Adaptive Smoothing

Why smoothing?

Does not need much justification:

- Bring up low-significance features for further analysis
- Identify features of interest
- Create visually pleasing images

The simple solution

Smooth with a fixed kernel

Advantages

Simple
Fast

Can calculate loss of flux

Disadvantages

Too simple
It is nor flexible for sources of different intensity

A few examples

The next level up

Smooth with a variable (adaptive) kernel

Advantages
Adjustable to sources of different intensity

Can link to source significance and feature identification/detection

Disadvantages

Not statistically sound (esp. in Poisson regime)

Does not preserve flux
Interpretation of images not clear

Slow

Adaptive smoothing flow-chart

Set S / N threshold and smallest kernel size

- Identify brightest pixels
(2)

Measure local background
6 Smooth with smallest kernel

- Go to next brightest pixels (ignore smoothed pixels)
- Increase kernel size (area) until desired S / N is reached

6 Repeat until all pixels are smoothed

A few examples

A few examples

A few examples

A few examples

Before
After

A few examples

Significance

Scales

And non-standard applications..

Complications

- Background (often variable)
- Low number of counts (Poisson regime)
- Need to preserve flux
- Uncertainties ?

What we need

A smoothing method that:

- is statistically correct in the Poisson regime
- it can deal with (non-uniform) background
- it can be used for the identification of features above a given S / N
- it is fast
- it produces visually "nice" results (if possible)

Several methods developed for the "smoothing" of 1D data.

Need: extension to 2D space Application to Poisson regime

