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Analyzing Redistribution Matrix with Wavelet



Background

 RMF is redistribution matrix function

 It is probability of observing a certain energy give the true 
energy;

 The dimension is very large(1078*1024)

 We take log transformation on RMF matrix, and we set 0 
value in RMF as 10^-15

 We want to study the uncertainty of RMF matrix, or in the 
perfect case, find a way to simulate new RMF matrix!



RMF after log-transformation
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Basic method in modeling RMF

 Use wavelet decomposition to get wavelet coefficients for 
each line of RMFs;
 Construct multi-level model to model coefficients in each 

line. 
 Ideally, we will construct a hierarchical model to reduce 

the dimension of RMFs
 Then we make Bayesian analysis to the model and get 

posterior draw of new RMFs wavelet coefficients
 We can use inverse wavelet transformation to get simulated 

RMFs(we need to rescale to make sure row summation of 
each line is 1)



Mean of coefficients Std of coefficients

Wavelet decomposition
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More about coefficients
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More about coefficients
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More about coefficients
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More about coefficients



Wavelet coefficient for 900 true energy 

 More than half coefficients are 0

 Only a very limited coefficients are 
significant greater than 0

 The position of non-zero part among 
33 matrixes for a specific true energy 
are almost the same, which make the 
analyzing easier

 We also have a very negative part.



Wavelet coefficient for 900 true energy 

 In the right graph, I plot coefficient of 
energy 900 among first 10 matrixes;

 The shape of coefficients over the first 
10 matrixes are almost the same;

 Coefficients which are significant 
greater than 0 has larger variance;

 The uncertainty of RMFs is now the 
uncertainty of wavelet coefficients;

 The coefficients are closely correlated 
to each others;



Introduction of base function

 We have seen for the same true 
energy, shape of wavelet 
coefficients are almost the same 
among 33 RMFs;

 Among different true energies, the 
shape of wavelet coefficients are 
also similar, even though the 
position of the shape is different;

 We may define the specific shape 
as base functions among all the 
true energies and matrixes.



Base function in RMF analysis

 We may consider the base function a 
vector of size 1024

 The location where the base function 
is not equal to 0 is different for 
different true energies;

 We may consider the location where 
base function is not equal to 0 for a 
specific true energy as a constant, not 
a parameter;

 We won’t have too much base 
functions(around 10). 



Example of base function

 It will be a vector with dimension 
1024, 

 Only the functional part(6~8elements) 
is different from 0;

 For different true energy, the value of 
base function will be the same, except 
the location of elements which are 
different from 0.



The size of base function

 For different true energy, the size 
of base function will be different;

 The size of a base function among 
1078 energies can be plotted as 
right;

 We may use a regression model to 
model log size of base function(to 
make the variance a constant).



Naïve model after base function 

 After we define the base function, we may write the 
coefficients j for true energy i for matrix m as:

 Coefficient(i,j,m)=size of base*base+error terms

 We will have two kind of uncertainty in my model, 
uncertainty of value of base function and a noise on every 
coefficient.



Histogram of several coefficients 900 energy level

 For every coefficients, we 
have 33 values;

 Since they are random 
variables, we can plot the 
histogram of them

 We can find the distribution 
are not quite normal;

 Some relevant paper suggests 
some heavy-tail distribution 
to model the error;



Strong correlations between coefficients

 The correlation between wavelet 
coefficients are very large;

 If we do not consider the correlation 
and simulate independent error terms 
we will have very bad simulations;

 We need to construct a model for the 
error terms;



Correlation between coefficients and the next coefficients on 900 true energy



Correlation between coefficients and the next coefficients on 600 true energy



Strong correlation error terms

 In the graph, blue points are the correlation of coefficients and the next 
coefficients;

 We can find we have very strong correlation between coefficients, especially 
the functional part;

 We can also find variance structure between different true energies are very 
similar;

 In the functional part, we can use a vector to model the correlation:
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Correlation vector for functional part

 The vector                                can model the variance and 
correlation structure of coefficient of base function;

 For instance, if 

It means the first and second element of this base function will be 
highly negative correlated; 

For every base function, we will have a correlation vector.
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Strong correlation error terms

 For each nonzero part, we can consider it is an error term.

 We can see from the previous slides the error terms are highly correlated.

 For the error term, I suggest to use the following model to model error terms:

 In this way, we can consider a and b as parameters and get the correlation.

 for different part of the wavelet coefficient, we can assume             are 
constant. 

 We can also construct hierachical models for a,b among different true energy.
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My suggested model

 We can consider a model in the following way:

           Coefficients(i,j,m)= base part + error part

Base part=

Error part:
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Variance Term

      is sd for base function f and ith true energy; It is a function of true energy 
i, we can model them according to the variance plot;

           is sd for individually error terms. For different part of the coefficients, we 
can assume it is locally constant;

       is sd for each line, it can be considered as a function of true energy i

            is uncertainty for matrix.
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More about the model
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Difficulty and challenge

 Is it a good idea to use the base function, or do you have 
some suggestion?

 Is there some other method to model the error terms in 
order to characterize the correlation?

 The computation will be very intensive, is there some 
method to simply the model?



Further work

 Computation of log-L with specific priors;

 Use Bayesian method to draw posterior draw of new 
coefficients;

 Use wavelet method to re-decompose new simulated 
RMFs;

 Model checking and posterior checking;



Wavelet analysis of the error terms

 In the dataset, we have 33 simulated RMFs and a default 
RMF

 If we consider the default RMF as “true RMF”, we can get 
the difference between 33 RMFs and default RMF, which 
are the error terms 

 We may do wavelet analysis to the error terms and 
construct models to analysis them



Overall wavelet coefficients description

 We use “db4” wavelet bases to do the 
analysis

 Since this is the error terms, instead of 
original RMF, we won’t see too much 
original charactistic

 We still take energy 900 as a example.

 In the right graph, the blue points is 
mean for 33 RMF coefficients and red 
line indicates 2 standard deviation over 
33 matrixes.



More graph about coefficients



Rescaling factor

 We can find large variance near 
channel 80, we can plot graph of 33 
matrixes near channel 80 and energy 
900;

 However, if we can rescale the mode 
near 80, we can get the second graph;

 We can still find the base function to 
deal with the problem.

 For the other part, it is similar to the 
wavelet model part for original RMFs;



Thank You !


