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 A star is a massive, luminous ball of 
plasma that is held together by gravity

 It has certain layers, in particular, a hot 
solid core in the middle and a very hot gas 
of low density (corona) at the outermost 
layer.

 The energy produced by stars, as a by-
product of free-flying radiation interacting 
with atoms, escapes into space as both 
electromagnetic radiation and particle 
radiation





 As we can see, the star 
can be viewed through 
different filters that will 
reveal the spatial 
distribution of intensity 
of different types of 
radiation.

Optical

Extreme UV

X-ray image

For a better spectral resolution we 
turn to stellar emission spectrum 
(i.e. the photon counts 
corresponding to different 
energies)

Part of it can be represented as a ”rainbow” with dark lines, or absorption spectrum



 Every atom or ion of a chemical element is 
characterized by a certain number of protons and 
neutrons (that make up a nucleus) and electrons
that can occupy several energy levels around the 
nucleus.

 Electrons can be moved from one energy level to 
another by collisions among atoms or by radiating 
photons. 

 Only photons with particular energies, those that 
correspond to differences between the various 
energy levels (Ei+1-Ei), can be emitted and their 
wavelength is simply calculated as 

 Therefore, each atom or ion has a unique set of 
emission lines and we observe the convolution of 
all of them in a stellar spectrum.
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Actually, a spectral line 
extends over a range of 
frequencies due to 
Heisenberg uncertainty 
principle



 Atomic physicists continue to discover and calculate energy levels 
for atoms of different chemical elements and the corresponding 
wavelength of photons. For example, H has only 4 lines in the visual 
spectrum , but Fe has thousands but those calculations are prone to 
errors... (and current analysis can help correct those errors!)

 Higher temperature of gas (corona) broadens lines (Doppler 
effect) and change their intensities,  so that instead of an array of 
lines, we get a contribution function Gl

L,k(t) of line-to-plasma 
temperature correspondence.

 Besides , a so-called Bremsstrahlung continuum ,that refers to any 
radiation due to the acceleration of a charged particle, contribute to 
the  total count of photons observed at any wavelength. 



To summarize, the components of high-energy spectrum can be split into 
two groups: 

 Continuum terms, which are quite smooth and describe emission 
distribution over the entire range of wavelength. 
The information about them is provided by atomic physicist in the form of 
another contribution function Gj

C,k(t).

 Emission lines, which are local positive aberrations from the continuum, 
represented, as we noted, by Gl

L,k(t) . 

So the total emissivity function can be 
calculated as 

Gj (t) =k( Gj
C,k(t)+binned{Gl

L,k(t)} ) , 
where k is the abundance of element k.



As we can see, using the stellar spectrum and a fair amount of 
modeling, we can potentially determine both: 
 Coronal temperature
 metallicity (elemental abundance or composition) of a star. 

A way to characterize the temperature structure of stellar corona is 
Differential Emission Measure (DEM).

In simple terms, DEM is a distribution of the 
amount of emission at different temperatures in 
a stellar corona. 

For example, this picture features the Solar DEM in 
an Active Region (many sunspots). It has log10(T) on 
x-axis and a measure of emission on y-axis (relative 
abundance of matter).  Notice, that Sun’s active 
regions have a lot of very hot plasma.



 Emission line spectral model:
 Average photon intensity corresponding to spectral line l

generated by element k is 

Note, that this model will only compute relative values, so the absolute 
magnitude of the values are meaningless (in particular, this fact lets us 
ignore the exposure time!).

 Continuum spectral model:
 In the similar manner we get: 

Now j corresponds to a certain energy bin (or range of wavelength) out 

of J bins in total. 
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 Spectrum is divided into J (equispaced) bins (the range depends 
on the actual dataset)
 Temperature is divided into T (equispaced ) intervals ranging from 
104  to 108 K  (so                is constant and can be dropped )
 K is a total number of chemical elements that we include in the 
model  (K=14)

Then the total expected photon counts at energy bin j will be:

Actual counts can be modeled as                  
Note, that these counts are “true” counts, the ones that we can’t 

really observe. Let’s look at what we get to observe…
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 This project uses data that are collected from a  yellow giant 
star Capella by Chandra X-ray Telescope

 Detectors register photon arrival time, its energy and 2-
dimentional direction of arrival – and we only focus on energy 
variable!...

 Due to its digital nature, Chandra records the energy in a 
certain prespecified number of channels

So the data looks like this:



As we noted,       are true counts that are coming from 
the star:

1,...,( )J  



After that, various stochastic processes significantly degrade the source 
model and result in Poison intensities for the observed counts:

Stochastic censoring
(effective area)

Measurement error
(blurring)

Extraneous photons, 
coming  from 
other objects



 Two major data distortion effects, introduced by the instrument 
itself, are modeled as follows:
 Effective area of bin j is reflected by dj , a probability that the X-ray is 

recorded by detector.  It depends on the photon energy and is 
provided by calibration scientists.

 Blurring of arriving photons can be described by Redistribution Matrix 
File (RMF)  Mij ,  that provides parameters for a multinomial model of 
redistribution of incoming photons of energy j into channels 1 … I. 
(That is exactly what Li Zhu is working on)

It turns out that for this high-resolution data RMF can be very well 
represented by scaled t-distribution with df=4.

 After that we add the rate of background noise



Observed data in channel  i is    , where

In matrix notation we get

The goal is to draw inference about ,  and .

Next, we will briefly introduce  the fitting procedure. The idea is to 
impute back all photons that were blurred and censored.
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 Let’s introduce  levels of missing photon counts:
 Channel level Y, ranges from 1 … I (the one we observe)
 Bin level Z, ranges from 1 … J (data coming from the star) (usually J=I)
 Temperature level U, ranges from 1 … T

 We will use superscript “Z-“ to denote a lower level of 
augmentation within each level
 Z- are bin level counts after censoring, where

It turns out that there is censoring on temperature level!   Here is why:

Remember the total emissivity function : G(t) =k( Gj
C,k(t)+binned{Gl

L,k(t)} ) 
It’s column sums ARE NOT EQUAL, so photons originated from different 
temperatures have different rates to be emitted this “censoring” doesn’t 
occur unfirmly across the temperature.
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Given current estimates of abundance (i) and DEM (i) :
 Compute line and continuous  intensities

and

 Estimate bin intensity (expected detector counts) using data 
distortion model (no background contamination):

 Split Yobs into background and channel photon counts:

 “Deblurr” Y(restore the blurred photons – note that we get to bin 
levels after that)
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 “Desensor” Z-
i (restore absorbed counts due to effective area) to get 

actual bin counts

 Separate bin counts into counts coming from line emission and 
countinuum

 Distribute line emission counts between actual lines that fall in bin j 
(same multinomial principle) and reestimate elemental abundance (i+1)

_________________________________________________________
 In the mean time,  we use Z again to restore temperature counts

 Restore censored temperature counts  
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After obtaining U we reestimate (i+1) as follows:

 Considering                             , we choose R=6 scales so that T=26=64.
 At the finest scale                          for n=0,…,2R-1 

This produces the same binary tree for DEM parameters:

and 
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 Then a smoothing conjugate prior is introduced for weights 

and

Note, that by varying r we can control the amount of smoothing that 
we need (the larger - the smoother)

 Then we either sample from posterior distributions or find MAP 
estimates of weights and mean total counts

 Mean level counts can be restored using recursion from the most 
coarse scale to the finest:

and  
r =0 ... R;  n=0,…,2R-1 

Ref:  Nowak and Kolaczyk (2000)

, ~ ),(r n r rBeta  
0,0

~ ( ),Gamma a b

1,2 , ,r n r n r n    1,2 1 , ,(1 )r n r n r n     



We use data obtained from MEG spectrum of Chandra’s HETGS

• Huge discrepancy around ~15 A
• We can interpret positive residual as potential miscalculated line and 
negative residual as missing line.



Observed counts Expected counts

Possible reason could be considerably small ARF in that region? (~6%)
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Another region of interest  is around ~13.5 A (this region has many 
unidentified  Ne IX lines)

Negative residuals are in [13.43, 13.44], positive in [13.44, 13.45]
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 Future work, long-term goals:

 New implementation 

 Improved algorithm for DEM and abundance estimation 
(recalculate emissivity matrix for new abundance, 
convergence check )

 Wavelet decomposition interpretation

 A way of combining data from HETGS and LETGS  and 
analyzing it

 Include time component


