Luminosity Functions

Lazhi Wang

Department of Statistics, Harvard University

May 15th, 2012

Introduction: What is a Luminosity Function?

Figure: A galaxy cluster.

Introduction: Project Goal

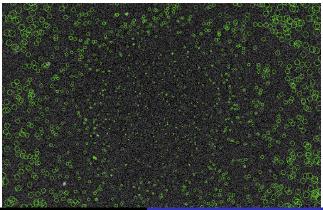
• The Luminosity Function specifies the relative number of sources at each luminosity.

Introduction: Project Goal

- The Luminosity Function specifies the relative number of sources at each luminosity.
- Goal of the Project: To develop a fully Bayesian model to infer the distribution of the luminosities of all the sources in a population.

Introduction: Data

- *Y_i*, observed photon counts, contaminated with background in a source exposure.
- X, observed photon counts in the exposure of pure background .



Bayesian Model

• Level I model:

$$egin{aligned} X|\xi &\sim \textit{Pois}(\xi), \ Y_i &= Y_{iB} + Y_{iS}, \ \text{where} \ Y_{iB}|\xi &\sim \textit{Pois}(a_i\xi), \ Y_{iS}|\lambda_i &\sim \textit{Pois}(b_i\lambda_i) &\sim egin{cases} \delta_0, & ext{if} \ \lambda_i &= 0; \ \textit{Pois}(b_i\lambda_i), & ext{if} \ \lambda_i &\neq 0. \end{aligned}$$

- ξ is the background intensity,
- λ_i is the intensity of source *i*,
- *a_i* is ratio of source area to background area (known constant),
- b_i is the telescope effective area (known constant).

Bayesian Model

• Level II model:

$$\xi \sim Gamma(\alpha_0, \beta_0),$$

 $\lambda_i | \alpha, \beta, \pi \begin{cases} = 0, & \text{with probability } 1 - \pi; \\ \sim Gamma(\alpha, \beta), & \text{with probability } \pi. \end{cases}$

• Level III model:

$$P(\alpha,\beta,\pi)\propto rac{1}{\beta^3}\pi^{c_1-1}(1-\pi)^{c_2-1}.$$

Bayesian Model: Summary

Model

$$\begin{split} X|\xi &\sim \textit{Pois}(\xi), Y_i = Y_{iB} + Y_{iS}, \\ Y_{iS}|\xi &\sim \textit{Pois}(a_i\xi), Y_{iB}|\lambda_i \sim \textit{Pois}(b_i\lambda_i), \\ \xi &\sim \textit{Gamma}(\alpha_0, \beta_0), \\ \lambda_i|\alpha, \beta, \pi \begin{cases} = 0, & \text{with probability } 1 - \pi, \\ \sim \textit{Gamma}(\alpha, \beta), & \text{with probability } \pi, \end{cases} \\ P(\alpha, \beta, \pi) \propto \frac{1}{\beta^3}. \end{split}$$

- Research interest:
 - The posterior distribution of intensities λ ,
 - The posterior distribution of $1-\pi$, the proportion of dark sources.

Simulation Study 1: Setup

- Number of sources, N=500.
- Distribution of λ's:

$$\lambda_i \stackrel{\text{iid}}{\sim} \begin{cases} \delta_0, \text{ with prob } 1 - \pi = 0.15, \\ Gamma[10, 35] \text{ with prob } 0.85. \end{cases}$$

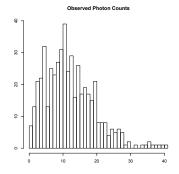
• Distribution of Y_{iS} :

 $Y_{iS}|\lambda_i \sim Pois(b_i\lambda_i).$

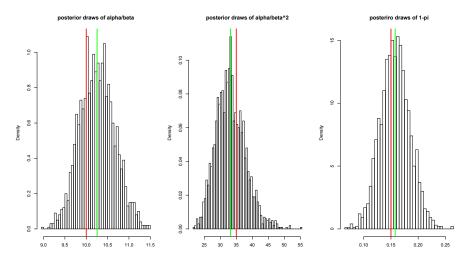
• Distribution of background noise Y_{iB} :

$$Y_{iB}|\xi \sim Pois(4), \text{ approximately.}$$

$$Y_i = Y_{iS} + Y_{iB}.$$

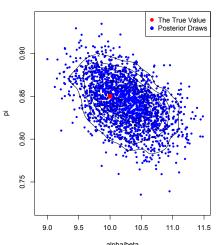


Posterior Distributions of the Hyper-parameters

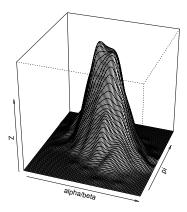


Posterior Distributions of the Hyper-parameters

Scatter Plots of Posterior Draws

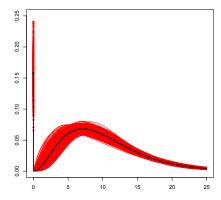


Joint Posterior Density of pi and alpha/beta



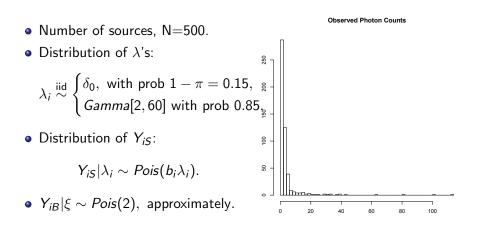
Distribution of source intensities

$$\lambda_i \stackrel{\mathsf{iid}}{\sim} egin{cases} \delta_0, \; \mathsf{with \; prob} \; 1-\pi, \ \mathsf{Gamma}(lpha,eta), \; \mathsf{with \; prob} \; \pi \end{cases}$$

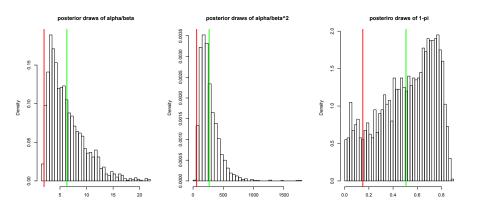


Distribution of source intensities

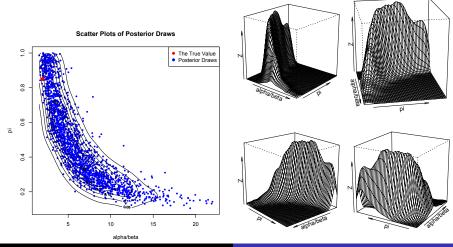
Simulation Study 2: Setup



Simulation Study 2



Simulation Study 2

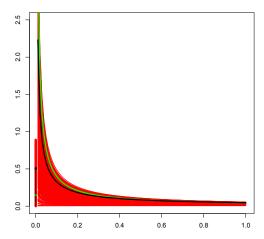


Lazhi Wang

Luminosity Functions

Simulation Study 2

Distribution of source intensities



Lazhi Wang

Luminosity Functions

Choices of Priors for the Hyper-parameters

Recall

$$\lambda_i | \alpha, \beta, \pi \stackrel{\text{iid}}{\sim} \begin{cases} \delta_0, & \text{with prob } 1 - \pi, \\ \text{Gamma}[\frac{\alpha}{\beta}, \frac{\alpha}{\beta^2}] = \text{Gamma}[\mu, \frac{\mu}{\beta}] & \text{with prob } \pi. \end{cases}$$

Choices of Priors for the Hyper-parameters

Recall

$$\lambda_i | \alpha, \beta, \pi \overset{\text{iid}}{\sim} \begin{cases} \delta_0, & \text{with prob } 1 - \pi, \\ \text{Gamma}[\frac{\alpha}{\beta}, \frac{\alpha}{\beta^2}] = \text{Gamma}[\mu, \frac{\mu}{\beta}] & \text{with prob } \pi. \end{cases}$$

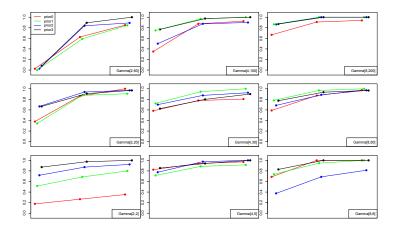
$$P(\mu,\beta,\pi)d\mu d\beta d\pi \propto P(\beta)P(\pi)d\mu d\beta d\pi \propto rac{1}{eta}P(\beta)P(\pi)dlpha deta d\pi,$$

$$P(\alpha,\beta,\pi)dlpha deta d\pi \propto rac{1}{eta^{c_3+1}}\pi^{c_1-1}(1-\pi)^{c_2-1}dlpha deta d\pi$$

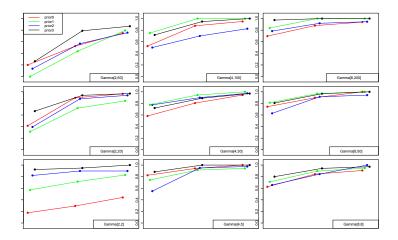
Choices of Priors: Simulation Study

- π ~ Beta(c₁, c₂), we can use informative prior if we have some prior information about the distribution of π. Otherwise, we can let c₁ = c₂ = 1, so π ~ Unif(0, 1).
- Priors for (α, β) : Prior 0: $P(\alpha, \beta) \propto 1$, Prior 1: $P(\alpha, \beta) \propto \frac{1}{\beta}$, Prior 2: $P(\alpha, \beta) \propto \frac{1}{\beta^2}$, Prior 3: $P(\alpha, \beta) \propto \frac{1}{\beta^3}$.

Choices of Priors: Coverage for π



Choices of Priors: Coverage for $\frac{\alpha}{\beta}$



Choices of Priors

• Conclusion: the prior

$$P(lpha,eta) \propto rac{1}{eta^3}$$

gives the highest frequency coverage in most simulation studies.

• This prior is called Stein's Harmonic Prior. The SHP prior is shown to provide estimators that have adequate frequency coverage.

Speeding up MCMC

- It takes about 3 hours to get 100,000 draws.
- Metropolis-Hastings algorithm within Gibbs Sampler:

$$P(\alpha|\beta,\pi,\xi,\underline{\lambda},\underline{Y}_{B},X,\underline{Y}) \propto \left(\frac{(\beta\lambda^{*})^{\alpha}}{\Gamma(\alpha)}\right)^{\kappa},$$

where $K = \sum 1_{\lambda_i \neq 0}$, and $\lambda^* = (\prod_{i,\lambda_i \neq 0} \lambda_i)^{1/K}$.

 Is there a good way to sample from the conditional posterior distribution?

Acknowledgement

- Vinay Kashyap,
- David van Dyk,
- Andreas Zezas.