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Astrostatistics in broad strokes

What is astrostatistics?

Applying modern statistical tools to the problems of
astronomy & astrophysics

Combining scientific and statistical modeling

Handling complex instrumental effects

Linking theory to data
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Astrostatistics in broad strokes

Where the data comes from

Observations across the entire EM spectrum, from radio to
gamma rays

Optical observations mostly from ground-based telescopes
(e.g. Keck); some from Hubble

High-energy observations (x-rays, gamma, etc.) mostly from
space telescopes (e.g. Chandra)

Each type of data poses distinct challenges
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Astrostatistics in broad strokes

Common types of data

Images

Spectra

Time series

And all combinations of these
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Astrostatistics in broad strokes

Example — Image

Cold brown-dwarf star from WISE satellite (WISE 1828+2650)
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Astrostatistics in broad strokes

Example — Spectrum
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Astrostatistics in broad strokes

Example — Time Series

Supernova SGR 2002 from EROS2 survey
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Astrostatistics in broad strokes

How do we approach problems?

Probabilistic models for the entire data-generating process

Account for instrumental effects, population variation, etc.
Framework for inference

Approximate inference via computation

Typically MCMC
Can be EM or other methods

Rigorous model checking & validation

Need to establish statistical & scientific validity
Value of collaboration — physical plausibility
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Stacking: statistical challenges can come in small packages

Problem

Combining information on faint x-ray sources

Want to understand properties of a given population of
sources (e.g. galaxies at a certain distance)

For each source, we observe only two counts: one from the
background noise & one from a combination of the source &
noise

Also have telescope’s sensitivity etc. for given observation

Goal is to combine information from these faint counts to
estimate, e.g., mean intensity and variability in intensity
among sources
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Stacking: statistical challenges can come in small packages

Problem

Example images
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Stacking: statistical challenges can come in small packages

Problem

Previous approaches in the astrophysics

Idea: subtract out the background, then average resulting
“net” counts

Use of background subtraction ⇒ Gaussian assumption;
inappropriate in low count regimes

Above manifests as negative individual estimates; for
sufficiently faint samples, this can lead to negative aggregate
estimates

No clean measure of uncertainties on luminosities

Solution: model data as Poisson
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Stacking: statistical challenges can come in small packages

Model

Assumptions

Same as those for standard stacking analysis

For luminosity-based inference, assuming that redshifts are
known with no uncertainty

Relatively plausible for spectroscopic; not as much for
photometric

Assuming the spectra of sources are know & identical

Typically assume power law with photon index ≈ 1.7

Attempting to make inferences only on selected sample, for
now; not dealing with selection effects, etc.



Taste of astrostatistics

Stacking: statistical challenges can come in small packages

Model

Mathematical framework

Modeling source and background counts as Poisson.

Assuming background count rates follow log-Normal
distribution

Assuming log-luminosities (or log-fluxes) follow a log-t
distribution

Makes our inferences robust to outliers.
More appropriate for modeling distributions with power-law
tails.

Using priors to help regularize estimates; only require
informative priors on dispersion parameters

Need to allow for relationship between distance (redshift) &
source intensity; analogous to using a general regression model
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Stacking: statistical challenges can come in small packages

Computation

MCMC with finesse

Using MCMC to simulate from posterior of source intensities
given prior & observations; can then extract estimands of
interest

Because our model is Poisson / log-t, we can’t use a standard
Gibbs sampler

Combining independence chain MH, parameter expansion, and
data augmentation strategies to obtain an efficient sampler

Using numerical optimization (Halley’s method, appropriately)
to build good proposal distributions
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Stacking: statistical challenges can come in small packages

Data

Description of data

We worked with 1546 galaxies from SDSS on which we have
spectroscopic redshifts.

The distribution of redshift and exposure for these sources can
be seen below.
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Stacking: statistical challenges can come in small packages

Results

Summary of results on SDSS data



Taste of astrostatistics

Event detection: massive, messy data

Problem

Finding events in time series — lots of time series

Have massive (order of 10-100 million) dataset of time series,
possibly spanning multiple spectral bands

Goal is to identify and classify time series containing events

How do we define an event?

Not interested in isolated outliers
Looking for groups of observations that differ significantly from
those nearby (ie, “bumps” and “spikes”)
Also attempting to distinguish periodic and quasi-periodic time
series from isolated events
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Event detection: massive, messy data

Problem

The data

We used data from the MACHO survey for training, and are
actively analyzing the EROS2 survey
MACHO data consists of approx. 38 million LMC sources,
each observed in two spectral bands

Collected 1992-1999 on 50-inch telescope at Mount Stromlo
Observatory, Australia
Imaged 94 43x 43 fields in two bands, using eight 2048 x 2048
pixel CCDs
Substantial gaps in observations due to seasonality and
priorities

EROS2 data consists on approx. 87.2 million sources, each
observed in two spectral bands

Imaged with 1m telescope at ESO, La Silla between 1996 and
2003
Each camera consisted of mosaic of eight 2K x 2K LORAL
CCDs
Typically 800-1000 observations per source
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Event detection: massive, messy data

Problem

Exemplar time series from the MACHO project:

A null time series:
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Event detection: massive, messy data

Problem

Exemplar time series from the MACHO project:

An isolated event (microlensing):
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Event detection: massive, messy data

Problem

Exemplar time series from the MACHO project:

A quasi-periodic time series (LPV):
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Event detection: massive, messy data

Problem

Exemplar time series from the MACHO project:

A variable time series (quasar):
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Event detection: massive, messy data

Problem

Exemplar time series from the MACHO project:

A variable time series (blue star):
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Event detection: massive, messy data

Problem

Notable properties of this data

Fat-tailed measurement errors

Common in astronomical data, especially from ground-based
telescopes
Need more sophisticated models for the data than standard
Gaussian approaches

Quasi-periodic and other variable sources

Changes the problem from binary classification (null vs. event)
to k-class
Need more complex test statistics and classification techniques

Non-linear, low-frequency trends make less sophisticated
approaches far less effective

Irregular sampling can create artificial events in naive analyses
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Event detection: massive, messy data

Method

Our approach

Use a Bayesian probability model for both initial detection and
to reduce the dimensionality of our data (by retaining
posterior summaries)

Using posterior summaries as features for machine learning
classification technique to differentiate between events &
variables

Our goal is not to perform a final, definitive analysis on these
events

Objective to predict which time series are most likely to yield
phenomena characterized by events (e.g. microlensing, blue
stars, flares, etc.)
Allows for use of complex, physically-motivated methods on
massive datasets by pruning set of inputs to manageable size
Provides assessments of uncertainties at each stage of
screening and allows for the incorporation of domain knowledge
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Event detection: massive, messy data

Method

Summarized mathematically

Symbolically, let V be the set of all time series with variation
at an interesting scale (e.g., the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We decompose this probability as
P(Yi ∈ E ) ∝ P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

via the above two steps
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Event detection: massive, messy data

Method

Probability model - specification

Linear model for each time series with an incomplete wavelet
basis:

y(t) =

kl∑
i=1

βiφi (t) +
M∑

j=kl+1

βjφj(t) + ε(t)

First kl elements contain low-frequency, “trend” components;
remainder contain frequencies of interest; highest frequencies
are left as noise
Idea: compare smooth (trend-only) and complete model fits;
if they differ, could have an event
Assume residuals ε(t) are distributed as iid tν(0, σ2) for
robustness (ν = 5) — fat tails
Address irregular sampling through regularization —
informative priors on wavelet coefficients smooth
undersampled periods
Extremely fast estimation via EM — ≈ 0.15− 0.2 seconds
including file I/O
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Event detection: massive, messy data

Method

Examples of model fit

Idea is that, if there is an event at the scale of interest, trend-only
and complete fits with differ substantially:
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Event detection: massive, messy data

Method

Example of model fit

For null time series, the difference will be small:
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Event detection: massive, messy data

Method

Example of model fit

However, for quasi-periodic time series, the difference will be huge:
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Event detection: massive, messy data

Method

Probability model - testing

y(t) =

kl∑
i=1

βiφi (t) +
M∑

j=kl+1

βjφj(t) + ε(t)

Using LLR statistic to test if coefficients on all non-trend
components are zero (H0 : βkl+1 = βkl+2 = . . . = βM = 0)

Controlling false discovery rate (FDR) to 10−4 to set the
critical region for our test statistic
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Event detection: massive, messy data

Method

Feature Selection I

Engineered two features based on fitted values for
discrimination between diffuse and isolated variability

First is a relatively conventional CUSUM statistic

Let {zt} be the normalized fitted values for a given time
series, excepting the “trend” components corresponding to
β1, . . . , βkl . We then define:

St =
t∑

k=1

(z2k − 1)

CUSUM = max
t

St −min
t

St
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Event detection: massive, messy data

Method

Feature Selection II

Second is “directed variation”

Idea is to capture deviation from symmetric, periodic variation

Defining zt as before and letting zmed be the median of zt , we
define:

DV =
1

#{t : zt > zmed}
∑

t:zt>zmed

z2t −
1

#{t : zt < zmed}
∑

t:zt<zmed

z2t



Taste of astrostatistics

Event detection: massive, messy data

Method

Distribution of features on MACHO data
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Event detection: massive, messy data

Method

Methods

Tested a wide variety of classifiers on our training data,
including kNN, SVM (with radial and linear kernels), LDA,
QDA, and others

Regularized logistic regression performs best

Using weakly informative (Cauchy) prior for regularization
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Event detection: massive, messy data

Results

Summary

First stage shows reduction from 87.2 million candidate light
curves by approximately 98% (to approximately 1.5 million) in
blue band from likelihood-ratio screen

Approximately 16,000 of the latter group are likely isolated
events, based on analysis from classification stage and filtering
for chip-level errors (265 with P(event) ≥ 0.80 in both bands)

Scientific follow-up on candidates yielded identified 126 known
gravitational lensings and 42 known supernovae (via Simbad
& VizieR)

Several candidates identified for further analysis in multiple
categories
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Event detection: massive, messy data

Results

Examples of highly-ranked events

Examples from top 10:
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Event detection: massive, messy data

Results

Examples of highly-ranked events

Examples from top 10:
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Event detection: massive, messy data

Results

Examples of highly-ranked events

Examples from top 10:
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Event detection: massive, messy data

Results

Examples of highly-ranked events

Examples from top 10:
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Event detection: massive, messy data

Results

Examples of highly-ranked events

Examples from top 10:
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Event detection: massive, messy data

Lessons

Lessons from event detection

Massive data presents a new set of challenges to statisticians
& astronomers that many of our standard tools are not
well-suited to address
Machine learning has some valuable ideas and methods to
offer, but we should not discard the power of probability
modeling
Conversely, we can use reasonable probability models with
massive datasets without excessive computational burdens
It is tremendously important to put each tool in its proper
place for these types of analyses

Rigorous modeling of observation processes is particularly
crucial; mistakes here can destroy information for any later
analyses

Our work on event detection for astronomical data shows the
power of this approach by combining both rigorous probability
models and standard machine learning approaches
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Connections

Astrophysics & biology

These subjects appear extremely dissimilar on the surface

However, they are following a similar path in terms of data, as
both address:

An increasing need to address complex
instrumental/experimental properties
A transition to regimes where non-Gaussian error distributions
matter
An explosion in the volume of data

The largest difference is that the astrostatistics community
has been facing these problems & building high-quality
solutions for longer
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Connections

Complex instrumental & experimental properties

Astronomers face extremely complex instrumental &
experimental properties:

Inhomogeneous sensitivity (sources look dimmer or brighter
depending on where the telescope sees them)
Blurring due to detector/telescope properties
Subtle, non-ignorable patterns of missing data

All of these are increasingly important in biology as
high-throughput methods become more common

Physical mechanisms differ between fields, but statistical
challenges are analogous
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Connections

Non-Gaussian errors

Optical astronomy dealt almost exclusively with Gaussian
errors

With high-energy observations (x-ray, gamma, etc.),
observations are counts, so errors can be extremely
non-Gaussian

We deal with these problems constantly in astrostatistics and
have built a methodological foundation to address them

High-throughput biology must address these problems as, e.g.,
sequencing (counts) replace micro-arrays (continuous) for
analyses of gene expression
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Connections

Methodological arbitrage

Both astrophysics & biology have many more problems than
statisticians; many opportunities

Astronomy can be an excellent setting to address these
problems

Field emphasizes pinning-down & understanding sources of
error
Have data available to model & analyze complex observation
processes
Direct physical underpinnings allow us to focus on the core
problems
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Connections

Example — telescopes & enzymes

In astrophysics, need to account
for blurring of observations due
to instrument

Typically handled via PSF (point
spread function), which describes
distribution of observations given
location of source

Exactly analogous phenomenon
occurs with high-throughput
sequencing in biology due to
enzymatic digestion

Methods from astrostatistics
formed basis for solution to
biological problem
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Connections

Wrapping up

Astrostatistics is a vibrant, exciting area for research

Plenty of open problems

Challenges from foundational theory to computation

Major opportunity to apply methods across multiple fields

And, of course, great collaborators
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