How to classify spectra of exploding stars (?)

Stéphane Blondin

Harvard-Smithsonian Center for Astrophysics

Astrostatistics Seminar (03/13/2007)

1. Introduction

What is a supernova?Why study them?Supernovae by the 1000s

- 2. Supernova Classification
- 3. Cross-correlation Technique
- 4. Other Techniques
- 5. An Optimal Classification?

SN 1986G in Centaurus A

Credits: Supernova Cosmology Project, LBNL, NERSC

Why Study Supernovae?

Synthesize and distribute heavy elements (e.g. ²⁵⁴Cf)

SN 1604 (Kepler's SN) Credit: Spitzer, HST, Chandra

Why Study Supernovae?

Trigger star formation

Orion Nebula Credit: HST

Why Study Supernovae?

Embarrass physicists

Accelerating Universe Credit: Science Magazine

WWW Supernova Search

CfA Supernova Search

FLWO 1.2m (optical light curves)

Tillighast 1.5m (optical spectra)

PAIRITEL 1.3m (infrared light curves)

Fred Lawrence Whipple Observatory (FLWO), Mount Hopkins, AZ

Supernovae by the 1000s

~3700 SNe since 1006 (50% since 2000)

IAU Circulars (IAUC,CBET)

Discovery (19 Feb 2007)

Circular No. 8814

Central Bureau for Astronomical Telegrams INTERNATIONAL ASTRONOMICAL UNION

Mailstop 18, Smithsonian Astrophysical Observatory, Cambridge, MA 02138, U.S.A. IAUSUBS@CFA.HARVARD.EDU or FAX 617-495-7231 (subscriptions) CBAT@CFA.HARVARD.EDU (science) URL http://cfa-www.harvard.edu/iau/cbat.html ISSN 0081-0304 Phone 617-495-7440/7244/7444 (for emergency use only)

(119979) 2002 WC₁₉

K. S. Noll, Space Telescope Science Institute (STScI); W. M. Grundy, Lowell Observatory; S. D. Kern, STScI; H. F. Levison, Southwest Research Institute; and D. C. Stephens, Brigham Young University, report the detection of a binary companion to the transneptunian object (119979) 2002 WC₁₉ (cf. MPECs 2003-A25, 2003-V38), which is in a 1:2 resonance with Neptune. The observations were made during 2006 Nov. 5.960–5.985 UT with the High Resolution Camera of the Advanced Camera for Surveys on the Hubble Space Telescope, using the clear filters with one 300-s exposure at each of four dithered positions on the detector. The two components were separated by an angular distance of 0"090 \pm 0".008 and differ in brightness by 2.5 magnitudes. The fainter component lies at a position angle of 233" \pm 6° from the primary. The projected separation of the objects in the sky plane is 2760 \pm 250 km.

SUPERNOVAE 2007aa, 2007ab, 2007ac, 2007ad, 2007ae

Five apparent supernovae have been discovered on CCD frames (unfiltered unless otherwise noted below) and reported to the Central Bureau: 2007aa by Takao Doi of Seabrook, TX, U.S.A. (0.40-m f/10 Cassegrain reflector at Weimar, TX); 2007ab by L. A. G. Monard (cf. IAUC 8813); 2005ac and 2007ad by T. Puckett and P. Gray (cf. IAUC 8804); and 2007ae by Markku Nissinen and Veli-Pekka Hentunen (Varkaus, Finland; Meade LX200 telescope + Bessel R filter). Discovery observations:

SN	2007 UT	α_{2000}	δ_{2000}	Mag.	Offset
2007aa	Feb. 18.308	12 00 27.69	$-1^{\circ}04^{\prime}51.6^{\prime}$	15.7	60" E, 68" N
2007ab	Feb. 19.104	16 51 29.13	-30533.6	17.8	47" W, 15" N
2007ac	Feb. 19.44	$16\ 47\ 02.36$	+40 08 47.6	17.5	2".0 W, 8".7 N
2007ad	Feb. 19.47	$17\ 24\ 24.58$	+44 56 15.9	17.4	4".9 E, 10".7 S
2007ae	Feb. 19.892	$17 \ 01 \ 51.95$	+79 01 54.6	17.5	8" E, 21" S

Additional information is available on these objects on the following *Electronic Telegrams*: 2007aa in NGC 4030, *CBET* 848 and 850 (type-II, discovered ~ 19 days past explosion); 2007ab in MCG -01-43-2, *CBETs* 851 and 853 (type-II, discovered ~ 2 weeks past explosion); 2007ac in UGC 10550, *CBETs* 854 and 859 (type-II, discovered about a week past explosion); 2007ad in UGC 10845, *CBETs* 854 and 857 (type-II, discovered within a few days of explosion); 2007ae in UGC 10704, *CBETs* 856 and 859 (type-Ia, discovered just before maximum).

2007 February 27 Copyright 2007 CBAT Daniel W. E. Green

Classification (25 Feb 2007)

Electronic Telegram No. 859 Central Bureau for Astronomical Telegrams INTERNATIONAL ASTRONOMICAL UNION M.S. 18, Smithsonian Astrophysical Observatory, Cambridge, MA 02138, U.S.A. IAUSUBS@CFA.HARVARD.EDU or FAX 617-495-7231 (subscriptions) CBAT@CFA.HARVARD.EDU (science) URL http://cfa-www.harvard.edu/iau/cbat.html

SUPERNOVAE 2007ac AND 2007ae

S. Blondin, M. Modjaz, R. Kirshner, and P. Challis, Harvard-Smithsonian Center for Astrophysics, report that a spectrogram (range 350-740 nm) of SN 2007ac (cf. CBET 854), obtained by A. Vaz on Feb. 25.54 UT with the F. L. Whipple Observatory 1.5-m telescope (+ FAST), shows it to be a type-II supernova roughly 1-2 weeks past explosion. The spectrum consists of a blue continuum and P-Cyg lines of the Balmer series, consistent with the plateau phase of a normal type-II supernova. The spectrum is similar to the type-II-plateau supernova 1999em at 10 days past explosion. Adopting a recession velocity of 9056 km/s for the host galaxy (Rines et al. 2002, A.J. 124, 1266), the maximum absorption in the H_beta line (rest 486.1 nm) is blueshifted by roughly 9500 km/s.

Blondin et al. add that a spectrum (range 350-740 nm) of SN 2007ae (cf. CBET 856), obtained on Feb. 25.54 by Vaz, shows it to be a type-Ia supernova around maximum light. Cross-correlation with a library of supernova spectra indicates that 2007ae is most similar to the type-Ia supernova 1999ee at maximum light. Adopting a recession velocity of 19303 km/s for the host galaxy (Berrington et al. 2002, A.J. 123, 2261), the maximum absorption in the Si II line (rest 635.5 nm) is blueshifted by roughly 11000 km/s.

NOTE: These 'Central Bureau Electronic Telegrams' are sometimes superseded by text appearing later in the printed IAU Circulars.

(C) Copyright 2007 CBAT 2007 February 25 (CBET 859) Daniel W. E. Green

Future Supernova Surveys

Ground-based (2007-2013):

Space-based (2015+):

ADEPT

Destiny

SNAP

Layout

1. Introduction

2. Supernova Classification

Spectra and light curves A brief history of supernova classification Complications

- 3. Cross-correlation Technique
- 4. Other Techniques
- 5. An Optimal Classification?

Spectra and Light Curves

Classification based on early-time optical spectra

Spectrum: Flux (energy flow) per wavelength, $S(\lambda)$ **Phase:** Age of supernova in days from maximum light, t_B

Spectra and Light Curves

A Brief History of Supernova Classification

1941: Rudolph Minkowski defines two supernova types based on elements in optical spectrum:

Type I (no hydrogen) and Type II (hydrogen)

A Brief History of Supernova Classification

1941: Rudolph Minkowski defines two supernova types based on elements in optical spectrum:

Type I (no hydrogen) and Type II (hydrogen)

1965: Fritz Zwicky tries to have the last word:

Type II extended to include Type III, Type IV, and Type V

A Brief History of Supernova Classification

1941: Rudolph Minkowski defines two supernova types based on elements in optical spectrum:

Type I (no hydrogen) and Type II (hydrogen)

1965: Fritz Zwicky tries to have the last word:

Type II extended to include Type III, Type IV, and Type V

1980's: Focus shifts to Type I supernovae:

Type Ia (silicon) and Type Ib/c (no silicon)

Present-day Supernova Classification

Spectral comparison

Complications – I. Inhomogeneous Data

Different telescopes & instruments

⇒ different wavelength **range** & **resolution**

Complications – I. Inhomogeneous Data

...not forgetting about **redshift**, **z**: (proxy for distance & time)

Complications – I. Inhomogeneous Data

...not forgetting about **redshift, z**:

Complications – II. Relative Flux

Complications – III. Supernova Types

Depending on the phase, supernovae of different types can have similar spectra...

Complications – IV. Spectral Evolution

Type la supernova between -14 to +106 days from maximum

Complications – V. Supernova Subtypes

- la normal, 1991T-like, 1991bg-like, peculiar
- Ib normal, peculiar, Ilb

"normal" and "peculiar" SN Ia

- Ic normal, broad-line, peculiar
- II normal (IIP), IIL, IIn, IIb, peculiar

Complications – VI. Intrinsic Variation

Intrinsic variation amongst SN Ia at a given phase (Blondin & Tonry 2007)

Layout

- 1. Introduction
- 2. Supernova Classification
- 3. Cross-correlation Technique

Correlation basics Spectrum pre-processing Correlation parameters (*r*, *lap*) Results: redshift, phase, and type determination

- 4. Other Techniques
- 5. An Optimal Classification?

SN spectral database

Spectrum pre-processing

6000

700

700

6000

800

800

7000

7000

(b) binned, (c) flattened, and (d) filtered input F_{λ} , F_{μ} , ADU, \Re

Spectra are:

[*] insensitive to reddening [*] less sensitive to galaxy contamination

see [*]

Bandpass filtering

A typical SN template

Type la SN 1992A (Kirshner et al. 1993)

"It looks as if Some pallid thing had squashed its features flat..."

Robert Frost

Correlation *r*-value

Correlation parameters:

r ratio of height of correlation peak to RMS of antisymmetric component

lap overlap in rest wavelength between input and template spectrum, trimmed at correlation redshift

$$rlap = r \times lap$$

$$z_{\rm err} \propto w / (1 + rlap)$$

Correlation functions

The *perfect*,

t, the good,

and the bad

Spectrum overlap

SN vs. Galaxy redshifts

data from **ESSENCE** (Matheson et al. 2005; Miknaitis et al. 2007; Blondin & Tonry 2007)

Phase determination

Spectrum vs. lightcurve phase

SN la vs. SN lc

Layout

- 1. Introduction
- 2. Supernova Classification
- 3. Cross-correlation Technique

4. Other Techniques

χ² minimization
Principal Component Analysis (PCA)
Artificial Neural Networks (ANN)
Bayesian approach

5. An Optimal Classification?

χ^2 minimization

(Howell et al. 2005)

$$\chi^{2}(z) = \sum \frac{\left[O(\lambda) - aT(\lambda;z)10^{cA_{\lambda}} - bG(\lambda;z)\right]^{2}}{\sigma(\lambda)^{2}}$$

- $O(\lambda)$ input spectrum $T(\lambda;z)$ template spectrum at redshift z $G(\lambda;z)$ galaxy template at redshift z A_{λ} reddening law $\sigma(z)$ error associated with O(z)
- no better than cross-correlation method despite more free parameters
- computationally slow (though see Rybicki & Press 1995)

Principal Component Analysis

Principle: Highlight *differences* between spectra using eigenspectra ⇒ relate eigenspectra to *physical properties* in the input spectra

Neural Networks

1915-1924: Annie Cannon classifies 225,300 stars (Henry Draper Catalogue)

Input (spectrum)

Hidden (mathematical framework)

▼ Output (classification)

Bayesian Approach

(Kuznetsova & Connolly 2006)

$$P(T_{i}|\{m_{j}\}) = \sum_{k} P(t_{k}|\{m_{j}\})$$
$$= \frac{\sum_{k} P(\{m_{j}\}|t_{k},T_{i})P(t_{k},T_{i})}{\sum_{i}\sum_{k} P(\{m_{j}\}|t_{k},T_{i})P(t_{k},T_{i})}$$

 $T_i \\ \{m_j\} \\ t_k$

supernova type measurements (e.g. light curve) model (template) depending on *k* parameters

Layout

- 1. Introduction
- 2. Supernova Classification
- 3. Cross-correlation Technique
- 4. Other Techniques
- 5. An Optimal Classification?

Requirements for an automated supernova classification

An automated classification of supernova spectra should...

1. determine the supernova type/subtype and assign a confidence

Supernova Subtypes

- la normal, 1991T-like, 1991bg-like, peculiar
- Ib normal, peculiar, Ilb
- Ic normal, broad-line, peculiar
- II normal (IIP), IIL, IIn, IIb, peculiar

"normal" and "peculiar" SN Ia

An automated classification of supernova spectra should...

- 1. determine the supernova type/subtype and assign a confidence
- 2. work with inhomogeneous data sets (wavelength coverage, SNR) possibly determine redshift

Spectral comparison

An automated classification of supernova spectra should...

- 1. determine the supernova type/subtype and assign a confidence
- 2. work with inhomogeneous data sets (wavelength coverage, SNR) possibly determine redshift
- 3. take into account time-variation of spectra

i.e. determine phase

Spectral Evolution

Type la supernova between -14 to +106 days from maximum

An automated classification of supernova spectra should...

- 1. determine the supernova type/subtype and assign a confidence
- 2. work with inhomogeneous data sets (wavelength coverage, SNR) possibly determine redshift
- 3. take into account time-variation of spectra i.e. determine phase
- 4. take into account spectral variance at a given phase

Intrinsic Variation

Intrinsic variation amongst SN Ia at a given phase (Blondin & Tonry 2007)

An automated classification of supernova spectra should...

- 1. determine the supernova type/subtype and assign a confidence
- 2. work with inhomogeneous data sets (wavelength coverage, SNR) possibly determine redshift
- 3. take into account time-variation of spectra i.e. determine phase
- 4. take into account spectral variance at a given phase
- 5. include external priors (light curve, survey parameters, SN rates, etc.)

Multicolor Light Curve of SN 2005bf (lb)

(Tominaga et al. 2005)

An automated classification of supernova spectra should...

- 1. determine the supernova type/subtype and assign a confidence
- 2. work with inhomogeneous data sets (wavelength coverage, SNR) possibly determine redshift
- 3. take into account time-variation of spectra i.e. determine phase
- 4. take into account spectral variance at a given phase
- 5. include external priors (light curve, survey parameters, SN rates, etc.)
- 6. give the probability of the input spectrum *not* being a supernova

...what's the answer?

Astrostatistics Seminar (03/13/2007)