongly nonlinear model!

### A Variety of Related Statistical Tasks

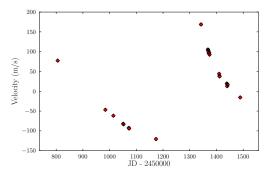
- *Planet detection* Is there a planet present? Are multiple planets present?
- Orbit estimation What are the orbital parameters? Are planets in multiple systems interacting?
- Orbit prediction What planets will be best positioned for follow-up observations?
- *Population analysis* What types of stars harbor planets? With what frequency? What is the distribution of planetary system properties?
- Optimal scheduling How may astronomers best use limited, expensive observing resources to address these goals?

Bayesian approach tightly integrates these tasks

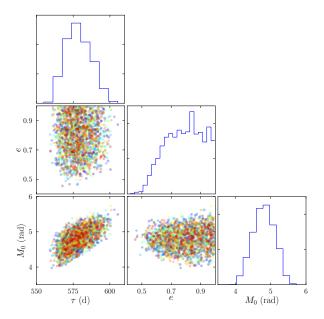
### BAE for HD 222582: Cycle 1



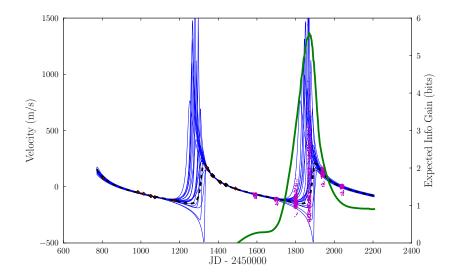
HD 222582: G5V at 42 pc in Aquarius, V = 7.7 Vogt<sup>+</sup> (2000) reported planet discovery based on 24 RV measurements



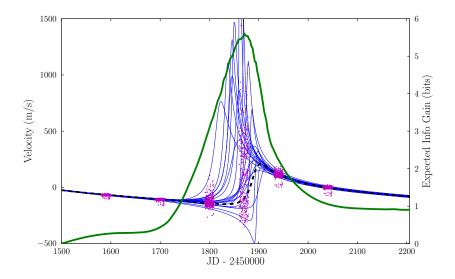
# **Cycle 1 Interim inferences**



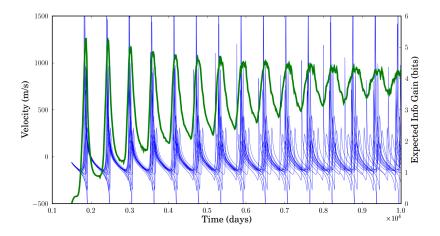
### Cycle 1 Design



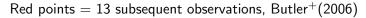
#### The next period

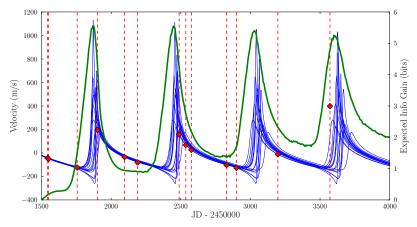


#### The distant future



### **New Data**

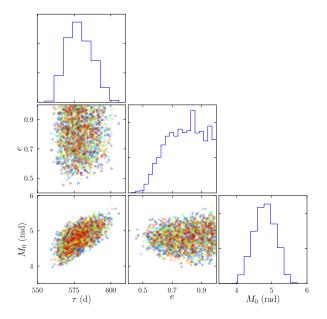




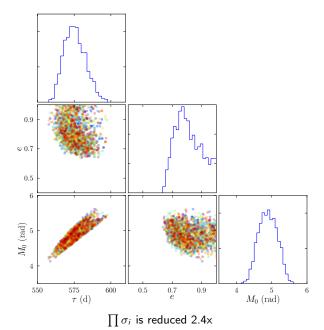
• Use 37-point best fit to simulate three new optimal observations

Compare 24 + 3 & all-data inferences

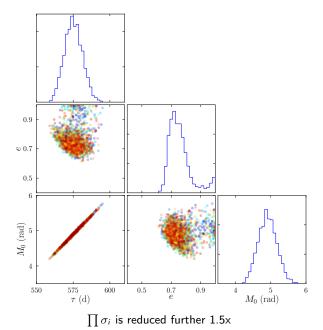
### Cycle 1 Interim inferences (24 pts)



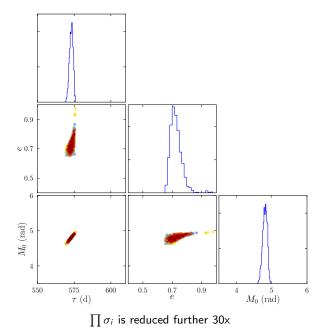
## Cycle 2 Interim inferences (25 pts)



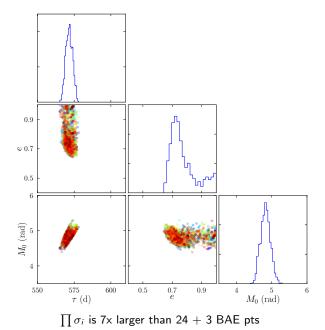
## Cycle 3 Interim inferences (26 pts)



## Cycle 4 Interim inferences (27 pts)



### All-data inferences (37 pts)



# Outlook

- Explore more cases, e.g., multiple planets, marginal detections
- Explore other adaptive MCMC algorithms
- Extend to include planet *detection*:
  - Total entropy criterion smoothly moves between detection & estimation
  - MaxEnt sampling no longer valid
  - Marginal likelihood computation needed
  - Non-greedy designs likely needed

### Thanks to my collaborators!

Cornell Astronomy David Chernoff

Duke Statistical Sciences Merlise Clyde, Jim Berger, Bin Liu, Jim Crooks

## Agenda

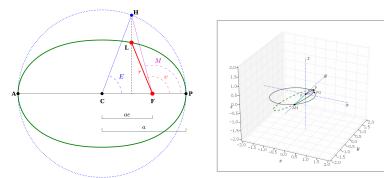
- **1** Decision theory & experimental design
- **2** BAE: Information-maximizing seq'l design
- **3** Toy problem: Bump hunting
- **④** BAE for exoplanet RV observations

### **6** Jetsam

### **Jetsam**

**jetsam**: material that has been thrown overboard from a ship, esp. material discarded to lighten the vessel

### Parameters for an Orbit — Single Planet



Size & shape: semimajor axis *a*, eccentricity *e* Orientation: 3 Euler angles, *i*,  $\omega$ ,  $\Omega$ Time evolution: period  $\tau$ , origin  $M_0$ Center-of-mass position & velocity

RV parameters: semi-amplitude  $K(a, e, \tau)$ ,  $\tau$ , e,  $M_0$ ,  $\omega$ , COM velocity  $v_0$ 

Ultimate goal: multiple planets, astrometry  $\rightarrow$  dozens of parameters!

## Keplerian Radial Velocity Model

### Parameters for single planet

- $\tau =$ orbital period (days)
- *e* = orbital eccentricity
- *K* = velocity amplitude (m/s)

Argument of pericenter ω
Mean anomaly at t = 0, M<sub>0</sub>

• Systemic velocity v<sub>0</sub>

1 10

Keplerian reflex velocity vs. time

$$v(t) = v_0 + K (e \cos \omega + \cos[\omega + v(t)])$$

True anomaly v(t) found via Kepler's equation for eccentric anomaly:

$$E(t) - e \sin E(t) = \frac{2\pi t}{\tau} - M_0;$$
  $\tan \frac{v}{2} = \left(\frac{1+e}{1-e}\right)^{1/2} \tan \frac{E}{2}$ 

A strongly nonlinear model!

### **The Likelihood Function**

Keplerian velocity model with parameters  $\theta = \{K, \tau, e, M_0, \omega, v_0\}$ :

$$d_i = v(t_i; \theta) + \epsilon_i$$

For measurement errors with std dev'n  $\sigma_i$ , and additional "jitter" with std dev'n  $\sigma_J$ ,

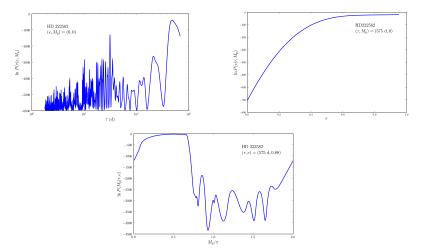
$$\begin{split} \mathcal{L}(\theta,\sigma_J) &\equiv p(\{d_i\}|\theta,\sigma_J) \\ &= \prod_{i=1}^{N} \frac{1}{2\pi\sqrt{\sigma_i^2 + \sigma_J^2}} \exp\left[-\frac{1}{2} \frac{[d_i - v(t_i;\theta)]^2}{\sigma_i^2 + \sigma_J^2}\right] \\ &\propto \left[\prod_i \frac{1}{2\pi\sqrt{\sigma_i^2 + \sigma_J^2}}\right] \exp\left[-\frac{1}{2}\chi^2(\theta)\right] \\ &\text{where} \quad \chi^2(\theta,\sigma_J) \equiv \sum_i \frac{[d_i - v(t_i;\theta)]^2}{\sigma_i^2 + \sigma_J^2} \end{split}$$

Ignore jitter for now . . .

## **Know Thine Enemy: Likelihood Slices**

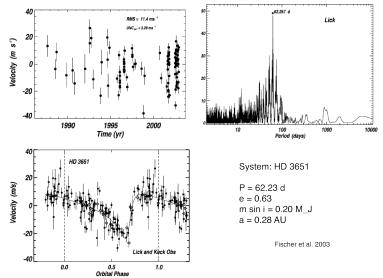
$$d_i = v(t_i; \theta) + \epsilon_i \quad \Rightarrow \quad \mathcal{L}(\theta) \propto \exp\left[-\frac{1}{2}\chi^2(\theta)
ight] \quad (\text{include jitter})$$

Bayesian calculations must *integrate over*  $\theta$ .



### **Conventional RV Orbit Fitting**

Analysis method: Identify best candidate period via periodogram; fit parameters with nonlinear least squares/min  $\chi^2$ 



# **Challenges for Conventional Approaches**

- $\bullet\,$  Multimodality, nonlinearity, nonregularity, sparse data  $\to\,$  Asymptotic uncertainties not valid
- Reporting uncertainties in derived parameters (*m* sin *i*, *a*) and predictions
- Lomb-Scargle periodogram not optimal for eccentric orbits or multiple planets
- Accounting for marginal detections
- Combining info from many systems for pop'n studies
- Scheduling future observations

### **Computational Tasks**

Posterior sampling

Draw  $\{\theta_i\}$  from

$$p(\theta|D, M_p) = \frac{\pi(\theta|M_p)\mathcal{L}(\theta)}{Z} \equiv \frac{q(\theta)}{Z}$$

An "oracle" is available for  $q(\theta)$ ; Z is not initially known. Use samples to approximate  $\int d\theta \ p(\theta|D, M_p) f(\theta)$ .

Model (marginal) likelihood computation

$$\mathcal{L}(M_p) \equiv p(D|M_p) = Z = \int d\theta \ q(\theta)$$

Information functional computation

$$\mathcal{I}[H_j] = \sum_j p(H_j) \log p(H_i)$$
 (over  $\theta$  or  $M_p$ )

## **Two New Directions**

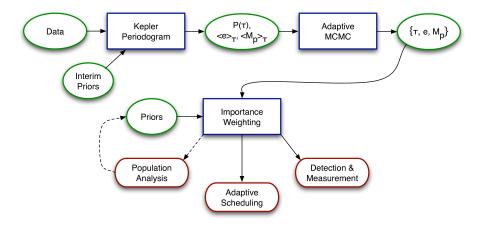
#### Bayesian periodograms + population-based MCMC

- Use periodograms to:
  - Reduce dimensionality (requires *interim priors*)
  - Create an initial population of candidate orbits
- Evolve the candidate population using interactive chains

### Annealing adaptive importance sampling (SAIS)

- Abandon MCMC!
- Use sequential Monte Carlo to build importance sampler from  $q(\theta)$
- Gives posterior samples and marginal likelihood
- Blind start (currently . . . )

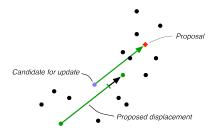
### **Periodogram-Based Bayesian Pipeline**



# **Differential Evolution MCMC**

Ter Braak 2006 — Combine evolutionary computing & MCMC

Follow a population of states, where a randomly selected state is considered for updating via the (scaled) vector difference between two other states.



Behaves roughly like RWM, but with a proposal distribution that automatically adjusts to shape & scale of posterior

Step scale: Optimal  $\gamma\approx 2.38/\sqrt{2d},$  but occassionally switch to  $\gamma=1$  for mode-swapping

## **Differential Evolution for Exoplanets**

Use Kepler & harmonic periodogram results to define initial population for DEMC.

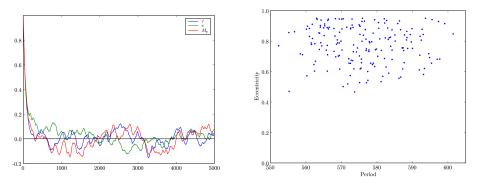
Augment final  $\{\tau, e, M_0\}$  with associated  $\{K, \omega, v_0\}$  samples from their exact conditional MVN distribution.

Advantages:

- Only 2 tuning parameters (# of parallel chains; mode swapping)
- Good initial sample ightarrow fast "burn-in"
- Updates all parameters at once
- Candidate distribution adapts its shape and size
- All of the parallel chains are usable
- Simple!

### Results for HD 222582

24 Keck RV observations spanning 683 days; long period; hi e



Reaches convergence dramatically faster than PT or RWM

Conspiracy of three factors: Reduced dimensionality, adaptive proposals, good starting population (from K-gram)

#### **Expected Information via Nested Monte Carlo** Assume we have posterior samples $\theta_i \sim p(\theta|D, M)$

*Evaluating* predictive dist'n:

$$p(d_e|D, M) = \int d\theta \ p(\theta|D, M) \ p(d_e|\theta, M)$$
  
 $\rightarrow \hat{p}(d_e) = \frac{1}{N_{\theta}} \sum_{i=1}^{N_{\theta}} p(d_e|\theta_i, M)$ 

Sampling predictive dist'n:

$$egin{aligned} & heta_i \sim p( heta|D,M) \ & d_{e,j} \sim p(d_e| heta,M) \end{aligned}$$

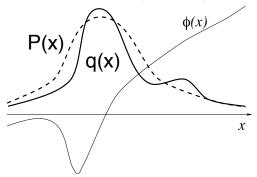
*Entropy* of predictive dist'n:

$$\begin{split} \mathcal{S}[d_e|D,M] &= -\int dd_e \ p(d_e|D,M_1)\log p(d_e|D,M) \\ &\approx -\frac{1}{N_d}\sum_{j=1}^{N_d}\log \hat{p}(d_{e,j}) \end{split}$$

### Importance sampling

$$\int d\theta \ \phi(\theta) q(\theta) = \int d\theta \ \phi(\theta) \frac{q(\theta)}{P(\theta)} P(\theta) \approx \frac{1}{N} \sum_{\theta_i \sim P(\theta)} \phi(\theta_i) \frac{q(\theta_i)}{P(\theta_i)}$$

Choose Q to make variance small. (Not easy!)



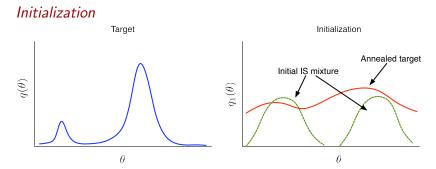
Can be useful for both model comparison (marginal likelihood calculation), and parameter estimation.

### **Building a Good Importance Sampler**

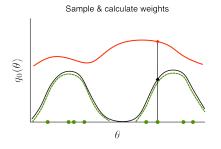
Estimate an annealing target density,  $\pi_n$ , using a mixture of multivariate Student-*t* distributions,  $q_n$ :

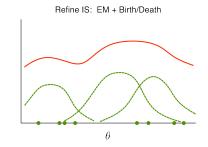
$$q_n(\theta) = [q_0(\theta)]^{1-\lambda_n} \times [q(\theta)]^{\lambda_n}, \qquad \lambda_n = 0 \dots 1$$
  
$$P_n(\theta) = \sum_j \mathsf{MVT}(\theta; \mu_j^n, S_j^n, \nu)$$

Adapt the mixture to the target using ideas from sequential Monte Carlo.

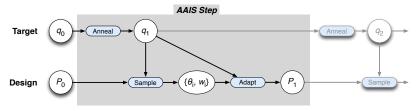


#### Sample, weight, refine

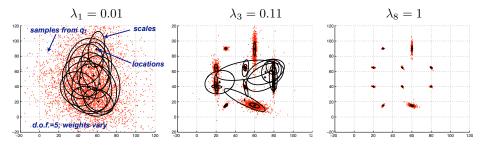




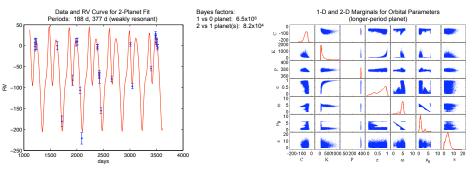
#### Overall algorithm



#### 2-D Example: Many well-separated correlated normals



#### Observed Data: HD 73526 (2 planets)



Sampling efficiency of final mixture ESS/ $N \approx 65\%$ 

### **Design for Model Comparison**

For comparing  $M_1$  to  $M_0$  (e.g., signal detection) again consider information as utility, but information in *model* posterior,  $p(M_i|d_e, D, I)$ .

The predictive is now a *finite mixture*:

$$p(d_e|D, I) = p(M_0|D, I)p(d_e|D, M_0) + p(M_1|D, I)p(d_e|D, M_1)$$

The conditional predictive is also a mixture (for parametric models):

$$p(d_e|D, M_i) = \int d\theta_i \ p(\theta_i|D, M_i) \ p(d_e|\theta_i, M_i)$$

Parameter uncertainty  $\rightarrow$  this typically depends on *e* 

# **Three Complications**

- Marginal likelihoods appear:  $p(M_k|D, I)$ 
  - $\rightarrow$  Need ML algorithm
- No MaxEnt sampling: The conditional predictive is p(d<sub>e</sub>|D, M<sub>k</sub>); its entropy does depend on M<sub>k</sub>.
   → Utility is computationally expensive
- *Non-greedy design*: Greedy algorithms typically behave poorly for model discrimination (Bayes factors may not change much with just a single new sample).
  - $\rightarrow$  Design space is higher dimensional
- $\Rightarrow$  There is limited work in this direction.

### **Total Entropy Criterion**

Can we automate switching between detection & estimation in a principled way?

Look at information in joint posterior for  $(M_k, \theta_k)$ :

$$p(M_k, \theta_k | D) = p(M_k | D) p(\theta_k | D, M_k) \equiv p_k q_k(\theta_k)$$

Calculate information:

$$\mathcal{I}[M_k, \theta_k | D] = \sum_k \int d\theta_k p_k q_k(\theta_k) \log[p_k q_k(\theta_k)]$$

$$= \sum_k p_k \log p_k + \sum_k p_k \int d\theta_k q_k(\theta_k) \log q_k(\theta_k)$$

Balances entropy changes in the model posterior and the parameter posteriors (Borth 1975).