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Abstract

A topological multiple testing scheme for one-dimensional domains is proposed
where, rather than testing every spatial or temporal location for the presence of a
signal, tests are performed only at the local maxima of the smoothed observed se-
quence. Assuming unimodal true peaks with finite support and Gaussian stationary
ergodic noise, it is shown that the algorithm with Bonferroni or Benjamini-Hochberg
correction provides asymptotic strong control of the family wise error rate and false
discovery rate, and is power consistent, as the search space and the signal strength get
large, where the search space may grow exponentially faster than the signal strength.
Simulations show that error levels are maintained for non-asymptotic conditions, and
that power is maximized when the smoothing kernel is close in shape and bandwidth to
the signal peaks, akin to the matched filter theorem in signal processing. The methods
are illustrated in an analysis of electrical recordings of neuronal cell activity.

1 Introduction

One of the most challenging aspects of multiple testing problems in spatial and temporal
domains is how to account for the spatial or temporal structure in the underlying signal.
The usual paradigm considers a separate test at each observed location. However, the
interest is usually in detecting signal regions that span several neighboring locations. This
paper considers a new multiple testing paradigm for spatial and temporal domains where
tests are not performed at every observed location but only at the local maxima of the
observed data, seen as representatives of underlying signal peaks. The proposed inference is
not pointwise but topological, based on the observed local maxima as topological features.

In pointwise testing, the control of family-wise error rate (FWER), now commonplace
in neuroimaging, was established by Keith Worsley (Worsley et al., 1996b, 2004; Taylor
and Worsley, 2007), who exploited the Euler characteristic heuristic for approximating the
distribution of the maximum of a random field (Adler and Taylor, 2007; Adler et al., 2010).
Methods for controling the false discovery rate (FDR) (Benjamini and Hochberg, 1995)
are also applied routinely in this setting, but the difficulty of incorporating the spatial
structure causes it often to be ignored (Genovese et al., 2002; Nichols and Hayasaka, 2003;
Schwartzman et al., 2008).

Despite pointwise testing being so common, the real interest is usually not in detecting
individual locations but connected regions or clusters. This has prompted the adaptation
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of discrete FDR methods to pre-defined clusters (Benjamini and Heller, 2007), and the use
of Gaussian random field theory for computing p-values corresponding to the height, ex-
tent, and mass of clusters obtained by pre-thresholding the observed random field (Poline
et al., 1997; Zhang et al., 2009). Pacifico et al. (2004a,b) proposed data-dependent thresh-
olds so that FDR is controlled at the cluster level, using Gaussian random field theory
to approximate the null distribution. However, the definition of Type I error for clusters
requires a tolerance parameter for the overlap between a discovered cluster and the null
region (Pacifico et al., 2004a), while spatial smoothing, which is often applied for improving
signal-to-noise ratio (SNR), creates the need to remove the spread of the signal over the null
region to avoid error inflation (Pacifico et al., 2004b). Chumbley and Friston (2009) have
argued that current cluster methods are unsatisfactory because, just like marginal FDR
procedures, they rely on the basic premise of having a test at each spatial location; instead,
inference should be topological.

This article proposes a different multiple testing paradigm where tests are performed
not at each spatial or temporal location but only at the local maxima of the smoothed data,
seen as topological representatives of their neighborhood region or cluster. A similar idea
was recently proposed independently by Chumbley et al. (2010), but they did not consider
whether Type I error could be controlled. Here we extend the classical control of FWER
via the global maximum to control of both FWER and FDR via local maxima. Because
the distributional theory for local maxima of random fields is more difficult than that for
global maxima, this paper only considers one-dimensional domains (spatial or temporal),
where closed-form solutions exist, leaving the two- and three-dimensional cases for future
work.

Our general proposed algorithm consists of the following steps:

1. Kernel smoothing, to increase SNR (Worsley et al., 1996a; Smith and Nichols, 2009).

2. Candidate peaks: find local maxima of the smoothed sequence.

3. P-values, computed at each local maximum under the complete null hypothesis of no
signal anywhere.

4. Multiple testing: use a multiple testing procedure to find a global threshold and declare
significant all peaks exceeding that threshold.

In this paper, the p-values in Step 3 are computed using theory of Gaussian processes.
For Step 4, we consider two standard multiple testing procedures: Bonferroni to control
FWER and Benjamini-Hochberg (BH) (Benjamini and Hochberg, 1995) to control FDR.
The algorithm is illustrated by a simulated example in Figure 1.

We study the theoretical properties of the above algorithm under a specific signal-
plus-noise model and later relax these assumptions in the simulation studies. For Type
I errors to be well defined, the signal is modeled as composed of unimodal peaks, each
considered detected if a significant local maximum occurs inside its finite support. For
simplicity, we concentrate on positive signals and one-sided tests, but this is not crucial.
For tractibility, the theory assumes that the observation noise follows a smooth stationary
ergodic Gaussian process. This assumption permits an explicit formula for computing the
p-values corresponding to local maxima of the observed process. The distribution of the
height of a local maximum of a Gaussian process is not Gaussian but has a heavier tail, and
its computation requires careful conditioning based on the calculus of Palm probabilities
(Cramér and Leadbetter, 1967; Adler et al., 2010).
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Figure 1: (a) Segment of a simulated observed sequence y(t) (green) and smoothed sequence
yγ(t) (blue) over four underlying true peaks as part of µ(t) (red). Out of 15 local maxima
of yγ(t) (yellow), the BH detection threshold (dashed magenta) selects 5, 1 of which is a
false positive. Note that this bandwidth is able to distinguish the overlapping peaks.

An interesting and challenging aspect of inference for local maxima is the fact that the
number of tests, which is equal to the number of observed local maxima, is random. The
multiple testing literature usually assumes the number of tests to be fixed. We overcome
this difficulty with an asymptotic argument for large search space, so that by ergodicity, the
error behaves approximately as it would if the number of tests were equal to its expected
value.

The asymptotics for large search space are combined here with asymptotics for strong
signal. The strong signal assumption solves the problem of the signal spreading into the
null region as a consequence of smoothing, as it implies that each signal peak is represented
by only one observed local maximum within the true domain with probability tending to
one. The strong signal assumption is not restrictive in the sense that the search space may
grow exponentially faster. Simulations show that error levels are maintained at finite search
spaces and moderate signal strength.

Defining detection power as the expected fraction of true peaks detected, we prove
that the algorithm is consistent in the sense that its power tends to one under the above
asymptotic conditions. We find that the optimal smoothing kernel is approximately that
which is closest in shape and bandwidth to the signal peaks to be detected, akin to the so-
called matched filter theorem in signal processing (Pratt, 1991; Simon, 1995). This optimal
bandwidth is much larger than the usual optimal bandwidth for nonparametric regression.

In one dimension, the problem of identifying significant local maxima is similar to that
of peak detection in signal processing (e.g. (Baccus and Meister, 2002; Yasui et al., 2003;
Morris et al., 2006; Harezlak et al., 2008; Brutti et al., 2005; Arzeno et al., 2008)). In this
literature, though large, the detection threshold is predominantly chosen heuristically and
conservatively. Our multiple testing viewpoint provides a formal mechanism for choosing
the detection threshold, allowing detection under higher noise conditions. This view also
eliminates the need to estimate an unknown number of peak location parameters, encoun-
tered in the signal estimation approach (O’Brien et al., 1994; Li and Speed, 2000, 2004;
Tibshirani et al., 2005).

We illustrate our procedure with a data set of neural electrical recordings, where the
objective is to detect action potentials representing cell activity (Baccus and Meister, 2002;
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Segev et al., 2004). The noise parameters and signal peak shape are estimated from a
training set and then applied to a test set for peak detection.

The data analysis and all simulations were implemented in Matlab.

2 Theory

2.1 The model

Consider the signal-plus-noise model

y(t) = µ(t) + z(t), t ∈ R (1)

where the signal µ(t) is a train of unimodal positive peaks of the form

µ(t) =
∞
∑

j=−∞

ajhj(t), aj > 0, (2)

and the peak shape hj(t) ≥ 0 has compact connected support Sj = {t : hj(t) > 0} and unit
action

∫

Sj
hj(t) dt = 1 for each j. Let wγ(t) ≥ 0 with bandwidth barameter γ > 0 be a

unimodal kernel with compact connected support and unit action. Convolving the process
(1) with the kernel wγ(t) results in the smoothed process

yγ(t) = wγ(t) ∗ y(t) =

∫

∞

−∞

wγ(t− s)y(s) ds = µγ(t) + zγ(t), (3)

where the smoothed signal and smoothed noise are defined as

µγ(t) = wγ(t) ∗ µ(t) =

∞
∑

j=−∞

ajhj,γ(t), zγ(t) = wγ(t) ∗ z(t). (4)

For each j, the smoothed peak shape hj,γ(t) = wγ(t) ∗ hj(t) ≥ 0 is unimodal and has
compact connected support Sj,γ and unit action. For each j, we require that hj,γ(t) is twice
differentiable in the interior of Sj,γ and has no other critical points within its support. For
simplicity, the theory requires that the supports Sj,γ do not overlap (but this is not required
in practice, as shown via simulations in Section 3). The smoothed noise zγ(t) defined by
(3) and (4) is assumed to be a zero-mean thrice differentiable stationary ergodic Gaussian
process.

2.2 The STEM algorithm

Suppose we observe y(t) defined by (1) in the segment [−L/2, L/2], which contains J peaks.
We call the following procedure STEM (Smoothing and TEsting of Maxima).

Algorithm 2.1 (STEM algorithm).

1. Kernel smoothing: Construct the process (3), ignoring the boundary effects at ±L/2.

2. Candidate peaks: Find the set of local maxima of yγ(t) in [−L/2, L/2]

T̃ =

{

t ∈
[

−L
2
,
L

2

]

: ẏγ(t) =
dyγ(t)

dt
= 0, ÿγ(t) =

d2yγ(t)

dt2
< 0

}

. (5)
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3. P-values: For each t ∈ T̃ compute the p-value pγ(t) for testing the hypothesis

H0(t) : µ(t) = 0 vs. HA(t) : µ(t) > 0, t ∈ T̃ .

4. Multiple testing: Let m̃ be the number of tested hypotheses, equal to the number
of local maxima in T̃ . Apply a multiple testing procedure on the set of m̃ p-values
{pγ(t), t ∈ T̃}, and declare significant all peaks whose p-values are smaller than the
significance threshold.

Steps 1 and 2 above are well defined under the model assumptions (for data on a grid,
local maxima are defined as points higher than their neighbors). Step 3 is detailed in
Section 2.3 below. For Step 4, we use the Bonferroni procedure to control FWER and the
BH procedure to control FDR. To apply Bonferroni at level α, declare significant all peaks
whose p-values are smaller than α/m̃. To apply BH at level α, find the largest index k for
which the i-th smallest p-value is smaller than iα/m̃, and declare as significant the k peaks
with smallest p-values. Notice that, in contrast to the usual application of the Bonferroni
and BH procedures, the number of tests m̃ is random.

2.3 P-values

Given the observed heights yγ(t) at the local maxima t ∈ T̃ , the p-values in Step 3 of
Algorithm 2.1 are computed as

pγ(t) = Fγ [yγ(t)], t ∈ T̃ , (6)

where
Fγ(u) = P

{

zγ(t) > u
∣

∣

∣
t ∈ T̃

}

(7)

denotes the right cumulative distribution function (cdf) of zγ(t) at the local maxima t ∈ T̃ ,
evaluated under the complete null hypothesis µ(t) = 0,∀t.

The distribution (7) is called a Palm distribution (Adler et al., 2010, Ch. 6) and is not
Gaussian, as the conditioning may incorrectly suggest, but stochastically greater. This is
because the point of evaluation t ∈ T̃ is not a fixed point t ∈ R but the random location of a
local maximum of zγ(t). Moreover, the conditioning event has probability zero. The Palm
distribution (7) has a closed-form expression, originally obtained by Cramér and Leadbetter
(1967, Ch. 11) (Eq. 11.6.14), using the well known Kac-Rice formula (Rice, 1945), (Adler
and Taylor, 2007, Ch. 11). A direct application, borrowing notation from those sources,
gives the following.

Proposition 2.2. Suppose the assumptions of Section 2.1 hold and that µ(t) = 0,∀t. Define
the moments

σ2
γ = var[zγ(t)], λ2,γ = var[żγ(t)], λ4,γ = var[z̈γ(t)]. (8)

Then the distribution (7) is given by

Fγ(u) = 1 − Φ

(

u

√

λ4,γ

∆

)

+

√

2πλ2
2,γ

λ4,γσ2
γ

φ

(

u

σγ

)

Φ

(

u

√

λ2
2,γ

∆σ2
γ

)

, (9)

where ∆ = σ2
γλ4,γ − λ2

2,γ , and φ(x), Φ(x), are the standard normal density and cdf, respec-
tively.
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The quantities σ2
γ , λ2,γ , and λ4,γ in Proposition 2.2 depend on the kernel wγ(t) and

the autocorrelation function of the original noise process z(t). Explicit expressions may be
obtained, for instance, for the following Gaussian autocorrelation model, which we use later
in the simulations.

Example 2.3 (Gaussian autocorrelation model). Let the noise z(t) in (1) be con-
structed as

z(t) = σ

∫

∞

−∞

1

ν
φ

(

t− s

ν

)

dB(s), σ, ν > 0,

where B(s) is standard Brownian motion and ν > 0. Convolving with a Gaussian kernel
wγ(t) = (1/γ)φ(t/γ) with γ > 0 as in (4) produces a zero-mean infinitely differentiable
stationary ergodic Gaussian process

zγ(t) = wγ(t) ∗ z(t) = σ

∫

∞

−∞

1

ξ
φ

(

t− s

ξ

)

dB(s), ξ =
√

γ2 + ν2,

with moments (8) given by

σ2
γ =

σ2

2
√
πξ
, λ2,γ =

σ2

4
√
πξ3

, λ4,γ =
3σ2

8
√
πξ5

(10)

(details given in Section 6.1). The above expressions may be used as approximations if the
kernel, required to have finite support, is truncated at t = ±cγ for moderately large c, say
c = 3.

2.4 Error definitions

Since the smoothing operation (Step 1 in Algorithm 2.1) in the presence of noise can shift
the location of a true peak, we define a detected peak to be a true positive if it falls anywhere
inside the support of a true peak. Conversely, we define it to be a false positive if it falls
outside the support of any true peak. Assuming the model of Section 2.1, define the signal
region S1 and null region S0 respectively by

S1 =

J
⋃

j=1

Sj and S0 =

[

−L
2
,
L

2

]

\





J
⋃

j=1

Sj



 . (11)

For a significance threshold u, the total number of detected peaks and the number of falsely
detected peaks are

R(u) = #{t ∈ T̃ : yγ(t) > u} and V (u) = #{t ∈ T̃ ∩ S0 : yγ(t) > u},

respectively. Both are defined as zero if T̃ is empty. The FWER is defined as the probability
of obtaining at least one falsely detected peak

FWER(u) = P {V (u) ≥ 1} = P

{

T̃ ∩ S0 6= ∅ and max
t∈T̃∩S0

yγ(t) > u

}

. (12)

The FDR is defined as the expected proportion of falsely detected peaks

FDR(u) = E

{

V (u)

R(u) ∨ 1

}

. (13)
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Original signal hj(t)

Smoothed signal hj,γ(t)
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Figure 2: Schematic signal and null regions, before and after smoothing, in the vicinity of
one signal peak.

Note that the above definitions are with respect to the original signal support S1, while
the inference is carried out using the smoothed observed process yγ(t). Kernel smoothing
enlarges the signal support and increases the probability of obtaining false positives in the
null regions neighboring the signal (Pacifico et al., 2004b). In contrast to (11), the smoothed
signal region S1,γ ⊃ S1 and smoothed null region S0,γ ⊂ S0 are

S1,γ =
J
⋃

j=1

Sj,γ and S0,γ =

[

−L
2
,
L

2

]

\





J
⋃

j=1

Sj,γ



 , (14)

respectively (Figure 2). We call the difference between the expanded signal support and
the true signal support the transition region

Tγ = S1,γ \ S1 = S0 \ S0,γ =

J
⋃

j=1

Tj,γ , (15)

where Tj,γ = Sj,γ \ Sj is the transition region corresponding to each peak j.

2.5 Strong control of FWER

In Algorithm 2.1, Step 3 produces a list of m̃ p-values. If the Bonferroni correction is
applied in Step 4 with level α ∈ (0, 1), then the null hypothesis H0(t) at t ∈ T̃ is rejected if

pγ(t) <
α

m̃
⇐⇒ yγ(t) > ũBon = F−1

γ

( α

m̃

)

, (16)

where α/m̃ is defined as 1 if m̃ = 0. Recall that, in contrast to the usual Bonferroni
algorithm, the number of p-values m̃ is random.

Define the conditions:

(C1) The assumptions of Section 2.1 hold.
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(C2) L → ∞ and a = infj aj → ∞, such that (logL)/a2 → 0 and J/L → A1 with
0 < A1 < 1.

Theorem 2.4. Suppose that Algorithm 2.1 is applied with the Bonferroni threshold ũBon

(16). Then, under conditions (C1) and (C2),

lim sup FWER(ũBon) ≤ α.

The proof of Theorem 2.4 is given in Section 6.3. The large search space assumption in
(C2) solves the problem of m̃ being random, implying that by the weak law of large numbers,
the ratio m̃/L is close to its expectation E[m̃/L] for large L, and thus the Bonferroni
procedure with random threshold (16) has asymptotically the same error control properties
as if the threshold were deterministic and equal to

u∗Bon = F−1
γ

(

α

E[m̃]

)

≈ F−1
γ

(

α/L

A1 + E[m̃0,γ(0, 1)]

)

(17)

where

E[m̃0,γ(0, 1)] =
1

2π

√

λ4,γ

λ2,γ
(18)

is the expected number of local maxima of zγ(t) in the unit interval (0, 1) (Cramér and
Leadbetter, 1967, Ch. 10). The strong signal assumption implies (Lemma 6.3 in Section
6.2) that the expected number of local maxima in the transition region Tγ (15) converges to
0, so that smoothing does not produce error inflation there. It also implies that the number
of local maxima in the signal region S1 is J with probability tending to 1, providing the
approximation in (17). The asymptotic rates are exponential and controlled partially by
the smallest absolute derivative of the smoothed peak shape in the transition region and
the curvature of the smoothed peak shape at the mode.

2.6 Control of FDR

Suppose the BH procedure is applied in Step 4 of Algorithm 2.1. For a fixed α ∈ (0, 1), let
k be the largest index for which the ith smallest p-value is less than iα/m̃. Then the null
hypothesis H0(t) at t ∈ T̃ is rejected if

pγ(t) <
kα

m̃
⇐⇒ yγ(t) > ũBH = F−1

γ

(

kα

m̃

)

, (19)

where kα/m̃ is defined as 1 if m̃ = 0.

Theorem 2.5. Suppose that Algorithm 2.1 is applied with the BH threshold ũBH (19).
Then, under conditions (C1) and (C2),

lim sup FDR(ũBH) ≤ α.

The proof of Theorem 2.5 is given in Section 6.4. The asymptotic assumptions (C2),
imply that the BH procedure with random threshold (19) has asymptotically the same error
control properties as if the threshold were deterministic and equal to

u∗BH = F−1
γ

(

αA1

A1 + E[m̃0,γ(0, 1)](1 − α)

)

, (20)
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where E[m̃0,γ(0, 1)] is given by (18). The threshold (19) can be viewed as the largest solution
of the equation αG(u) = Fγ(u), where G(u) is the empirical right cumulative distribution
function of yγ(t), t ∈ T̃ (Genovese et al., 2002). Thus the threshold (20) is obtained by
taking the limit of that equation as L gets large, combined with the result that there exists
exactly one significant local maximum at each true peak with probability tending to 1 for
a large (Lemma 6.3 in Section 6.2). As before, the asymptotic rates are exponential and
controlled partially by the smallest absolute derivative of the smoothed peak shape in the
transition region and the curvature of the smoothed peak shape at the mode.

Notice that, in contrast to the asymptotic Bonferroni threshold u∗Bon (17) which grows
unbounded with increasing L, the asymptotic BH threshold u∗BH (20) is finite.

2.7 Power

Recall from Section 2.4 that a significant local maximum is considered a true positive if it
falls in the true signal region S1. We define the statistical power of Algorithm 2.1 as the
expected fraction of true discovered peaks

Power(u) = E





1

J

J
∑

j=1

1

(

T̃ ∩ Sj 6= ∅ and max
t̃∈T̃∩Sj

yγ(t̃) > u

)



 =
1

J

J
∑

j=1

Powerj(u), (21)

where Powerj(u) is the probability of detecting peak j

Powerj(u) = P

{

T̃ ∩ Sj 6= ∅ and max
t∈T̃∩Sj

yγ(t) > u

}

. (22)

The maximum operator above indicates that if more than one significant local maximum
fall within the same peak support, only one is counted, so power is not inflated. However,
this has no effect asymptotically because each true peak is represented by exactly one local
maximum of the smoothed observed process with probability tending to 1 (Lemma 6.3 in
Section 6.2). The next result indicates that both the Bonferroni and BH procedures are
asymptotically consistent. The proof is given in Section 6.5.

Theorem 2.6. Let the power be defined by (21) and let ũBon and ũBH be the Bonferroni
and BH thresholds (16) and (19), respectively. Under conditions (C1) and (C2),

Power(ũBon) → 1, Power(ũBH) → 1.

For pointwise tests, if there exists a signal anywhere, the BH procedure is more powerful
than the Bonferroni procedure (Benjamini and Hochberg, 1995). This is also true in our
case. Comparing (17) and (20), if J ≥ 1, the threshold u∗Bon is higher than the threshold
u∗BH, promising a larger power for the BH procedure.

2.8 Optimal smoothing kernel

The best smoothing kernel wγ(t) is that which maximizes the power (21) under the true
model. Because this maximization is analytically difficult, we resort to a less formal argu-
ment here. Lemma 6.3 in Section 6.4 shows that, under conditions (C1) and (C2), every
true peak j is represented by exactly one significant local maximum located in a small
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neighborhood containing the true peak mode τj with probability tending to 1. Thus the
power for peak j (22) may be approximated as

Powerj(u) ≈ P {yγ(τj) > u} = Φ

[

ajhj,γ(τj) − u

σγ

]

, (23)

because yγ(τj) ∼ N(ajhj,γ(τj), σ
2
γ). By Lemma 6.6 in Section 6.5, the asymptotically equiv-

alent thresholds (17) and (20) for the Bonferroni and BH procedures satisfy u∗Bon/aj → 0
and u∗BH/aj → 0 for any j. Thus, for large aj , the power (23) is maximized approximately
by maximizing the SNR

SNRγ =
ajhj,γ(τj)

σγ
=
aj

∫

∞

−∞
wγ(s)hj(s) ds

σ
√

∫

∞

−∞
w2

γ(s) ds
, (24)

where σ is the standard deviation of the observed process y(t). The optimal smoothing
kernel wγ(t) is that which is closest to hj(t) in an L2 sense. This result is similar to the
matched filter theorem for detecting a single signal peak of known shape at a fixed time
location t (Pratt, 1991; Simon, 1995). The result only holds approximately in our case
because the peak locations are unknown.

Example 2.7 (Gaussian autocorrelation model). Suppose the signal peak j is a trun-
cated Gaussian density hj(t) = (1/bj)φ[(t− τj)/bj ]1[−cj , cj ], bj , cj > 0, and let the noise be
generated as in Example 2.3. Ignoring the truncation, hj,γ(t) = wγ(t) ∗ hj(t) in (24) is the
convolution of two Gaussian densities with variances γ2 and b2j , which is another Gaussian

density with variance γ2 + b2j . Using (10), we have that

SNRγ =
ajhj,γ(τj)

σγ
=

aj

σπ1/4

[

γ2 + ν2

(γ2 + b2j )
2

]1/4

. (25)

As a function of γ, the SNR is maximized at

argmax
γ

SNRγ =

{
√

b2j − 2ν2, ν < bj/
√

2

0, ν > bj/
√

2
(26)

In particular, when ν = 0, we have that the optimal bandwidth for peak j is γ = bj , the
same as the signal bandwidth. We show in the simulations below that the optimal γ is
indeed close to (26).

3 Simulation studies

3.1 Non-asymptotic performance

Simulations were used to evaluate the performance of the STEM algorithm for finite range
L and moderate signal strength a. In a segment of length L = 1000, J = 10 equal truncated
Gaussian peaks ajhj(t) = a/b φ[(t − τj)/b]1[−cb, cb], j = 1, . . . , J , as in Example 2.7 with
b = 3, c = 3 and varying a, were placed at uniformly spaced locations τj = (j − 1/2)L/J ,
j = 1, . . . , J and sampled at integer values of t. The noise z(t) was constructed as in Example
2.3 with σ = 1 and varying ν. As smoothing kernel, we used a truncated Gaussian density
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Figure 3: FWER of the Bonferroni procedure (top row) and FDR of the BH procedure
(bottom row) for a = 15 (solid), a = 12 (dashed) and a = 9 (dot-dashed). Nominal level is
0.05.

wγ(t) = (1/γ)φ(t/γ)1[−cγ, cγ] as in Example 2.3 with c = 3 and varying γ. Algorithm 2.1
was carried out using the noise parameters (10), and the Bonferroni and BH procedures,
both at level α = 0.05.

Figure 3 shows the realized FWER and FDR levels of the Bonferroni and BH procedures,
evaluated according to (12) and (13) with the expectations replaced by ensemble averages
over 10,000 replications. Error rates are maintained below the nominal level α = 0.05,
except when the bandwidth γ is large compared to the signal peak bandwidth b = 3. The
increased error rates are the result of true peak maxima being moved away from the original
signal region S1 into the transition region Tγ , where they are counted as false positives. This
phenomenon disappears with increasing signal strength because the probability of obtaining
any local maxima in the transition region goes to zero exponentially with increasing a
(Lemmas 6.2 and 6.3).

Figure 4 shows the realized power of the Bonferroni and BH procedures, evaluated
according to (21) with the expectations replaced by ensemble averages over the same 10,000
replications. In all cases, the power increases asymptotically to 1 with the signal strength for
every fixed bandwidth, and is always larger for BH than it is for Bonferroni. To understand
the dependence on bandwidth, superimposed is the theoretical approximate power (23)
evaluated at the asymptotic thresholds u∗Bon (17) and u∗BH (20) and plugging in the SNR
(25). The “theoretical” power curves largely capture the shape of the realized ones, but are
lower because the asymptotic thresholds are larger than the actual thresholds for finite a.
The curve shape is mostly determined by the SNR (25) as a function of γ. The bandwidth
γ producing the largest power is always larger than the theoretical optimal bandwidth (26),
but it approaches it from the right as a increases.
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Figure 4: Realized (black) and “theoretical” (blue) power of the Bonferroni (top row) and
BH (bottom row) procedures for a = 15 (solid), a = 12 (dashed) and a = 9 (dot-dashed).
The maxima of the curves (solid circles) approach the asymptotic optimal bandwidth (ver-
tical dashed).

3.2 Overlapping peaks

While the theory of Section 2 assumed that the signal peaks had non-overlapping supports,
this is not necessary in practice. Further similar simulations with J = 10 partially over-
lapping peaks showed that the error rates were below the nominal level regardless of the
amount of overlap between peaks. The detection power, however, increased with increas-
ing overlap. This is because definition (21) counts two overlapping peaks as detected if
a significant local maxima is found in the overlapping region between them, as it belongs
to both. Definition (21) does not measure the ability to distinguish between overlapping
peaks, which certainly decreases with increasing overlap.

3.3 Comparison with pointwise testing

To see the benefits of dimension reduction by testing local maxima, Table 1 compares the
performance of the STEM algorithm (with Bonferroni and BH corrections) to three other
methods that test at every single location. Simulated data sets as in Section 3.1 with
a = 12, b = 3 and ν = 0 were smoothed with γ = 3. For methods ‘Bonf-all’ and ‘BH-all’,
p-values for testing H0 : µ(t) = 0 at each t were computed as p(t) = 1 − Φ[yγ(t)/σγ ],
t = 1, . . . , L = 1000 and then corrected using Bonferroni and BH, respectively. The STEM
algorithm tested in average 65.3 p-values instead of 1000. Table 1 indicates that the global
Bonferroni correction is too conservative. On the other hand, the global BH correction is
designed to control FDR at the level of individual locations, and thus produces too many
false positives when the FDR is measured in terms of detected peaks using (13).

The method ‘Supremum’ was adapted from Worsley et al. (1996a) as follows. The
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Table 1: Performance of FWER methods (STEM with Bonferroni, Bonferroni on all L
locations, Supremum) and FDR methods (STEM with BH, BH on all L locations) averaged
over 10000 simulations. Nominal error rate is 0.05.

STEM-Bonf Bonf-all Supremum STEM-BH BH-all

Error rate 0.0432 0.0148 0.0151 0.0429 0.0769
Power 0.6014 0.4979 0.5009 0.8246 0.8784

probability that the supremum of any differentiable random process f(t) in the interval
[0, T ] exceeds u is bounded by (Adler and Taylor, 2007)

P

(

sup
t∈[0,T ]

f(t) ≥ u

)

≤ P [f(0) ≥ u] + E[Nu], (27)

where Nu is the number of up-crossings by f(t) of the level u in [0, T ]. For the stationary
Gaussian process zγ(t), application of the Kac-Rice formula (Cramér and Leadbetter, 1967,
p. 194) gives that E[Nu] = L(

√

λ2,γ/σγ)φ(u/σγ). The significance threshold is found as the
largest u such that

P

(

sup
t∈[−L/2,L/2]

zγ(t) ≥ u

)

≤ 1 − Φ

(

u

σγ

)

+ L

√

λ2,γ

σγ
φ

(

u

σγ

)

≤ α. (28)

Table 1 indicates that, despite accounting explicitly for the noise autocorrelation, the ‘Supre-
mum’ method performs only slightly better than global Bonferroni, and not as well as
Bonferroni performed on local maxima.

3.4 Automatic bandwidth selection

If the signal bandwidth b is unknown, the bandwidth may be chosen from the data as the
one that yields the largest number of discoveries for a fixed error level. For simulated data
sets as in Section 3.1 with a = 12, b = 3 and ν = 0, the STEM algorithm was applied with γ
ranging from 1 to 10, and results were retained for the bandwidth γ̂ that yielded the largest
number of discoveries. The realized FWER and FDR over 1000 simulations were 0.069 for
Bonferroni and 0.062 for BH, with respective realized powers 0.630 and 0.830. The power is
about the same as that obtained when γ is fixed and chosen optimally (Figure 4), but the
error rates are increased because of the variable bandwidth. Figure 5 shows that the chosen
bandwidth is sometimes too large, shifting true peaks into the neighboring null region and
mistaking them for false ones.

4 Data example

The data consists of recordings from a single electrode inserted in a salamander’s retina,
digitized at a sampling frequency of 10 KHz. Data of these kind are routinely collected in
large amounts in neuroscience experiments (Baccus and Meister, 2002; Segev et al., 2004).
For the purposes of this paper, three data sets were used:

1. Test set: 60 sec of recordings of live cells in the dark.

2. Training set 1: 60 sec of recordings of live cells in the dark.
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Figure 5: Histograms of automatically chosen smoothing bandwidth γ̂ over 1000 simulations.
Averages are 2.73 for Bonferroni and 2.30 for BH. True signal bandwidth is b = 3.

3. Training set 2: 60 sec of recordings after the retina was allowed to die.

Each period of 60 sec corresponds to L = 6 × 105 samples. The goal of the analysis was to
detect neuronal spikes in the test set (Figure 6, top left).

Assuming that neuronal action potentials have similar shapes, to maximize the SNR
(24), the smoothing filter should be close in shape and bandwidth to that of the peaks to
be detected. Training set 1 was used to estimate the peak shape. In training set 1, spikes
with raw maximum exceeding 1 were selected and aligned by their maxima (Figure 7a).
The peak shape template was obtained as the average of the 23 selected major spikes and
truncated to a length of 100 samples.

Training set 2, recorded under pure noise conditions, was used to estimate the noise
parameters. The noise in training set 2 can be well modeled by an AR(3) process with
autoregressive coefficients -1.13, 0.42, and -0.13 estimated by the Yule-Walker algorithm,
so that whitening with these coeffcients produces a process whose autocovariance function
cannot be distinguished from that of white noise using a Bartlett’s test. A similar analysis
in segments of length L/10 showed that the estimated AR coefficients have a coefficient of
variation of no more than 1% over the 10 segments, supporting the stationarity assump-
tion. A Jarque-Bera test of normality for the entire sequence returned a p-value of 0.224,
supporting the Gaussianity assumption.

Convolving training set 2 with the template of Figure 7a produced smoothed noise with
spectral moments σ̂2

γ = 4.22 × 10−4, λ̂2
2,γ = 1.20 × 10−4 and λ̂2

4,γ = 1.96 × 10−4, estimated
respectively by the empirical variances of the observed process, its first order difference and
its second order difference. Given the length of the process, the variance of these estimates
is negligible.

Algorithm 2.1 was applied to the test set (Figure 6, top left) by convolving it with
the template of Figure 7a, producing the smoothed process in Figure 6 (bottom left). In
L = 6×105 samples, m̃ = 30426 local maxima were found and their p-values were computed
according to (6) and (9), plugging in the estimates σ̂2

γ , λ̂2
2,γ and λ̂4,γ found above. The

empirical cdf of the p-values (Figure 7b) shows a large fraction of non-null p-values near
0. For comparison, the same procedure of smoothing, finding local maxima and computing
their p-values was applied to training set 2. The empirical cdf of those p-values is virtually
uniform, emphasizing that formula (9) for Gaussian noise is appropriate. Also in Figure
7b, the excess of large p-values from the test set is due to the negative portions of the
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Figure 6: Top row: the neural spike data (test set); the stars in the right panel indicate
peaks that are higher than 4 standard deviations of the raw data (dashed line), as suggested
by Segev et al. (2004). Bottom row: the data smoothed using the estimated peak shape as
kernel; the stars indicate significant local maxima higher than the BH threshold (magenta
dashed line) at level 0.01. The Bonferroni threshold is indicated by the cyan dashed line.

smoothing function (Figure 7a). These produce small negative anti-spikes whose p-values
are large when tested for positiveness.

Applying the BH procedure to the m̃ = 30426 p-values obtained from the test set at
FDR level 0.01 resulted in a p-value threshold of 2.76 × 10−4 and R = 843 significant
local maxima. These are indicated in Figure 6 (bottom left), showing three levels of spike
strengths. Figure 6 (bottom right) zooms in to show a few of the weaker spikes. Applying
the Bonferroni procedure instead in Algorithm 1 resulted in a p-value threshold of 3.29×10−7

and only 411 detected spikes.
For comparison, Figure 6 (top right) shows the same segment of the raw data and the

spikes selected using one of the recommended methods in the neuroscience literature, which
is to threshold at 4 standard deviations of the raw data (Segev et al., 2004). Our method
is able to identify a few more spikes at a low FDR level of 0.01, but more importantly, it
attaches to the findings a significance level, expecting about 1% of the detected spikes to
be false. The conventional method does not offer this useful statistical interpretation.

As in Section 3.3, computing p-values at each location as p(t) = 1 − Φ(yγ(t)/σ̂γ), t =
1, . . . , L, and applying a global Bonferroni at level 0.01 was more conservative, resulting in
a height threshold of 1.235 (comparable to Figure 6 bottom right) and detecting only 393
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Figure 7: (a) 23 strongest spikes aligned by their maximum (black); their average (red) is
the estimated template. (b) Empirical cdf of p-values for the test set (solid) and training
set 2 (dashed).

spikes. Similarly, the ‘Supremum’ method, applied by replacing σ̂γ and λ̂γ in (28) at level
0.01, yielded a height threshold 1.229 and 394 detected spikes. Finally, applying the global
BH procedure at level 0.01 with L p-values gave a height threshold of 0.780 detecting 1149
spikes, but as shown in Section 3.3, this result is too optimistic because the actual error
rate for peaks is higher than 0.01.

5 Discussion

For the theoretical results, the most critical assumptions were that the noise process is
stationary ergodic Gaussian and that the signal peaks are unimodal with compact support.
The Gaussianity assumption was chosen because it enabled a closed formula for computing
the p-values associated with the heights of local maxima. For non-Gaussian noise, p-values
could be computed via Monte Carlo simulation.

The assumption of compact support for the signal peaks was necessary for true and false
positives to be well defined. Chumbley et al. (2010) argued that testing local maxima is
appropriate when the signal spreads over the entire domain, but in that case every positive
is a true positive, making the inference unclear. The unimodality assumption made local
maxima good representatives of true peaks, as the probability that a true peak is represented
by exactly one observed local maximum tends to one as the signal strength increases. The
convergence rates for this were controlled by the smallest absolute derivative of the smoothed
peaks in the transition region and their smallest curvature near the mode. There was no
assumption of sparsity of peaks in the theoretical results. The simulations showed that the
error rates and power are almost unaffected if the peaks overlap. Agreeing with Chumbley
and Friston (2009), applying BH globally resulted in inflated error rates for peaks, while
applying Bonferroni or the Supremum method globally was too conservative.

While the theory was developed for continuous processes, in practice the observations are
given in a discrete grid. In our simulations we found that the results were not reliable when
the smoothing bandwidth was smaller than the grid spacing, as the theory for continuous
random processes is no longer a good approximation in that case.

The asymptotic error control and power consistency did not require the peaks to have
the same shape or width. However, the matched filter principle suggests that the smoothing
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kernel should be chosen to match the peaks to be detected. If all peaks have the same shape
and width, as in the neuronal data analyzed, then a single matching kernel suffices. If the
peaks to be detected have different widths, then the bandwidth may be adapted to the width
of each peak. We leave this possibility for future work, as well as the obliged extension of
the proposed methods to two- and three-dimensional domains.

6 Technical details

6.1 Computations for the Gaussian autocorrelation model (Example 2.3)

Let φξ(t) = (1/ξ)φ(t/ξ). Since the k-th derivative of zγ(t) has zero mean, its variance is
equal to the second moment

E
{

[z(k)
γ (t)]2

}

= σ2

∫

∞

−∞

[

φ
(k)
ξ (t− s)

]2
ds =

σ2

ξ2k+2

∫

∞

−∞

H2
k

(

t

ξ

)

φ2

(

t

ξ

)

dt,

where Hk(t) is the k-th Hermite polynomial: H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, and
so on. Replacing φ2(t/ξ) = φ

(√
2 t/ξ

)

/
√

2π and making the change of variable x =
√

2 t/ξ
gives

E
{

[z(k)
γ (t)]2

}

=
σ2

2
√
πξ2k+1

∫

∞

−∞

H2
k

(

x√
2

)

φ(x) dx. (29)

The expressions in (10) are obtained setting k = 0 for σ2
γ , k = 1 for λ2,γ , and k = 2 for λ4,γ .

6.2 Supporting results

Lemma 6.1. Let m̃0,γ = #{t ∈ T̃ ∩ S0,γ} be be the number of local maxima of yγ(t) (or
zγ(t)) in S0,γ. Let Vγ(u) = #{t ∈ T̃ ∩ S0,γ : yγ(t) > u} be the number of local maxima of
yγ(t) (or zγ(t)) in S0,γ whose heights are above the level u. Then

Vγ(u)

m̃0,γ
→ E[Vγ(u)]

E[m̃0,γ ]
= Fγ(u)

in probability as L→ ∞, where Fγ(u) is the Palm distribution (7).

Proof. Notice that yγ(t) = zγ(t) for all t ∈ S0,γ , so the process yγ(t) has the same properties
as the stationary process zγ(t) on the set S0,γ . By ergodicity, the weak law of large numbers
applied to the numerator and denominator gives that

Vγ(u)

m̃0,γ
=

#{t ∈ T̃ ∩ S0,γ : zγ(t) > u}/L
#{t ∈ T̃ ∩ S0,γ}/L

(30)

converges to (Cramér and Leadbetter, 1967)

E[#{t ∈ T̃ ∩ S0,γ : zγ(t) > u}]
E[#{t ∈ T̃ ∩ S0,γ}]

=
E[Vγ(u)]

E[m̃0,γ ]
.

But also by ergodicity, the ratio (30) converges to the conditional probability P[zγ(t) > u |
t ∈ T̃ ∩ S0,γ ] = Fγ(u) by definition (7). The two limits must be equal.
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Lemma 6.2. Assume the model of Section 2.1. Let Sj,γ = I left
j ∪Imode

j ∪Iright
j be a partition,

where Imode
j = [cj , dj ] ⊂ Sj is a fixed interval containing the mode of µγ(t) = ajhj,γ(t) in

Sj as an interior point, such that ḧj,γ(t) < 0 for t ∈ Imode
j , ḣj,γ(t) > 0 for t ∈ I left

j and

ḣj,γ(t) < 0 for t ∈ Iright
j . Let

• Mj be the largest value of |hj,γ(t)| in Sj,γ;

• Cj be the smallest value of |ḣj,γ(t)| in Iside
j = I left

j ∪ Iright
j ;

• Dj be the smallest value of |ḧj,γ(t)| in Imode
j .

For T̃ given by (5) and any threshold u,

P
(

#{t ∈ T̃ ∩ Iside
j } = 0

)

≥ 2Φ

(

ajCj
√

λ2,γ

)

− 1 −
∣

∣

∣Iside
j

∣

∣

∣

√

λ4,γ

λ2,γ
φ

(

ajCj
√

λ2,γ

)

,

P
(

#{t ∈ T̃ ∩ Imode
j } = 1

)

≥ Φ

(

ajDj
√

λ4,γ

)

−
∣

∣

∣
Imode
j

∣

∣

∣

√

λ6,γ

λ4,γ
φ

(

ajDj
√

λ4,γ

)

− 2Φ

(

−ajCj
√

λ2,γ

)

,

P
(

#{t ∈ T̃ ∩ Imode
j : yγ(t) > u} = 1

)

≥ Φ

(

ajDj
√

λ4,γ

)

−
∣

∣

∣Imode
j

∣

∣

∣

√

λ6,γ

λ4,γ
φ

(

ajDj
√

λ4,γ

)

− Φ

(

u− ajMj

σγ

)

,

(31)
where σγ, λ2,γ and λ4,γ are given by (8) and λ6,γ = E[

...
z γ(t)].

Proof.
1. Consider first the compact interval I left

j . The probability that there are no local

maxima of yγ(t) in I left
j is greater than the probability that ẏγ(t) > 0 for all t in the

interval. This probability is equal to

P

(

inf
I left
j

ẏγ(t) > 0

)

≥ P

(

inf
I left
j

żγ(t) > − inf
I left
j

µ̇γ(t)

)

= 1 − P



sup
I left
j

[−żγ(t)] > ajC
left
j



 (32)

where C left
j > 0 is the smallest value of ḣj,γ(t) in I left

j . Inequality (27) applies above to the
stationary Gaussian process −żγ(t). The Kac-Rice formula (Cramér and Leadbetter, 1967,
p. 194) gives in this case that E[Nu] = |I left

j |
√

λ4,γ/
√

λ2,γφ(u/
√

λ2,γ). Thus (32) has the
lower bound

P
(

#{t ∈ T̃ ∩ I left
j )} = 0

)

≥ Φ

(

ajC
left
j

√

λ2,γ

)

−
∣

∣

∣I left
j

∣

∣

∣

√

λ4,γ

λ2,γ
φ

(

ajC
left
j

√

λ2,γ

)

.

A similar calculation for Iright
j gives a similar bound with the superscript “left” replaced

by “right” and Cright
j > 0 being the smallest value of |ḣj,γ(t)| in Iright

j . Putting the two

together, the required probability P(#{t ∈ T̃ ∩ Iside
j }) that there are no local maxima in

I left
j nor Iright

j is bounded as in the first row of (31).

2. The probability that yγ(t) has no local maxima in Imode
j is less than the probability

that ẏγ(cj) ≤ 0 or ẏγ(dj) ≥ 0, for a positive derivative at cj and a negative one at dj would
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imply the existence of at least one local maximum in Ij . Thus, the probability of no local
maxima in Imode

j is bounded above by

P
(

#{t ∈ T̃ ∩ Imode
j )} = 0

)

≤ P [ẏγ(cj) ≤ 0] + P [ẏγ(dj) ≥ 0]

= Φ

(

−ajḣj,γ(cj)
√

λ2,γ

)

+ 1 − Φ

(

−ajḣj,γ(dj)
√

λ2,γ

)

≤ 2 − 2Φ

(

ajCj
√

λ2,γ

)

,
(33)

because ẏγ(t) ∼ N(µ̇γ(t), λ2,γ) and ḣγ(cj) > Cj > 0 and −ḣγ(dj) > Cj > 0.
On the other hand, the probability that yγ(t) has more than one local maxima in Imode

j

is less than the probability that ÿγ(t) > 0 for some t in Imode
j . This probability is

P



 sup
Imode
j

ÿγ(t) > 0



 ≤ P



 sup
Imode
j

z̈γ(t) > ajDj



 ,

where Dj < 0 is the largest value of µ̈γ(t) < 0 in Imode
j . Applying (27) to the process z̈γ(t)

gives the further upper bound

P
(

#{t ∈ T̃ ∩ Imode
j )} ≥ 1

)

≤ 1 − Φ

(

ajDj
√

λ4,γ

)

+
∣

∣

∣Imode
j

∣

∣

∣

√

λ6,γ

λ4,γ
φ

(

ajDj
√

λ4,γ

)

. (34)

Putting (33) and (34) together gives the bound in the second row of (31).
3. The probability that no local maxima of yγ(t) in Imode

j exceed the threshold u is less

than the probability that yγ(t) is below u anywhere in Imode
j , so it is bounded above by

Φ[(u − ajMj)/σγ ]. On the other hand, the probability that more than one local maxima
of yγ(t) in Imode

j exceed u is less than the probability that there exist more than one local
maximum, which is bounded above by (34). Putting the two together gives the bound in
the third row of (31).

Lemma 6.3. Assume the model of Section 2.1. For T̃ given by (5), let m̃1,γ = #{T̃ ∩S1,γ}
be the number of local maxima in the set S1,γ and recall that Wγ(u) = #{t ∈ T̃ ∩ S1,γ :
yγ(t) > u} is the number of local maxima in S1,γ above threshold u. Under conditions (C1)
and (C2),

1. The probability that yγ(t) has any local maxima in the transition region Tγ tends to
0:

P
(

#{t ∈ T̃ ∩ Tγ} ≥ 1
)

→ 0.

2. The probability to get exactly J local maxima in the set S1,γ,

P (m̃1,γ = J) = P
(

#{t ∈ T̃ ∩ S1,γ} = J
)

→ 1.

3. The probability to get exactly J local maxima in the set S1,γ that exceed any fixed
threshold u,

P [Wγ(u) = J ] = P
[

#{t ∈ T̃ ∩ S1,γ : yγ(t) > u} = J
]

→ 1.

4. m̃1,γ/L→ A1 in probability.
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5. Wγ(u)/m̃1,γ → 1 in probability.

Proof.
1. Write Tγ = ∪J

j=1Tj,γ , where Tj,γ = Sj,γ \Sj is the transition region for peak j (Figure

2). Under the assumptions of Lemma 6.2, Tj,γ is a subset of Iside
j because I left

j or Iright
j may

include points inside Sj. Using (31), the required probability P
(

#{t ∈ T̃ ∩ Tγ} ≥ 1
)

that

yγ(t) has any local maxima in the transition region Tγ is bounded above by

J
∑

j=1

[

2 − 2Φ

(

ajCj
√

λ2,γ

)

+
∣

∣

∣Iside
j

∣

∣

∣

√

λ4,γ

λ2,γ
φ

(

ajCj
√

λ2,γ

)]

≤ 2
J

L
L

[

1 − Φ

(

aC
√

λ2,γ

)]

+ L

√

λ4,γ

λ2,γ
φ

(

aC
√

λ2,γ

)

where a > 0 is the infimum of the aj’s and C > 0 is the infimum of the C ′

js, i.e. the

infimum of |ḣj,γ(t)| for t ∈ ∪J
j=1I

side
j (recall that every peak hj,γ(t) has no critical points in

the transition region for any j). But the expression above goes to zero as a,L → ∞ such
that (logL)/a2 → 0 because, for any K > 0,

Lφ(Ka) =
1√
2π

exp

[

a2

(

logL

a2
− K2

2

)]

→ 0,

and L[1 − Φ(Ka)] ≤ Lφ(Ka)/(Ka) → 0.
2. The required probability to obtain exactly J local maxima in the set S1,γ = ∪J

j=1Sj,γ

is greater than the probability of obtaining exactly one local maximum in each interval
Imode
j ⊂ Sj and none in Iside

j for any j. Thus, using (31), the required probability is
bounded below by

P
[

∩J
j=1

(

#{t ∈ T̃ ∩ Imode
j } = 1 ∩ #{t ∈ T̃ ∩ Iside

j } = 0
)]

≥ 1 −
J
∑

j=1

[

1 − P
(

#{t ∈ T̃ ∩ Imode
j } = 1 ∩ #{t ∈ T̃ ∩ Iside

j } = 0
)]

≥ 1 −
J
∑

j=1

[

5 − 4Φ

(

ajCj
√

λ2,γ

)

− Φ

(

ajDj
√

λ4,γ

)

+
∣

∣

∣
Iside
j

∣

∣

∣

√

λ4,γ

λ2,γ
φ

(

ajCj
√

λ4,γ

)

+
∣

∣

∣
Imode
j

∣

∣

∣

√

λ6,γ

λ4,γ
φ

(

ajDj
√

λ4,γ

)]

≥ 1 − J

L
L

[

5 − 4Φ

(

aC
√

λ2,γ

)

− Φ

(

aD
√

λ4,γ

)]

− L

√

λ4,γ

λ2,γ
φ

(

aC
√

λ4,γ

)

− L

√

λ6,γ

λ4,γ
φ

(

aD
√

λ4,γ

)

.

But this bound goes to 1 under condition (C2) as in Part 1.
3. The required probability to obtain exactly J local maxima in the set S1,γ = ∪J

j=1Sj,γ

that exceed u is greater than the probability that exactly one local maximum exceeds u in
each interval Imode

j . This probability is bounded below by

P
[

∩J
j=1

(

#{t ∈ T̃ ∩ Imode
j : yγ(t) > u} = 1 ∩ #{t ∈ T̃ ∩ Iside

j } = 0
)]

but this goes to 1 by a similar argument as the one in Part 2 of this lemma.
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4. Since m̃1,γ/L = (m̃1,γ/J)(J/L), with J/L → A1, we need to show that m̃1,γ/J → 1
in probability. For any fixed ε > 0,

0 ≤ P

(∣

∣

∣

∣

m̃1,γ

J
− 1

∣

∣

∣

∣

≥ ε

)

= P(|m̃1,γ − J | ≥ Jε) ≤ P (m̃1,γ 6= J) = 1 − P (m̃1,γ = J)

since m̃1,γ and J are integers. But the probability to get exactly J local maxima goes to 1
by Part 1 of this lemma.

5. By Part 2 of this lemma P[Wγ(u) = J ] → 1 in probability, therefore, using the same
arguments as in Part 3 of this lemma, we get Wγ(u)/J → 1. Now,

Wγ(u)

m̃1,γ
=
Wγ(u)

J

J

m̃1,γ
.

But m̃1,γ/J → 1 by Part 3 of this lemma.

6.3 Strong control of FWER

Lemma 6.4. Let m̃0,γ be the number of local maxima in S0,γ as in Lemma 6.1. Define
the thresholds ṽBon = F−1

γ (α/m̃0,γ), random, and v∗Bon = F−1
γ (α/E[m̃0,γ ]), deterministic.

Then |ṽBon − v∗Bon| → 0 in probability as L→ ∞.

Proof. By ergodicity, the weak law of large numbers gives that
∣

∣

∣

∣

m̃0,γ

L
− E[m̃0,γ(0, 1)]

∣

∣

∣

∣

→ 0 (35)

in probability as L→ ∞, where E[m̃0,γ(0, 1)] = E[m̃0,γ ]/L, given by (18), does not depend
on L (Cramér and Leadbetter, 1967). Since log(·) is continuous, the continuous mapping
theorem gives that

∣

∣

∣

∣

log
m̃0

L
− log

E[m̃0,γ ]

L

∣

∣

∣

∣

=

∣

∣

∣

∣

log
m̃0

α
− log

E[m̃0,γ ]

α

∣

∣

∣

∣

→ 0,

where we have used the additive property of the logarithm.
Define now the monotone increasing function ψγ(x) = F−1

γ (1−e−x). The function ψγ(x)

is Lipschitz continuous for all x > 1 because its derivative dψγ(x)/dx = e−x/Ḟγ [ψγ(x)] is
bounded for all x > 1. Hence, as L→ ∞,

∣

∣

∣

∣

ψγ

(

log
m̃0,γ

α

)

− ψγ

(

log
E[m̃0,γ ]

α

)∣

∣

∣

∣

= |ṽBon − v∗Bon| → 0.

Proof of Theorem 2.4.
Let m̃0,γ ≤ m̃ be the number of local maxima in the set S0,γ as in Lemma 6.4, and let
ṽBon = F−1

γ (α/m̃0,γ) ≤ ũBon. Then FWER(ũBon) ≤ FWER(ṽBon). Further, the bound
FWER(ṽBon) is the probability of obtaining at least one local maximum greater than ṽBon

in S0 = S0,γ ∪Tγ , which is less than the probability of obtaining at least one local maximum
greater than ṽBon in S0,γ or at least one local maximum in Tγ :

FWER(ũBon) ≤ P [Vγ(ṽBon) ≥ 1] + P
(

#{t ∈ T̃ ∩ Tγ} ≥ 1
)

, (36)
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where Vγ(u) = #{t ∈ T̃ ∩ S0,γ : yγ(t) > u} as in Lemma 6.1.
The second probability in (36) goes to zero by Lemma 6.3. To bound the first probability

in (36), write

P [Vγ(ṽBon) ≥ 1] = P

{

T̃ ∩ S0,γ 6= ∅ and max
t∈T̃

yγ(t) > (ṽBon − v∗Bon) + v∗Bon

}

,

where v∗Bon = F−1
γ (α/E[m̃0,γ ]) is deterministic. For any two random variables X, Y and

any two constants c, ε: P (X > Y + c) ≤ P (X > c − ε) + P (|Y | > ε). Applying this
inequality with X = maxt∈T̃ yγ(t), Y = ṽBon − v∗Bon and c = v∗Bon,

P [Vγ(ṽBon) ≥ 1] ≤ P [Vγ(v∗Bon − ε) ≥ 1] + P
{

T̃ ∩ S0,γ 6= ∅ and |ṽBon − v∗Bon| > ε
}

. (37)

The second summand goes to 0 in probability as L → ∞ by Lemma 6.4. For the first
summand, Lemma 6.1 with level v∗Bon − ε gives that

P [Vγ(v∗Bon − ε) ≥ 1] ≤ E[Vγ(v∗Bon − ε)] = E[m̃0,γ ]Fγ(v∗Bon − ε) = α
Fγ(v∗Bon − ε)

Fγ(v∗Bon)
,

but the last fraction goes to 1 as L→ ∞. Replacing in (37) and (36) gives the result.

6.4 Control of FDR

Lemma 6.5. For any non-negative integer random variables V , W , and fixed positive
integer J ,

E

(

V

V +W

)

≤ P(W ≤ J − 1) +
E[V ]

E[V ] + J
.

Proof.

E

(

V

V +W

)

=
∞
∑

v=0

J−1
∑

w=0

(

v

v + w

)

P (V = v,W = w) +
∞
∑

v=0

∞
∑

w=J

(

v

v + w

)

P (V = v,W = w)

≤
J−1
∑

w=0

∞
∑

v=0

P (V = v,W = w) +
∞
∑

v=0

∞
∑

w=J

(

v

v + J

)

P (V = v,W = w)

≤ P (W ≤ J − 1) + E

(

V

V + J

)

≤ P (W ≤ J − 1) +
E(V )

E(V ) + J
.

The last inequality holds by Jensen’s inequality, since V/(V + J) is a concave function of
V for V ≥ 0 and J ≥ 1.

Proof of Theorem 2.5. Let G̃(u) = #{t ∈ T̃ : yγ(t) > u}/#{t ∈ T̃} be the empirical
marginal right cdf of yγ(t) given t ∈ T̃ . Then the BH threshold ũBH (19) satisfies αG̃(ũBH) =
kα/m̃ = Fγ(ũBH), so ũBH is the largest u that solves the equation

αG̃(u) = Fγ(u). (38)

The strategy is to solve equation (38) in the limit when L, a → ∞. We first find the limit
of G̃(u). Letting Vγ(u) = #{t ∈ T̃ ∩ S0,γ : yγ(t) > u} as in Lemma 6.1 and Wγ(u) = #{t ∈
T̃ ∩ S1,γ : yγ(t) > u}, so that Rγ(u) = Vγ(u) +Wγ(u), write

G̃(u) =
Rγ(u)

m̃
=
Vγ(u)

m̃0,γ

m̃0,γ

m̃0,γ + m̃1,γ
+
Wγ(u)

m̃1,γ

m̃1,γ

m̃0,γ + m̃1,γ
. (39)
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By the weak law of large numbers (35) and Lemma 6.3, Part 3,

m̃0,γ

m̃0,γ + m̃1,γ
=

m̃0,γ/L

m̃0,γ/L+ m̃1,γ/L
→ E[m̃0,γ(0, 1)]

E[m̃0,γ(0, 1)] +A1
,

as L → ∞, where the expectation is given by (18). In addition we have the results of
Lemma 6.1 and Lemma 6.3, Part 4. Replacing these three limits in (39), we obtain

G̃(u) → Fγ(u)
E[m̃0,γ(0, 1)]

E[m̃0,γ(0, 1)] +A1
+

A1

E[m̃0,γ(0, 1)] +A1
.

Now replacing G̃(u) by its limit in (38), and solving for u gives the deterministic solution

Fγ(u∗BH) =
αA1

A1 + E[m̃0,γ(0, 1)](1 − α)
. (40)

The FDR at the threshold u∗BH is bounded by Lemma 6.5 by

FDR(u∗BH) ≤ P(W (u∗BH) ≤ J − 1) +
E [V (u∗BH)]

E
[

V (u∗BH)
]

+ J

= P(W (u∗BH) ≤ J − 1) +
E [Vγ(u∗BH)] + E

[

#{t ∈ T̃ ∩ Tγ : yγ(t) > u∗BH}
]

E
[

Vγ(u∗BH)
]

+ E
[

#{t ∈ T̃ ∩ Tγ : yγ(t) > u∗BH}
]

+ J
,

(41)
where we have split Vγ(u∗BH) into the reduced null region S0,γ and the transition region
Tγ = S0 \ S0,γ . Under condition (C2), Lemma 6.3 gives

0 ≤ E
[

#{t ∈ T̃ ∩ Tγ : yγ(t) > u∗BH}
]

≤ E
[

#{t ∈ T̃ ∩ Tγ}
]

→ 0. (42)

By Lemma 6.1, the remaining terms of the last fraction in (41) can be written as

E [Vγ(u∗BH)]

E
[

Vγ(u∗BH)
]

+ J
=

Fγ(u∗BH)E[m̃0,γ(0, 1)]L

Fγ(u∗BH)E[m̃0,γ(0, 1)]L + J
=

Fγ(u∗BH)E[m̃0,γ(0, 1)]

Fγ(u∗BH)E[m̃0,γ(0, 1)] + J/L
.

Since u∗BH solves (40), for L→ ∞ such that J/L→ A1, the above expression tends to

αE[m̃0,γ(0, 1)]

αE[m̃0,γ(0, 1)] +A1 + (1 − α)E[m̃0,γ(0, 1)]
= α

E[m̃0,γ(0, 1)]

E[m̃0,γ(0, 1)] +A1
≤ α. (43)

Combining equations (42), (43) and Lemma 6.3, Part 3, in (41), we obtain lim supFDR(u∗BH) ≤
α.

Recall that the BH threshold ũBH solves equation (38), and u∗BH satisfies (40), where the
empirical marginal distribution, G̃(u), is replaced by its limit. Since Fγ(t) is continuous,
Fγ(ũBH) → Fγ(u∗BH), leading to lim supFDR(ũBH) ≤ α.

6.5 Power

Lemma 6.6. For any j = 1, . . . , J , let t be any interior point of the support Sj of peak j.
Under conditions (C1) and (C2),

u∗Bon/[ajhj,γ(t)] → 0, u∗BH/[ajhj,γ(t)] → 0,

in probability, where u∗Bon and u∗BH are given by (17) and (20), respectively.
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Proof of Lemma 6.6.
1. From (9), for u > σγ , Fγ(u) is bounded above and below by

C1

2
φ

(

u

σγ

)

< Fγ(u) < (C1 + 1)φ

(

u

σγ

)

, C1 =

√

2πλ2
2,γ

λ4,γσ2
γ

, (44)

where the lower bound was obtained using Φ(x) > 1/2 for x > 1, and the upper bound used
the fact that

√

λ4,γ/∆ ≥ 1/σγ and 1 − Φ(x) < φ(x)/x for x > 1. Let v = Fγ(u). Inverting
the bounds (44) we obtain

2σ2
γ

(

log
C1

2
√

2π
− log v

)

< u2 < 2σ2
γ

(

log
C1 + 1√

2π
− log v

)

. (45)

Applying these inequalities to v∗ = Fγ(u∗Bon) and w = Fγ [ajhj,γ(t)] gives that

0 ≤ (u∗Bon)2

[ajhj,γ(t)]2
<

log[(C1 + 1)/
√

2π] − log(v∗)

log[C1/(2
√

2π)] − log(w)
.

Applying L’Hôpital rule, the limit of the above fraction when v∗ and w go to zero is the
same as the limit of w/v∗. But this limit is zero because, by the upper bound in (44) and
(17),

Fγ [ajhj,γ(t)]

Fγ(u∗Bon)
< (C1 + 1)

A1 + E[m̃0,γ(0, 1)]

α
Lφ

(

ajhj,γ(t)

σγ

)

,

which goes to zero by the lemma’s conditions.
2. The FDR threshold u∗BH (20) is bounded, so the result is immediate.

Proof of Theorem 2.6. For any threshold u, the detection power Power(u) (21) is greater
than E[Wγ(u)]/J ≥ P[Wγ(u) = J ]. But this probability goes to 1 by Lemma 6.3, particu-
larly for the deterministic thresholds u∗Bon and u∗BH. It was shown in the proofs of Theorems
2.4 and 2.5 that the gap between the deterministic thresholds and the random thresholds
ũBon and ũBH narrows to zero asymptotically. Therefore the power for these thresholds goes
to 1 as well.
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