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Statement of the problem
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-:e Space Models

A system of equations

@ Hidden states (Markov): p(x1]0) = pg(x1) and for t > 1

p(Xt—i-l’Xl:t: 9) = P(Xt+1\Xt, 9) = fe(Xt+1\Xt)
@ Observations:
P(}/t|Y1:t—1;X1:t—17 9) = P(}/t|Xt, 9) = ge(}/t|Xt)

o Parameter: 6 € ©, prior p(6).

v

We observe y1.7 = (y1,...y7), T might be large (=~ 10*). x and 6
also of several dimensions. Many models where fy or gy cannot be
written in closed form
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.tate Space Models
Some interesting distributions

Bayesian inference focuses on:

static: p(0|y1.7) dynamic: p(f|y1.t),t€1: T
Filtering (traditionally) focuses on:

Vte[L, T] po(xelyrt)

Smoothing (traditionally) focuses on:

Vte [1,T] po(xelyr.T)

Prediction:

Sl | i) = / o0yt | Xer1) o0t | Xe)

X PG(Xt | )/1:t)P(9 ’ Y1:t)dXtd9
v




Stochastic Volatility (Lévy-driven models)

@ Observations ( “log returns”):

Y =M+5Vt+vt1/2€t,f >1
@ Hidden states (“actual volatility” - integrated process):

k

1
Vil = X(Zt — Zry1 + Z &)
=1




... where the process z; is the “spot volatility”:

K
Zey1 = € 2z + Z e_)‘(”'l_cf)ej
j=1
k ~Poi (\e2/u?)  ck Ut t+1) e © Bxp (£/0)
The parameter is 0 € (i, 8,&, w2, \), and x; = (v, z;)".

» See the results
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-hose models challenging?

... It is effectively impossible to compute the likelihood

plnrlt) = | [ plonrbor. 0)ptorio)ob

Similarly, all other inferential quantities are impossible to compute.



-Iems with MCMC and IS approaches

@ We cannot compute the likelihood or sample from p(é|y1.7)
directly

o Importance Sampling (IS) results in polynomial or exponential
in t increase of variance; e.g. Section 4 in Kong, Liu, Wong
(1994, JASA); Bengtsson, T., Bickel, P., and Li, B. (2008);
Theorem 4 of Chopin (2004; AoS)
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@ An MCMC approach would be to sample the parameters and
states jointly. But:

@ The high-dimensional autocorrelated state process is difficult
to simulate efficiently conditionally on the observations

o High dependence between parameters and state variables
cause poor performance of Gibbs sampler

@ Furthermore, MCMC methods are not designed to recover the
whole sequence 7(x1.¢,0 | y1.t) computationally efficiently,
instead they sample from the “static” distribution
m(x.7,0 | y1.7)
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Monte Carlo in Bayesian statistics: the new generation

This problem is an instance of situation frequently encountered in
modern applications: statistical inference with intractable densities,
which however can be estimated using Monte Carlo.

This is harder version of the main problem in Bayesian statistics
(intractable integrals) which traditionally has been addressed by
data augmentation, simulated likelihood, EM, etc.

A new generation of methods has emerged, a common feature of
which is the interplay between and auxiliary
variables with aim at constructing exact MC
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Some characteristic references in that respect include:

e ABC methods, e.g Pritchard et. al (1999), Molec. Biol. Evol

@ MCMC for models with intractable normalizing constants, e.g
Mgller et. al (2006), Biometrika

@ Pseudo-marginal MCMC, Andrieu and Roberts (2009), Ann.
Stat.

e Random weight particle filters, e.g Fearnhead et. al (2010), J.
Roy. Stat. Soc. B

o Particle MCMC methods, e.g Andrieu, Doucet and Holenstein
(2010), J. Roy. Stat. Soc. B

Our approach fits in this framework, allowing fully Bayesian
sequential inference (whereas aforementioned approaches deal with
“static’” MCMC or inference for dynamic models with fixed
parameters)
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_ of our approach

o Particle filter algorithms for state-space models

o lterated Batch Importance Sampling for sequential Bayesian
inference for parameters

Both are sequential Monte Carlo (SMC) methods



1. Particle filters

Consider the simplified problem of targeting

Po(Xe+1ly1:t+1)

for a given value of 6.

This sequence of distributions is approximated by a sequence of
weighted particles which are properly weighted using importance
sampling, mutated/propagated according to the system dynamics,
and resampled to control the variance.

Below we give a pseudo-code version. Any operation involving the
superscript n must be understood as performed for n =1 : N,,
where N, is the total number of particles.
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Step 1: At iteration t =1,

(a) Sample xi" ~ q10(-).
(b) Compute and normalise weights

1o(x7)go(y1]x7) Wy, — w1 0(x7)
) 1 - T .
qre(x{") TN wie(x)

wig(x7) =

Step 2: At iteration t =2: T
(a) Sample the index af_; ~ M(th_:’}’fa) of the ancestor

an
(b) Sample xi" ~ qeo(-1x. 7).
(c) Compute and normalise weights

n

A1 n
X X wr g(x X
Wt,G(X:EEl,Xg) _ ( | )ge(yt’ t )’ the _ t,()( t—1 Xt )

qro(xf |X 1) 7 le'vle Wt,H( Xe_1 'xt)
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Observations

o At each t, (W ,xl t) =, is a particle approximation of
pG(Xt|y1:t)-
@ Resampling to avoid degeneracy.

@ In principle (wt( ),xl( Z)le is also a particle approximation of

po(x1.t|y1:¢) (bad notation! careful with genealogy)

@ Resampling makes this a very poor approximation for large t,
known as the path degeneracy problem

e Taking gy = fy simplifies weights, but mainly yields a feasible
algorithm when fy can only be simulated

o Notation: 1) ¢ the distribution that all variables are drawn
from upto time t (particles and ancestors)
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I Unbiased likelihood estimator

A by-product of PF output is that
T (1N
211 (4,354
t=1 \ 7 i=1
is an unbiased estimator of the likelihood Z; = p(y1.+|0) for all t.

Whereas consistency of the estimator is immediate to check,
unbiasedness is subtle, see e.g Proposition 7.4.1 in Del Moral. The
variance of this estimator grows typically linealy with T (and not
exponentially) because of dependence of the factors in the
product.
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2. IBIS

SMC method for particle approximation of the sequence p(€ | yi.t)
for t =1: T, for models where likelihood is tractable; see e.g.
Chopin (2002, Bmka) for details

Again, the sequence of parameter posterior distribution is
approximated by Ny weighted particles,

m , m\N,
(0 7w )m9:1

By product: consistent estimators of the predictive densities

L= [ plilyrca.0)p(0)ds
hence of the model evidence

In the next slide we give the pseudo-code of the IBIS algorithm.
Operations with superscript m must be understood as operations
performed for all me 1: Ny
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Sample 0™ from p(6) and set w™ < 1. Then, attime t=1,..., T

(a) Compute the incremental weights and their weighted
average

Nog
A 1
ut(em) = P(Yt‘)/l:t—l,gm), Lt - Tm X Z O.)mut(em)7
Zm:lw m=1

(b) Update the importance weights,
W wmu(0™). (1)

(c) If some degeneracy criterion is fulfilled, sample 6™
independently from the mixture distribution

Finally, replace the current weighted particle system:
(0™, w™) (HN’", 1).
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l)bservations

o Cost of lack of ergodicity in #: the occasional MCMC move

o Still, in regular problems resampling happens at diminishing
frequency (logarithmically)

@ K is an MCMC kernel invariant wrt 7(6 | y1.¢). Its
parameters can be chosen using information from current
population of #-particles

° Zt can be used to obtain an estimator of the model evidence

@ Infeasible to implement for state-space models: intractable
incremental weights, and MCMC kernel
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lOur algorithm: SM(?

We provide a generic (black box) algorithm for recovering the
sequence of parameter posterior distributions, but as well filtering,
smoothing and predictive.

We give next a pseudo-code; the code seems to only track the
parameter posteriors, but actually it does all other jobs.
Superficially, it looks an approximation of IBIS, but in fact it does
not produce any systematic errors (unbiased MC)
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Sample ™ from p(f) and set w™ <— 1. Then, at time
t=1,....T
(a) For each particle ™, perform iteration t of the PF: If

t = 1, sample independently x1 Nem grom 1,6m, and
compute

P(y1|07) = Z wig(x);
If t > 1, sample (thsz, a I\:Il ) from 1y gm

1:

t
o LNe,m _1:Ny,

conditional on (Xl fo1 1 31pn ) and compute

f’()/t|}’1:t—1,9m)— ZWté) t 17 X",
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(b) Update the importance weights,
W™ = W"p(yelyr:e-1,0™)

(c) If some degeneracy criterion is fulfilled, sample

(5"’,)"(}5?’*"", 5%;?’_Xl> independently from

1 1N .
m m Nye,m _1:Ny,m
No Z WKt {(9 X 91 ) ,'}

Finally, replace current weighted particle system:
m _L:Ny,m _1:Ny,m m am ~1:Nyym ~1:Nym
(0™, > " Ay s w™) = (07, X, Ay 5 1)

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS smc? 22/ 48



Observations

@ It appears as approximation to IBIS. For N, = oo it is IBIS.

@ However, no approximation is done whatsoever. This
algorithm really samples from p(6|yi1.:) and all other
distributions of interest. One would expect an increase of MC
variance over IBIS.

@ The validity of algorithm is essentially based on two results: i)
the particles are properly weighted due to unbiasedness of
PF estimator of likelihood; ii) the MCMC kernel is
appropriately constructed to maintain invariance wrt to an
expanded distribution which admits those of interest as
marginals; it is a Particle MCMC kernel.

@ The algorithm does not suffer from the path degeneracy
problem due to the MCMC updates
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The probability density w may be written as:

TN, _1:Ny
(0, x5 a1 1) = P(Oly:e)

1 & l”(1t|‘9 Yi:t) i i
<3 Pl LT g
X =1 =1
i#hg(1)
t Ny .
a | ds_
X H H s— 1,10(7579(XSI|X5711
5:2 l:

h(s)
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lPrincipIed framework for algorithmic improvements

Elaborating on Proposition 1 we propose several formal ways for
the following algorithmic operations:

@ MCMOC rejuvenation step within the PMCMC
@ Sampling from the smoothing distributions

@ Automatic calibration of N,

@ Dealing with intractable gy

@ SMC? can be used for more general sequences of distributions,
e.g. obtained by tempering
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-/IC rejuvenation step

(a) Sample & from proposal kernel, 6 ~ T (6, df).

(b) Run a new PF for §: sample independently
i 3l ) from %, 5, and compute
LN, 21N,
Z,(0,% X1t 0911

(c) Accept the move with probability

p(0)Z:(8, 5N, 3N YT (6, 6)

1A~ :
p(0)Ze(0. xif™ ax'1) T(6.0)




It directly follows from the Proposition that this algorithm defines
a standard Hastings-Metropolis kernel with proposal distribution

o ~1:Ny ~1:Nygy 0 ~1:Ny, ~1:N,
qg(e’ %:t )91t )_ T(979)¢t,9~(xl:t )91t )

and admits as invariant distribution the extended distribution

1:N, 1:N.
(0, X a1e)-

This is precisely a particle MCMC step, as in Andrieu et al. (2010,
JRSSB).
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.)ynamic increase of N,

Why increasing N, is necessary?

Our framework allows the dynamic and automatic increase of N,
using the generalized importance sampling strategy of Del Moral et
al. (2006).

We propose two approaches; a particle exchange and a conditional
SMC, the latter being more efficient (in terms of minimizing

variance of weights) but memory intensive

They get triggered when a degeneracy criterion is fulfilled

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS smc? 29/ 48



-icle exchange

Exchange importance sampling step

Launch a new SMC for each f-particle, with N x-particles. Joint
distribution:

1:N :N, ~1:Ny ~1:V
me(0, X1 ai:t—xl)d}fﬂ( 1t 1)

Retain the new x-particles and drop the old ones, updating the
f-weights with:

=

X

5 ~1:NX ~1:NX
exch 0 1:Ny _1:Ne <1:Ny _Zt(a?xlzt 7al:t—1)
U ) X 1:t 1) 7 5 g xLNx JLN
e(0, x5 a1 1)

~1:
1Tt 09110 X1 591

~
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Numerics

Extensive study of numerical performance and comparisons, both
in the paper and its Supplement, both available at ArXiv.
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Figure: Squared observations (synthetic data set), acceptance rates, and
illustration of the automatic increase of N,.
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Stability of the algorithm and computational complexity

The , but at the expense of
re-visiting all available data so far. The computational complexity
of the algorithm is determined by the frequency at which needs to
resort to this step.

If after each resampling the particles are simulated from 7, then
for a time t + p such that no resampling has happened since t, the
inverse of the second moment of the normalized weights in SMC?
and IBIS is given by

5 TN, 1N -1
Zeiple(0, XLit4ps a1:tip—1)2
P(}/t+1:t+P’y1:t)2

-1
. p(ﬁ’)/l:t-I- )2
Et,t+P = {Ep(9|y1:t) |:P(9|}/1t§2

N, _
‘St,tﬁrp - {Eﬁ't,Hp
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@ Under Assumptions (H1a) and (H1b) in there exists
a constant 1 > 0 such that for any p, if Ny > np,

1
N
gt,t+p 2 ng,?fw' (2)

@ Under Assumptions (H2a)-(H2d) in for any v > 0
there exist T,n > 0 and tyg < oo, such that for t > ty,

gt{\,li).f—i-p >, fOI’p = |_Tt]7 N, = |_77t-| 0

This suggests that the computational cost of the algorithm up to
time t is O(Npt?) which should be contrasted with the O(Njyt)
cost of IBIS under the Assumptions (H2a)-(H2d).
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A powerful framework

@ The article is available on arXiv and our web pages

@ A package is available:
http://code.google.com/p/py-smc2/.

o Parallel computing implementation using GPUs by Fulop and
Li (2011)
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-Ienges for short-term future

@ Theoretical: justify the

@ Numerical: combined with GPU implementation, try the
algorithm on extremely hard problems

@ Algorithmic: find a better diagnostic for increase Ny



_Nork? - Intuition for t =1

At time t = 1, the algorithm generates variables 6™ from the prior
p(#), and for each 8™, the algorithm generates vectors x%:NX’m of
particles, from 1y gm (™).



Thus, the sampling space is © x XNx and the actual “particles’ of

the algorithm are Ny independent and identically distributed copies

of the random variable (9,x11:NX), with density:

Nix
p(0) 1,006 ™) = p(0) [ [ qr.0(x0)-
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Then, these particles are assigned importance weights
corresponding to the incremental weight function

5 LNy =1 N

Z1(0,x) = N300 wa ().

This means that, at iteration 1, the target distribution of the
algorithm should be defined as:

Z(0,4™)

WI(G’X%:NX) = p(e)wlﬁ(xj:ll:,vx) X P(}/1)

where the normalising constant p(y1) is easily deduced from the
property that Z; (6, x;"™*) is an unbiased estimator of p(y1|6).
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Direct substitutions yield

ANy L o (x7')go(y1lx7)
AT = g L e { Z a100) }
Ny
) Zl

and noting that, for the triplet (€, x1, y1) of random variables,

x1)8o(y1|x) H qlﬂ(X{)
i=1l,i#n

p(8)pa(x1)go(y1lx1) = p(0, x1,¥1) = p(y1)p(0ly1)p(xi|y1,0)

one finally gets that:

N N

: p¢9y1 n i

m(.4") = PO ot ) TT awsled)
X p=1 i=1,i#n
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By a simple induction, one sees that the target density 7; at
iteration t > 2 should be defined as:

Ze(0, 510" 1)

P(Y1:t)

ﬂ-f(e? X%::ZVX7 aiiv—xl) = p(0)¢t79(xi::zvx7 ai;t—l) X

and similarly we obtain Proposition 1
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(Hla) Forall # € ©, and x,x’,x" € X,

fo(xlx)
o) =7

(Hib) Forall0 € ©, x,x' € X, y € ),

go(y|x)
go(y|x')

<é.
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(H2a) The MLE @ (the mode of function /;(6)) exists and converges
to Og as n — +oo.

(H2b) The observed information matrix defined as

A

_10k(6y)
£ 0000

is positive definite and converges to /(6p), the Fisher
information matrix.

(H2c) There exists A such that, for § € (0,A),

lim sup
t——+o0

1 A
S sup {/t(e) . /t(et)} <0.
Eljo—de]|>5

(H2d) The function I/t is six-times continuously differentiable, and
its derivatives of order six are bounded relative to t over any
compact set ©' C ©.
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