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“Big data” problems are ubiquitous

JASON 2008 (for DoD)

SDO

ATST



Solar/LSST points of contact

• LSST will produce high-dimensional data products:

• Multicolor images

• functional data for objects (stars, galaxies, minor planets)

• Real-time/streaming analysis crucial

• Co-located processing resources for user community

• Changing perspectives:

• Populations of light curves

• Feature-based data processing



UC Berkeley group (Richards et al. 2011)

Used to compare various classifiers (random forest most
accurate but too slow!)

Spurring growth of emerging subdisciplines: Astrostatistics,
astroinformatics



Asymptopia is tantalizing

Asymptopia
by Peter Sprangers

Come with me and we shall go
a place that only n has known

a kingdom distant and sublime
whose ruler is the greatest prime

a land where infinite sums can rest
and undergrads shall take no test

a place where every child you see
writes poems about the C.L.T.

where cdf’s converge to one
and every day is filled with sun.

where we can jump time’s famous hurdle
and watch Achilles beat the turtle

and every stat plucked from a tree
is, without proof, U.M.V.U.E.

where joy o’erflows the cornucopia
in this, the land of Asymptopia.
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2 Measurement error in number-size distributions
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Is N ever large?

Cyg X-1 γ- vs. X-ray

Bassani+ 1989

BeppoSAX spectrum, GX 349+2

Di Salvo et al. 2001



Spectrum of Ultrahigh-Energy Cosmic Rays

Nagano & Watson 2000

HiRes Team 2007
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N is never large (enough)

Sample sizes are never large. If N is too small to get a
sufficiently-precise estimate, you need to get more data (or make
more assumptions). But once N is ‘large enough,’ you can start
subdividing the data to learn more (for example, in a public
opinion poll, once you have a good estimate for the entire country,
you can estimate among men and women, northerners and
southerners, different age groups, etc etc). N is never enough
because if it were ‘enough’ you’d already be on to the next
problem for which you need more data.

— Andrew Gelman (blog entry, 31 July 2005)
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Similarly, you never have quite enough money. But that’s another
story.

— Andrew Gelman (blog entry, 31 July 2005)
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We survey everything!

GRBs

Lunar Craters TNOs

Stars & Galaxies

Solar Flares



Number-size distributions
aka size-frequency distributions, number counts, logN–log S. . .

Lunar Craters TNOs

GRBsQuasars

Solar Flares



Selection effects and measurement error

• Selection effects (truncation, censoring) — obvious (usually)
Typically treated by “correcting” data
Most sophisticated: product-limit estimators

• “Scatter” effects (measurement error, etc.) — insidious
Typically ignored (average out?)



Measurement error for line & curve fitting

QSO hardness vs. luminosity (Kelly 2007, 2011)

“Regression with easurement error” in statistics refers to the case
of errors in both x and y



Accounting For Measurement Error

Introduce latent/hidden/incidental parameters

Suppose f (x |θ) is a distribution for an observable, x .

From N precisely measured samples, {xi}, we can infer θ from

L(θ) ≡ p({xi}|θ) =
∏
i

f (xi |θ)



Bayesian graphical model

• Nodes/vertices = uncertain quantities

• Edges specify conditional dependence

• Absence of an edge denotes conditional independence

θ

x1 x2 xN

p(θ, {xi}) = p(θ)
∏
i

f (xi |θ)



But what if the x data are noisy, Di = {xi + ǫi}?

We should somehow incorporate ℓi (xi ) = p(Di |xi )

L(θ, {xi}) ≡ p({Di}|θ, {xi})

∝
∏
i

f (xi |θ)ℓi (xi )

Marginalize over {xi} to summarize inferences for θ.
Marginalize over θ to summarize inferences for {xi}.

Key point: Maximizing over xi and integrating over xi can give
very different results!



Graphical representation

DND1 D2

θ

x1 x2 xN

p(θ, {xi}, {Di}) = p(θ)
∏
i

f (xi |θ)p(Di |xi ) =
∏
i

f (xi |θ)ℓi (xi )

A two-level multi-level model (MLM) or hierarchical model



Example—Distribution of Source Fluxes

Measure m = −2.5 log(flux) from sources following a “rolling power law”
distribution (inspired by trans-Neptunian objects)

f (m) ∝ 10[α(m−23)+α
′(m−23)2]

m

f(m)

23

α

Simulate 100 surveys of populations drawn from the same dist’n.
Simulate data for photon-counting instrument, fixed count threshold.
Measurements have uncertainties 1% (bright) to ≈ 30% (dim).

Analyze simulated data with maximum (“profile”) likelihood and Bayes.



Parameter estimates from Bayes (circles) and maximum likelihood
(crosses):

Uncertainties don’t average out!

Applications: GRBs (TL & Wasserman 1993+); TNOs
(Gladman+ 1998+, Petit+ 2006+)



Smaller measurement error only postpones the inevitable:

Similar toy survey, with parameters to mimic SDSS QSO surveys (few %
errors at dim end):



What’s going on?

• Implicitly or explicitly, each datum brings with it a new
parameter

• Middle level distribution f (xi |θ) acts as prior on lower level
latent parameters xi (observables)

• Separate “copies” of the prior → data never overwhelm effect
of prior

• Marginalization accounts for volume in {xi} parameter space

• “Mustering and borrowing of strength” (Tukey):
• Pool information from individuals about upper (pop’n) level θ
• Pooled information feeds back; xi estimate is affected by all

other {xi} through what they say about θ
• Shrinkage: esulting xi estimates are biased but better (lower

MSE)
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Posterior sampling

Monte Carlo integration wrt posterior distribution:

∫
dθ g(θ)p(θ|D) ≈

1

n

∑
θi∼p(θ|D)

g(θi ) + O(n−1/2)

When p(θ) is a posterior distribution, drawing samples from it is
called posterior sampling:

• One set of samples can be used for many different calculations
(so long as they don’t depend on low-probability events)

• This is the most promising and general approach for Bayesian
computation in high dimensions—though with a twist
(MCMC!)

Challenge: How to build a RNG that samples from a posterior?



Markov chain Monte Carlo (MCMC)

BLAH

Markov chain

π(θ)L(θ) contours

θ1

θ2

Initial θ

p(θ|D) =
q(θ)

Z
q(θ) ≡ p(θ)p(D|θ)

Metropolis-Hastings algorithms:

• Propose candidate θ′ from
proposal dist’n

• Accept new/repeat old
depending on q(θ′)/q(θ)
(and proposal ratio)

Requires evaluating q(θ) for
every candidate



Importance sampling

∫
dθ g(θ)q(θ) =

∫
dθ g(θ)

q(θ)

P(θ)
P(θ) ≈

1

n

∑
θi∼P(θ)

g(θi )
q(θi )

P(θi )

Choose P to make variance small. (Not easy!)

(x)!

x

Q*(x)
P*(x)

P(x)
q(x)

g(x)



Sequential Monte Carlo for streaming data

Balakrishnan and Madigan (2006)

• Get posterior samples {θi} from initial chunk D<

• Revise samples by bringing in D> in small chunks d :

• Weight by new data likelihood p(d |θi )

• Resample via weights (like bootstrap) → degeneracy

• Jitter via MCMC using modified KDE surrogate for
current posterior

Applied to Bayesian logistic regression (7 predictors) and 4×4
Markov transition regression (5 – 20 samples), N ∼ 106



Posterior sampling using D
< Weight using d

Resample

Shrink to build surrogate

Jitter using KDE surrogate

Posterior using D
<
 

Likelihood using d



Main Points

• Solar, stellar & extragalactic astronomy share “big data”
problems → Cross fertilization opportunities?

• Statistics may not become simpler with “large N”

• Relative importance of measurement error grows with sample
size; it doesn’t “average out”

• MLMs handle such complications by marginalizing over latent
parameters

• Streaming Bayesian computation via sequential Monte Carlo
— a research front

Note: 2012/2013 SAMSI Program on Statistical and
Computational Methodology for Massive Datasets
(www.samsi.info)
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