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Introduction: What is a Luminosity Function?

Figure: A galaxy cluster.
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Introduction: Project Goal

The Luminosity Function specifies the relative number of sources at
each luminosity.

Goal of the Project: To develop a fully Bayesian model to infer the
distribution of the luminosities of all the sources in a population.
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Introduction: Data

Yi , observed photon counts, contaminated with background in a
source exposure.
X , observed photon counts in the exposure of pure background .

Figure: default
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Bayesian Model

Level I model:

X |ξ ∼ Pois(ξ),

Yi = YiB + YiS , where YiB |ξ ∼ Pois(aiξ),

YiS |λi ∼ Pois(biλi ) ∼

{
δ0, if λi = 0;

Pois(biλi ), if λi 6= 0.

ξ is the background intensity,

λi is the intensity of source i ,

ai is ratio of source area to background area (known constant),

bi is the telescope effective area (known constant).
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Bayesian Model

Level II model:

ξ ∼ Gamma(α0, β0),

λi |α, β, π

{
= 0, with probability 1− π;

∼ Gamma(α, β), with probability π.

Level III model:

P(α, β, π) ∝ 1

β3
πc1−1(1− π)c2−1.
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Bayesian Model: Summary

Model

X |ξ ∼ Pois(ξ),Yi = YiB + YiS ,

YiS |ξ ∼ Pois(aiξ),YiB |λi ∼ Pois(biλi ),

ξ ∼ Gamma(α0, β0),

λi |α, β, π

{
= 0, with probability 1− π,
∼ Gamma(α, β), with probability π,

P(α, β, π) ∝ 1

β3
.

Research interest:

The posterior distribution of intensities λ,
The posterior distribution of 1− π, the proportion of dark sources.
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Simulation Study 1: Setup

Number of sources, N=500.

Distribution of λ’s:

λi
iid∼

{
δ0, with prob 1− π = 0.15,

Gamma[10, 35] with prob 0.85.

Distribution of YiS :

YiS |λi ∼ Pois(biλi ).

Distribution of background noise YiB :

YiB |ξ ∼ Pois(4), approximately.

Yi = YiS + YiB .

Observed Photon Counts
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Posterior Distributions of the Hyper-parameters

posterior draws of alpha/beta
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Posterior Distributions of the Hyper-parameters
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Distribution of source intensities

λi
iid∼

{
δ0, with prob 1− π,
Gamma(α, β), with prob π.
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Simulation Study 2: Setup

Number of sources, N=500.

Distribution of λ’s:

λi
iid∼

{
δ0, with prob 1− π = 0.15,

Gamma[2, 60] with prob 0.85.

Distribution of YiS :

YiS |λi ∼ Pois(biλi ).

YiB |ξ ∼ Pois(2), approximately.

Observed Photon Counts
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Simulation Study 2

posterior draws of alpha/beta
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Simulation Study 2
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Simulation Study 2
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Choices of Priors for the Hyper-parameters

Recall

λi |α, β, π
iid∼

{
δ0, with prob 1− π,
Gamma[αβ ,

α
β2 ] = Gamma[µ, µβ ] with prob π.

P(µ, β, π)dµdβdπ ∝ P(β)P(π)dµdβdπ ∝ 1

β
P(β)P(π)dαdβdπ,

P(α, β, π)dαdβdπ ∝ 1

βc3+1
πc1−1(1− π)c2−1dαdβdπ
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Choices of Priors: Simulation Study

π ∼ Beta(c1, c2), we can use informative prior if we have some prior
information about the distribution of π. Otherwise, we can let
c1 = c2 = 1, so π ∼ Unif (0, 1).

Priors for (α, β):

Prior 0: P(α, β) ∝ 1,

Prior 1: P(α, β) ∝ 1

β
,

Prior 2: P(α, β) ∝ 1

β2
,

Prior 3: P(α, β) ∝ 1

β3
.
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Choices of Priors: Coverage for π
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Choices of Priors: Coverage for
α
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Choices of Priors

Conclusion: the prior

P(α, β) ∝ 1

β3

gives the highest frequency coverage in most simulation studies.

This prior is called Stein’s Harmonic Prior. The SHP prior is shown to
provide estimators that have adequate frequency coverage.
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Speeding up MCMC

It takes about 3 hours to get 100,000 draws.

Metropolis-Hastings algorithm within Gibbs Sampler:

P(α|β, π, ξ, λ˜,YB˜ ,X ,Y˜ ) ∝
(

(βλ∗)α

Γ(α)

)K

,

where K =
∑

1λi 6=0, and λ∗ = (
∏

i ,λi 6=0 λi )
1/K .

Is there a good way to sample from the conditional posterior
distribution?
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