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Statement of the problem
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State Space Models

A system of equations

Hidden states (Markov): p(x1|θ) = µθ(x1) and for t ≥ 1

p(xt+1|x1:t , θ) = p(xt+1|xt , θ) = fθ(xt+1|xt)

Observations:

p(yt |y1:t−1, x1:t−1, θ) = p(yt |xt , θ) = gθ(yt |xt)

Parameter: θ ∈ Θ, prior p(θ).

We observe y1:T = (y1, . . . yT ), T might be large (≈ 104). x and θ
also of several dimensions. Many models where fθ or gθ cannot be
written in closed form
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State Space Models

Some interesting distributions

Bayesian inference focuses on:

static: p(θ|y1:T ) dynamic: p(θ|y1:t) , t ∈ 1 : T

Filtering (traditionally) focuses on:

∀t ∈ [1,T ] pθ(xt |y1:t)

Smoothing (traditionally) focuses on:

∀t ∈ [1,T ] pθ(xt |y1:T )

Prediction:

p(yt+1 | y1:t) =

∫
gθ(yt+1 | xt+1)fθ(xt+1 | xt)

× pθ(xt | y1:t)p(θ | y1:t)dxtdθ
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An example

Stochastic Volatility (Lévy-driven models)

Observations (“log returns”):

yt = µ+ βvt + v
1/2
t εt , t ≥ 1

Hidden states (“actual volatility” - integrated process):

vt+1 =
1

λ
(zt − zt+1 +

k∑
j=1

ej)
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An example

. . . where the process zt is the “spot volatility”:

zt+1 = e−λzt +
k∑

j=1

e−λ(t+1−cj )ej

k ∼ Poi
(
λξ2/ω2

)
c1:k

iid∼ U(t, t + 1) ei :k
iid∼ Exp

(
ξ/ω2

)
The parameter is θ ∈ (µ, β, ξ, ω2, λ), and xt = (vt , zt)

′.

See the results
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Why are those models challenging?

. . . It is effectively impossible to compute the likelihood

p(y1:T |θ) =

[∫
XT

p(y1:T |x1:T , θ)p(x1:T |θ)dx1:T

]

Similarly, all other inferential quantities are impossible to compute.
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Problems with MCMC and IS approaches

We cannot compute the likelihood or sample from p(θ|y1:T )
directly

Importance Sampling (IS) results in polynomial or exponential
in t increase of variance; e.g. Section 4 in Kong, Liu, Wong
(1994, JASA); Bengtsson, T., Bickel, P., and Li, B. (2008);
Theorem 4 of Chopin (2004; AoS)
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An MCMC approach would be to sample the parameters and
states jointly. But:

The high-dimensional autocorrelated state process is difficult
to simulate efficiently conditionally on the observations

High dependence between parameters and state variables
cause poor performance of Gibbs sampler

Furthermore, MCMC methods are not designed to recover the
whole sequence π(x1:t , θ | y1:t) computationally efficiently,
instead they sample from the “static” distribution
π(x1:T , θ | y1:T )

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 9/ 48



Methodology Pt I

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 10/ 48



Monte Carlo in Bayesian statistics: the new generation

This problem is an instance of situation frequently encountered in
modern applications: statistical inference with intractable densities,
which however can be estimated using Monte Carlo.

This is harder version of the main problem in Bayesian statistics
(intractable integrals) which traditionally has been addressed by
data augmentation, simulated likelihood, EM, etc.

A new generation of methods has emerged, a common feature of
which is the interplay between unbiased estimation and auxiliary
variables with aim at constructing exact MC
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Some characteristic references in that respect include:

ABC methods, e.g Pritchard et. al (1999), Molec. Biol. Evol

MCMC for models with intractable normalizing constants, e.g
Møller et. al (2006), Biometrika

Pseudo-marginal MCMC, Andrieu and Roberts (2009), Ann.
Stat.

Random weight particle filters, e.g Fearnhead et. al (2010), J.
Roy. Stat. Soc. B

Particle MCMC methods, e.g Andrieu, Doucet and Holenstein
(2010), J. Roy. Stat. Soc. B

Our approach fits in this framework, allowing fully Bayesian
sequential inference (whereas aforementioned approaches deal with
“static” MCMC or inference for dynamic models with fixed
parameters)
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Main tools of our approach

Particle filter algorithms for state-space models

Iterated Batch Importance Sampling for sequential Bayesian
inference for parameters

Both are sequential Monte Carlo (SMC) methods
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1. Particle filters

Consider the simplified problem of targeting

pθ(xt+1|y1:t+1)

for a given value of θ.

This sequence of distributions is approximated by a sequence of
weighted particles which are properly weighted using importance
sampling, mutated/propagated according to the system dynamics,
and resampled to control the variance.

Below we give a pseudo-code version. Any operation involving the
superscript n must be understood as performed for n = 1 : Nx ,
where Nx is the total number of particles.
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Step 1: At iteration t = 1,

(a) Sample xn1 ∼ q1,θ(·).

(b) Compute and normalise weights

w1,θ(xn1 ) =
µθ(xn1 )gθ(y1|xn1 )

q1,θ(xn1 )
, W n

1,θ =
w1,θ(xn1 )∑N
i=1 w1,θ(x i1)

.

Step 2: At iteration t = 2 : T

(a) Sample the index ant−1 ∼M(W 1:Nx
t−1,θ) of the ancestor

(b) Sample xnt ∼ qt,θ(·|xa
n
t−1

t−1 ).

(c) Compute and normalise weights

wt,θ(x
ant−1

t−1 , x
n
t ) =

fθ(xnt |x
ant−1

t−1 )gθ(yt |xnt )

qt,θ(xnt |x
ant−1

t−1 )
, W n

t,θ =
wt,θ(x

ant−1

t−1 , x
n
t )∑Nx

i=1 wt,θ(x
ait−1

t−1 , x
i
t)
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Observations

At each t, (w
(i)
t , x

(i)
1:t)Nx

i=1 is a particle approximation of
pθ(xt |y1:t).

Resampling to avoid degeneracy.

In principle (w
(i)
t , x

(i)
1:t)Nx

i=1 is also a particle approximation of
pθ(x1:t |y1:t) (bad notation! careful with genealogy)

Resampling makes this a very poor approximation for large t,
known as the path degeneracy problem

Taking qθ = fθ simplifies weights, but mainly yields a feasible
algorithm when fθ can only be simulated

Notation: ψt,θ the distribution that all variables are drawn
from upto time t (particles and ancestors)
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Unbiased likelihood estimator

A by-product of PF output is that

ẐN
t =

T∏
t=1

(
1

Nx

Nx∑
i=1

w
(i)
t

)

is an unbiased estimator of the likelihood Zt = p(y1:t |θ) for all t.

Whereas consistency of the estimator is immediate to check,
unbiasedness is subtle, see e.g Proposition 7.4.1 in Del Moral. The
variance of this estimator grows typically linealy with T (and not
exponentially) because of dependence of the factors in the
product.
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2. IBIS

SMC method for particle approximation of the sequence p(θ | y1:t)
for t = 1 : T , for models where likelihood is tractable; see e.g.
Chopin (2002, Bmka) for details

Again, the sequence of parameter posterior distribution is
approximated by Nθ weighted particles,

(θm, ωm)Nθm=1

By product: consistent estimators of the predictive densities

Lt =

∫
p(yt |y1:t−1, θ)p(θ)dθ

hence of the model evidence

In the next slide we give the pseudo-code of the IBIS algorithm.
Operations with superscript m must be understood as operations
performed for all m ∈ 1 : Nθ
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Sample θm from p(θ) and set ωm ← 1. Then, at time t = 1, . . . ,T

(a) Compute the incremental weights and their weighted
average

ut(θ
m) = p(yt |y1:t−1, θ

m), L̂t =
1∑Nθ

m=1 ω
m
×

Nθ∑
m=1

ωmut(θ
m),

(b) Update the importance weights,

ωm ← ωmut(θ
m). (1)

(c) If some degeneracy criterion is fulfilled, sample θ̃m

independently from the mixture distribution

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmKt (θm, ·) .

Finally, replace the current weighted particle system:

(θm, ωm)← (θ̃m, 1).

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 19/ 48



Observations

Cost of lack of ergodicity in θ: the occasional MCMC move

Still, in regular problems resampling happens at diminishing
frequency (logarithmically)

Kt is an MCMC kernel invariant wrt π(θ | y1:t). Its
parameters can be chosen using information from current
population of θ-particles

L̂t can be used to obtain an estimator of the model evidence

Infeasible to implement for state-space models: intractable
incremental weights, and MCMC kernel
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Our algorithm: SMC2

We provide a generic (black box) algorithm for recovering the
sequence of parameter posterior distributions, but as well filtering,
smoothing and predictive.

We give next a pseudo-code; the code seems to only track the
parameter posteriors, but actually it does all other jobs.
Superficially, it looks an approximation of IBIS, but in fact it does
not produce any systematic errors (unbiased MC)
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Sample θm from p(θ) and set ωm ← 1. Then, at time
t = 1, . . . ,T ,

(a) For each particle θm, perform iteration t of the PF: If

t = 1, sample independently x1:Nx ,m
1 from ψ1,θm , and

compute

p̂(y1|θm) =
1

Nx

Nx∑
n=1

w1,θ(xn,m1 );

If t > 1, sample
(
x1:Nx ,m
t , a1:Nx ,m

t−1

)
from ψt,θm

conditional on
(
x1:Nx ,m

1:t−1 , a1:Nx ,m
1:t−2

)
, and compute

p̂(yt |y1:t−1, θ
m) =

1

Nx

Nx∑
n=1

wt,θ(x
an,mt−1,m

t−1 , xn,mt ).
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(b) Update the importance weights,

ωm ← ωmp̂(yt |y1:t−1, θ
m)

(c) If some degeneracy criterion is fulfilled, sample(
θ̃m, x̃1:Nx ,m

1:t , ã1:Nx
1:t−1

)
independently from

1∑Nθ
m=1 ω

m

Nθ∑
m=1

ωmKt

{(
θm, x1:Nx ,m

1:t , a1:Nx ,m
1:t−1

)
, ·
}

Finally, replace current weighted particle system:

(θm, x1:Nx ,m
1:t , a1:Nx ,m

1:t−1 , ωm)← (θ̃m, x̃1:Nx ,m
1:t , ã1:Nx ,m

1:t−1 , 1)
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Observations

It appears as approximation to IBIS. For Nx =∞ it is IBIS.

However, no approximation is done whatsoever. This
algorithm really samples from p(θ|y1:t) and all other
distributions of interest. One would expect an increase of MC
variance over IBIS.

The validity of algorithm is essentially based on two results: i)
the particles are properly weighted due to unbiasedness of
PF estimator of likelihood; ii) the MCMC kernel is
appropriately constructed to maintain invariance wrt to an
expanded distribution which admits those of interest as
marginals; it is a Particle MCMC kernel.

The algorithm does not suffer from the path degeneracy
problem due to the MCMC updates
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Theory Pt I
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Proposition

The probability density πt may be written as:

πt(θ, x
1:Nx
1:t , a1:Nx

1:t−1) = p(θ|y1:t)

× 1

Nx

Nx∑
n=1

p(xn1:t |θ, y1:t)

Nt−1
x


Nx∏
i=1

i 6=hnt (1)

q1,θ(x i1)


×


t∏

s=2

Nx∏
i=1

i 6=hnt (s)

W
ais−1

s−1,θqs,θ(x is |x
ais−1

s−1 )


Intuition when t = 1
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Methodology Pt II
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Principled framework for algorithmic improvements

Elaborating on Proposition 1 we propose several formal ways for
the following algorithmic operations:

MCMC rejuvenation step within the PMCMC

Sampling from the smoothing distributions

Automatic calibration of Nx

Dealing with intractable gθ

SMC2 can be used for more general sequences of distributions,
e.g. obtained by tempering
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The MCMC rejuvenation step

(a) Sample θ̃ from proposal kernel, θ̃ ∼ T (θ, d θ̃).

(b) Run a new PF for θ̃: sample independently
(x̃1:Nx

1:t , ã1:Nx
1:t−1) from ψt,θ̃, and compute

Ẑt(θ̃, x̃
1:Nx
1:t , ã1:Nx

1:t−1).

(c) Accept the move with probability

1 ∧
p(θ̃)Ẑt(θ̃, x̃

1:Nx
1:t , ã1:Nx

1:t−1)T (θ̃, θ)

p(θ)Ẑt(θ, x
1:Nx
1:t , a1:Nx

1:t−1)T (θ, θ̃)
.

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 27/ 48



It directly follows from the Proposition that this algorithm defines
a standard Hastings-Metropolis kernel with proposal distribution

qθ(θ̃, x̃1:Nx
1:t , ã1:Nx

1:t ) = T (θ, θ̃)ψt,θ̃(x̃1:Nx
1:t , ã1:Nx

1:t )

and admits as invariant distribution the extended distribution
πt(θ, x

1:Nx
1:t , a1:Nx

1:t−1).

This is precisely a particle MCMC step, as in Andrieu et al. (2010,
JRSSB).

N. CHOPIN, P.E. JACOB, & O. PAPASPILIOPOULOS SMC2 28/ 48



Dynamic increase of Nx

Why increasing Nx is necessary?

Our framework allows the dynamic and automatic increase of Nx

using the generalized importance sampling strategy of Del Moral et
al. (2006).

We propose two approaches; a particle exchange and a conditional
SMC, the latter being more efficient (in terms of minimizing
variance of weights) but memory intensive

They get triggered when a degeneracy criterion is fulfilled
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Particle exchange

Exchange importance sampling step

Launch a new SMC for each θ-particle, with Ñx x-particles. Joint
distribution:

πt(θ, x
1:Nx
1:t , a1:Nx

1:t−1)ψt,θ(x̃1:Ñx
1:t , ã1:Ñx

1:t−1)

Retain the new x-particles and drop the old ones, updating the
θ-weights with:

uexcht

(
θ, x1:Nx

1:t , a1:Nx
1:t−1, x̃

1:Ñx
1:t , ã1:Ñx

1:t−1

)
=

Ẑt(θ, x̃
1:Ñx
1:t , ã1:Ñx

1:t−1)

Ẑt(θ, x
1:Nx
1:t , a1:Nx

1:t−1)
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Numerics

Extensive study of numerical performance and comparisons, both
in the paper and its Supplement, both available at ArXiv.
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Numerical illustrations: SV
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Figure: Squared observations (synthetic data set), acceptance rates, and
illustration of the automatic increase of Nx .

See the model
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Numerical illustrations: SV
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Numerical illustrations: SV
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Numerical illustrations: SV
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Theory Pt II
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Stability of the algorithm and computational complexity

The algorithm refreshes at each MCMC step, but at the expense of
re-visiting all available data so far. The computational complexity
of the algorithm is determined by the frequency at which needs to
resort to this step.

If after each resampling the particles are simulated from πt , then
for a time t + p such that no resampling has happened since t, the
inverse of the second moment of the normalized weights in SMC2

and IBIS is given by

ENx
t,t+p =

{
Eπ̄t,t+p

[
Ẑt+p|t(θ, x

1:Nx
1:t+p, a

1:Nx
1:t+p−1)2

p(yt+1:t+p|y1:t)2

]}−1

E∞t,t+p =

{
Ep(θ|y1:t)

[
p(θ|y1:t+p)2

p(θ|y1:t)2

]}−1
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Proposition

1 Under Assumptions (H1a) and (H1b) in Appendix there exists
a constant η > 0 such that for any p, if Nx > ηp,

ENx
t,t+p ≥

1

2
E∞t,t+p. (2)

2 Under Assumptions (H2a)-(H2d) in Appendix for any γ > 0
there exist τ, η > 0 and t0 <∞, such that for t ≥ t0,

ENx
t,t+p ≥ γ, for p = dτ te , Nx = dηte .

This suggests that the computational cost of the algorithm up to
time t is O(Nθt

2) which should be contrasted with the O(Nθt)
cost of IBIS under the Assumptions (H2a)-(H2d).
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Final Remarks

A powerful framework

The article is available on arXiv and our web pages

A package is available:

http://code.google.com/p/py-smc2/.

Parallel computing implementation using GPUs by Fulop and
Li (2011)
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Appendix
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Some challenges for short-term future

Theoretical: justify the orange claim

Numerical: combined with GPU implementation, try the
algorithm on extremely hard problems

Algorithmic: find a better diagnostic for increase Nx
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Why does it work? - Intuition for t = 1

At time t = 1, the algorithm generates variables θm from the prior
p(θ), and for each θm, the algorithm generates vectors x1:Nx ,m

1 of
particles, from ψ1,θm(x1:Nx

1 ).
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Thus, the sampling space is Θ×XNx , and the actual “particles” of
the algorithm are Nθ independent and identically distributed copies
of the random variable (θ, x1:Nx

1 ), with density:

p(θ)ψ1,θ(x1:Nx
1 ) = p(θ)

Nx∏
n=1

q1,θ(xn1 ).
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Then, these particles are assigned importance weights
corresponding to the incremental weight function
Ẑ1(θ, x1:Nx

1 ) = N−1
x

∑Nx
n=1 w1,θ(xn1 ).

This means that, at iteration 1, the target distribution of the
algorithm should be defined as:

π1(θ, x1:Nx
1 ) = p(θ)ψ1,θ(x1:Nx

1 )×
Ẑ1(θ, x1:Nx

1 )

p(y1)
,

where the normalising constant p(y1) is easily deduced from the
property that Ẑ1(θ, x1:Nx

1 ) is an unbiased estimator of p(y1|θ).
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Direct substitutions yield

π1(θ, x1:Nx
1 ) =

p(θ)

p(y1)

Nx∏
i=1

q1,θ(x i1)

{
1

Nx

Nx∑
n=1

µθ(xn1 )gθ(y1|xn1 )

q1,θ(xn1 )

}

=
1

Nx

Nx∑
n=1

p(θ)

p(y1)
µθ(xn1 )gθ(y1|xn1 )


Nx∏

i=1,i 6=n

q1,θ(x i1)


and noting that, for the triplet (θ, x1, y1) of random variables,

p(θ)µθ(x1)gθ(y1|x1) = p(θ, x1, y1) = p(y1)p(θ|y1)p(x1|y1, θ)

one finally gets that:

π1(θ, x1:Nx
1 ) =

p(θ|y1)

Nx

Nx∑
n=1

p(xn1 |y1, θ)


Nx∏

i=1,i 6=n

q1,θ(x i1)

 .
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By a simple induction, one sees that the target density πt at
iteration t ≥ 2 should be defined as:

πt(θ, x
1:Nx
1:t , a1:Nx

1:t−1) = p(θ)ψt,θ(x1:Nx
1:t , a1:Nx

1:t−1)×
Ẑt(θ, x

1:Nx
1:t , a1:Nx

1:t−1)

p(y1:t)

and similarly we obtain Proposition 1
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Assumptions

(H1a) For all θ ∈ Θ, and x , x ′, x ′′ ∈ X ,

fθ(x |x ′)
fθ(x |x ′′)

≤ β.

(H1b) For all θ ∈ Θ, x , x ′ ∈ X , y ∈ Y,

gθ(y |x)

gθ(y |x ′)
≤ δ.
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(H2a) The MLE θ̂t (the mode of function lt(θ)) exists and converges
to θ0 as n→ +∞.

(H2b) The observed information matrix defined as

Σt = −1

t

∂lt(θ̂t)

∂θ∂θ′

is positive definite and converges to I (θ0), the Fisher
information matrix.

(H2c) There exists ∆ such that, for δ ∈ (0,∆),

lim sup
t→+∞

1

t
sup

‖θ−θ̂t‖>δ

{
lt(θ)− lt(θ̂t)

} < 0.

(H2d) The function lt/t is six-times continuously differentiable, and
its derivatives of order six are bounded relative to t over any
compact set Θ′ ⊂ Θ.
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