Preliminary Work on Stellar
 Archeology: A Maximum
 Likelihood
 Approach
 Hyunsook Lee

 Preliminary Work on Stellar

 Preliminary Work on Stellar

 Archeology: A Maximum Likelihood

 Archeology: A Maximum Likelihood Approach

 Approach}Hyunsook Lee

April 24, 2007

Preliminary Work on Stellar Archeology: A Maximum Likelihood Approach

Hyunsook Lee

CMD
Information

Color-Magnitude Diagram

```
CM Diagram of 14753 SMC stars
```


Additional Information

```
- Errors on each observation ( \(\sigma\) is known )
- Independence among color bands
- Multivariate Normal assumption is quite reasonable \(\longrightarrow\) Let's find an age, by the maximum likelihood or the maximum entropy method.
```


Maximum Likelihood Approach

```
\(I\left(M_{v}^{i}, B V^{i} \mid A g e_{j}\right)=\frac{1}{\sqrt{2 \pi \Sigma_{i}}} \exp \left(-\frac{1}{2}\left(X_{i}-\mu_{i j}\right)^{T} \Sigma_{i}^{-1}\left(X_{i}-\mu_{i j}\right)\right)\) where \(X_{i}=\left(M_{v}^{i}, B V^{i}\right)^{T}\) of the \(i^{\text {th }}\) star.
(NOTE: I use Vmag as \(X\) axis)
```


Estimating mu

Let I_{j} indicate the $j^{t h}$ isochrone

$$
\hat{\mu}_{i j}=\arg \min _{\mu_{i j} \in I_{j}} \operatorname{dist}\left(X_{i}, \mu_{i j}\right),
$$

$\hat{\mu}_{i j}$ achieves the goal of maximizing likelihood (entropy).

- Yet, l_{j} is given as a set of points.
- [Q] What distance metric to choose?
- [Q] Does $\hat{\mu}_{i j}$ represent the true age of the $i^{t h}$ star?

Defining a point of min. distance

Finding a minimum distance and its associated point to a curve represented by a set of points with Euclidean norm.

Preliminary Work on Stellar Archeology: A Maximum Likelihood Approach

Hyunsook Lee

CMD
Information
ML
Distance
Numbers
Future

```
Preliminary Work
        on Stellar
Archeology: A
        Maximum
        Likelihood
        Approach

\section*{Ages of a Star Cluster}
```

NGC346, v<22, $\mathbf{i}<22,9982$ stars

```


\section*{Future Work}
- Enrich the likelihood function (retrieving the best age information of the star w.r.t. the given isochrone; missing data or nuisance parameters)
- Choose proper priors accommodating astronomical information (IMF, censoring/truncation, mixtureforeground contamination, errors)
- Design efficient methods for Bayesian analysis (for posterior distribution to provide the uncertainty of age estimate)```

