Bayesian Statistical Methods for Astronomy Part III: Model Building

David A. van Dyk

Statistics Section, Imperial College London

Center for Astrophysics | Harvard & Smithsonian February 2025

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Outline

- Multi-Level Models
- Example: Selection Effects
- Hierarchical Models and Shrinkage

2 Extended Modeling Examples

- Hierarchical Model: Supernovae & Cosmology
- Non-Representiative Data and StratLearn
- Discussion

Recall Simple Multilevel Model

Example: Background contamination in a single bin detector

- Contaminated source counts: $y = y_S + y_B$
- Background counts: x
- Background exposure is 24 times source exposure.

A Poisson Multi-Level Model:

LEVEL 1: $y|y_B, \lambda_S \stackrel{\text{dist}}{\sim} \text{Poisson}(\lambda_S) + y_B,$ *LEVEL 2:* $y_B|\lambda_B \stackrel{\text{dist}}{\sim} \text{Pois}(\lambda_B)$ and $x|\lambda_B \stackrel{\text{dist}}{\sim} \text{Pois}(\lambda_B \cdot 24),$ *LEVEL 3:* specify a prior distribution for λ_B, λ_S .

Each level of the model specifies a dist'n given unobserved quantities whose dist'ns are given in lower levels.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Multi-Level Models

Definition

A <u>multi-level model</u> is specified using a series of conditional distributions. The joint distribution can be recovered via the factorization theorem, e.g.,

 $p_{XYZ}(x, y, z|\theta) = p_{X|YZ}(x|y, z, \theta_1) p_{Y|Z}(y|z, \theta_2) p_Z(z|\theta_3).$

- This model specifics the joint distribution of *X*, *Y*, and *Z*, given the parameter $\theta = (\theta_1, \theta_2, \theta_3)$.
- The variables *X*, *Y*, and *Z* may consist of observed data, latent variables, missing data, etc.
- In this way we can combine models to derive an endless variety of <u>multi-level models</u>.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Example: High-Energy Spectral Modeling

David A. van Dyk Bayesian Astrostatistics: Part III

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Outline

- Multi-Level Models
- Example: Selection Effects
- Hierarchical Models and Shrinkage

2 Extended Modeling Examples

- Hierarchical Model: Supernovae & Cosmology
- Non-Representiative Data and StratLearn
- Discussion

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

The Expanding Universe

Redshift

http://www.noao.edu/image_gallery/html/im0566.html

For "nearby" objects, z = velocity/c $velocity = H_0$ distance.

Hubble's Famous Diagram

Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion using the nebulae individually; the circles and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.

Hubble (1929)

The Big Bang!

Distance Modulus in an Expanding Universe

Apparent magnitude - Absolute magnitude = Distance modulus:

$$\boldsymbol{m} - \boldsymbol{M} = \mu$$
 [= 5 log₁₀(distance [Mpc]) + 25

Relationship between μ and z

For nearby objects,

distance = $\mu \propto z$.

(Correcting for peculiar/local velocities.)

• For distant objects, involves expansion history of Universe:

 $\mu = g(z, \Omega_{\Lambda}, \Omega_{M}, H_{0})$

[function of density of dark energy and of total matter]

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

We observe M only if m < (say) 24. I.e., we observe M only if $M = m - \mu(z) < 24 - \mu(z) \equiv F(z)$.

A Multilevel Model for Selection Effects

We wish to estimate a dist'n of absolute magnitudes, M_i ,

- Suppose $M_i \sim \text{NORM}(\mu, \sigma^2)$, for $i = 1, \dots, n$;
- But M_i is only observed if $M_i < F(z_i)^1$; [z is redshift, see next slide]
- Observe N < n objects including z_i ; $\theta = (\mu, \sigma^2)$ estimated.

(For $\mu = -19.3$ and $\sigma = 1.$)

 $^{1}M_{i}$ observed if $< F(z_{i}) = 24 - \mu(z_{i}); \mu(z_{i})$ from A-CDM model ($\Omega_{m} = 0.3, \Omega_{\kappa} = 0, H_{0} = 67.3$).

David A. van Dyk Bayesian Astrostatistics: Part III

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Model 1: Ignore Selection Effect

Likelihood:
$$M_i | \theta, z_i \sim \text{NORM}(\mu, \sigma^2)$$
, for $i = 1, ..., N$;
Prior: $\mu \sim \text{NORM}(\mu_0, \tau^2)$, and $\sigma^2 \sim \beta^2 / \chi_{\nu}^2$;
Posterior: $\mu \mid (M_1, ..., M_n, \sigma^2) \sim \text{NORM}(\cdot, \cdot)$ and
 $\sigma^2 \mid (M_1, ..., M_n, \mu) \sim \cdot / \chi^2$ (Details on next slide.)

Definition

If (some set of) conditional distributions of the prior and the posterior distributions are of the same family, the prior dist'n is called that likelihood's semi-congutate prior distribution.

Semi-conjugate priors are very amenable to the Gibbs sampler.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Gibbs Sampler for Model 1

Step 1: Update μ from its conditional posterior dist'n given σ^2 :

$$\boldsymbol{\mu}^{(t+1)} \sim \mathsf{NORM}\left(\bar{\boldsymbol{\mu}}, \; \boldsymbol{s}_{\boldsymbol{\mu}}^{2}\right)$$

with

$$\bar{\mu} = \left(\frac{\sum_{i=1}^{N} M_i}{(\sigma^2)^{(t)}} + \frac{\mu_0}{\tau^2} \right) \Big/ \left(\frac{N}{(\sigma^2)^{(t)}} + \frac{1}{\tau^2} \right); \quad S_{\mu}^2 = \left(\frac{N}{(\sigma^2)^{(t)}} + \frac{1}{\tau^2} \right)^{-1}.$$

Step 2: Update σ^2 from its conditional posterior dist'n given μ :

$$(\sigma^2)^{(t+1)} \sim \left[\sum_{i=1}^{N} (M_i - \mu^{(t+1)})^2 + \beta^2\right] / \chi^2_{N+\nu}.$$

In this case, resulting sample is nearly independent.

A Closer Look at Conditional Posterior: Step 1

Given σ^2 :

- Likelihood: $M_i | \theta, z_i \sim \text{NORM}(\mu, \sigma^2)$, for i = 1, ..., N; Prior: $\mu \sim \text{NORM}(\mu_0, \tau^2)$
 - Posterior: $\mu \mid (M_1, \dots, M_n, \sigma^2) \sim \text{NORM}(\bar{\mu}, s^2_{\mu})$ with

$$\bar{\mu} = \left(\frac{\sum_{i=1}^{N} M_i}{\sigma^2} + \frac{\mu_0}{\tau^2}\right) / \left(\frac{N}{\sigma^2} + \frac{1}{\tau^2}\right); \quad s_{\mu}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\tau^2}\right)^{-1}.$$

- Posterior mean is a weighted average of sample mean (¹/_N Σ^N_{i=1} M_i) and prior mean (μ₀), with weights ^N/_{σ²} and ¹/_{τ²}.
 Compare s²_μ with Var (¹/_N Σ^N_{i=1} M_i) = ^{σ²}/_N.
- Reference prior sets $\mu_0 = 0$ and $\tau^2 = \infty$. (Improper and flat on μ .)

A Closer Look at Conditional Posterior: Step 2

Given μ :

Likelihood: $M_i | \theta, z_i \sim \text{NORM}(\mu, \sigma^2)$, for i = 1, ..., N; Prior: $\sigma^2 \sim \beta^2 / \chi^2_{\nu}$;

Posterior:

$$(\sigma^2)^{(t+1)} | (M_1, \dots, M_n, \mu) \sim \left[\sum_{i=1}^N (M_i - \mu^{(t+1)})^2 + \beta^2 \right] / \chi^2_{N+\nu}.$$

- The prior has the affect of adding ν additional data points with variance β².
- Reference prior sets $\nu = \beta^2 = 0$. (Improper and flat on $\log(\sigma^2)$.)

Model 2: Account for Selection Effect

Likelihood: The distribution of the observed magnitudes:

$$p(M_i|O_i = 1, \theta, z_i) = \frac{\Pr(O_i = 1|M_i, z_i, \theta)p(M_i|\theta, z_i)}{\int \Pr(O_i = 1|M_i, z_i, \theta)p(M_i|\theta, z_i)dM_i};$$

Here

•
$$M_i | \theta, z_i \sim \text{NORM}(\mu, \sigma^2)$$
 and
• $\text{Pr}(O_i = 1 | M_i, z_i, \theta)) = \text{Indicator}\{M_i < F(z_i)\}$
So $M_i | (O_i = 1, \theta, z_i) \sim \text{TRUNNORM}[\mu, \sigma^2; F(z_i)].$

Prior:
$$\mu \sim \text{NORM}(\mu_0, \tau^2), \sigma^2 \sim \beta^2 / \chi_{\nu}^2$$
;

Posterior: Prior is not conjugate, posterior is not standard.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

MH within Gibbs for Model 2

Neither step of the Gibbs Sampler is a standard dist'n:

Step 1: Update μ from its conditional dist'n given σ^2

Use Random-Walk Metropolis with a NORM($\mu^{(t)}, s_1^2$) proposal distribution.

Step 2: Update σ^2 from its conditional dist'n given μ

Use Random-Walk Metropolis Hastings with a LOGNORM $\left[\log \left(\sigma^{2} \left(t\right)\right), s_{2}^{2}\right]$ proposal distribution.²

Adjust s_1^2 and s_2^2 to obtain an acceptance rate of around 40%.

²If $X \sim \text{LOGNORM}(\mu, \sigma^2)$ then $\log(X) \sim \text{NORM}(\mu, \sigma^2)$.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Simulation Study I

- Sample $M_i \sim \text{NORM}(\mu = -19.3, \sigma = 1)$ for i = 1, ..., 200.
- Sample z_i from $p(z) \propto (1+z)^2$, yielding N = 112.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Simulation I ($\mu_0 = -19.3$, $\sigma_m = 20$, $\nu = 0.02$, $\beta^2 = 0.02$)

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Simulation Study II

- Sample $M_i \sim \text{NORM}(\mu = -19.3, \sigma = 3)$ for i = 1, ..., 200.
- Sample z_i from $p(z) \propto (1 + z)^2$, yielding N = 101.

David A. van Dyk Bayesian Astrostatistics: Part III

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Simulation II ($\mu_0 = -19.3$, $\sigma_m = 20$, $\nu = 0.02$, $\beta^2 = 0.02$)

Hierarchical Models and Shrinkage

Outline

Model Building

- Multi-Level Models
- Example: Selection Effects
- Hierarchical Models and Shrinkage

- Hierarchical Model: Supernovae & Cosmology
- Non-Representiative Data and StratLearn

Frequentists Origins of Hierarchical Models

Suppose we wish to estimate a parameter, θ , from repeated measurements:

$$y_i \overset{\text{indep}}{\sim} \operatorname{NORM}(\theta, \sigma^2) \text{ for } i = 1, \dots, n$$

E.g.: calibrating a detector from *n* measures of known source.

An obvious estimator:

$$\hat{\theta}^{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

What is not to like about the arithmetic average?

Frequency Evaluation of an Estimator

How far off is the estimator?

$$(\hat{\theta}-\theta)^{\mathbf{2}}$$

• How far off do we expect it to be?

$$MSE(\hat{\theta}|\theta) = E\left[(\hat{\theta} - \theta)^2 \mid \theta\right] = \int \left(\hat{\theta}(y) - \theta\right)^2 f_Y(y|\theta) dy$$

- This quantity is called the Mean Square Error of $\hat{\theta}$.
- An estimator is said to be inadmissible if there is an estimator that is uniformly better in terms of MSE:

$$MSE(\hat{\theta}|\theta) < MSE(\hat{\theta}^{naive}|\theta)$$
 for all θ .

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Mean Square Error: An Illustration

EXAMPLE: Suppose $H \sim \text{BINOMIAL}(n = 3, \pi)$.

Recall: If $H|n, \pi \stackrel{\text{dist}}{\sim} \text{BINOMIAL}(n, \pi)$ and $\pi \stackrel{\text{dist}}{\sim} \text{BETA}(\alpha, \beta)$ then $\pi|H, n \stackrel{\text{dist}}{\sim} \text{BETA}(h + \alpha, n - h + \beta).$

Consider four estimates of π :

i) $\hat{\pi}_1 = H/n$, the maximum likelihood estimator of π ; *ii*) $\hat{\pi}_2 = E(\pi|H)$, where π has prior distribution $\pi \sim \text{Beta}(1, 1)$ *iii*) $\hat{\pi}_3 = E(\pi|H)$, where π has prior distribution $\pi \sim \text{Beta}(1, 4)$

iv) $\hat{\pi}_4 = E(\pi | H)$, where π has prior distribution $\pi \sim \text{Beta}(4, 1)$

Frequency Properties of Estimators and Intervals

Remember: If the data is a random sample of all possible data, the estimator $\hat{\pi}_i$ is also random. It has a distribution, mean, and variance.

We can evaluate the $\hat{\pi}_i$ as an estimator of π in terms of its

bias: $E(\hat{\pi}_i \mid \pi) - \pi$ (Is bias bad??) variance: $E\left[\left(\hat{\pi}_i - E(\hat{\pi}_i \mid \pi)\right)^2 \mid \pi\right]$

mean square error: $E[(\hat{\pi}_i - \pi)^2 \mid \pi] = bias^2 + variance$

David A. van Dyk

Bayesian Astrostatistics: Part III

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

MSE of Four Estimators of Binomial Probability

Inadmissibility of the Sample Mean

Suppose we wish to estimate more than one parameter:

$$y_{ij} \stackrel{\mathrm{indep}}{\sim} \mathsf{NORM}(heta_j, \sigma^2)$$
 for $i = 1, \dots, n$ and $j = 1, \dots, G$

The obvious estimator:

$$\hat{\theta}_{j}^{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} y_{ij}$$
 is inadmissible if $G \ge 3$.

The James-Stein Estimator dominates θ^{naive} :

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Shrinkage Estimators

James-Stein Estimator is a shrinkage estimator:

$$\hat{\theta}_{j}^{\mathrm{JS}} = \left(1 - \omega^{\mathrm{JS}}\right)\hat{\theta}_{j}^{\mathrm{naive}} + \omega^{\mathrm{JS}}\nu$$

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

To Where Should We Shrink?

James-Stein Estimators

- Dominate the sample average for *any choice* of *v*.
- Shrinkage is mild and $\hat{\theta}^{\text{JS}} \approx \hat{\theta}^{\text{naive}}$ for most ν .
- Can we choose ν to maximize shrinkage?

$$\hat{\theta}_j^{\rm JS} = (1 - \omega^{\rm JS}) \hat{\theta}_j^{\rm naive} + \omega^{\rm JS} \nu$$

with $\omega^{\rm JS} \approx \frac{\sigma^2/n}{\sigma^2/n + \tau_{\nu}^2}$ and $\tau_{\nu}^2 = {\rm E}[(\theta_i - \nu)^2]$.

• Minimize τ^2 .

The optimal choice of ν is the average of the θ_i .

Illustration

Suppose:

- $y_j \sim NORM(\theta_j, 1)$ for j = 1, ..., 10
- θ_j are evenly distributed on [0,1]

David A. van Dyk Bayesian Astrostatistics: Part III

Hierarchical Models and Shrinkage

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Illustration

Suppose:

- *y_j* ∼ NORM(θ_j, 1) for *j* = 1,..., 10
- θ_j are evenly distributed on [-4,5]

David A. van Dyk Bayesian Astrostatistics: Part III

Intuition

- If you are estimating more than two parameters, it is always better to use shrinkage estimators.
- Optimally shrink toward average of the parameters.
- Most gain when the naive (non-shrinkage) estimators
 - are noisy (σ² is large)
 - are similar (τ^2 is small)
- Bayesian versus Frequentist:
 - From frequentist point of view this is somewhat problematic.
 - From a Bayesian point of view this is an opportunity!
- James-Stein is a milestone in statistical thinking.
 - Results viewed as paradoxical and counterintuitive.
 - James and Stein are geniuses.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Bayesian Perspective

Frequentist tend to avoid quantities like:

- $E(\theta_j)$ and $Var(\theta_j)$
- $E\left[(\theta_j \nu)^2\right]$

From a Bayesian point of view it is quite natural to consider

- the distribution of a parameter or
- Ithe common distribution of a group of parameters.

Models that are formulated in terms of the latter are Hierarchical Models.

A Simple Bayesian Hierarchical Model

Suppose

$$y_{ij}| heta_j \stackrel{ ext{indep}}{\sim} \mathsf{NORM}(heta_j, \sigma^2)$$
 for $i = 1, \dots, n$ and $j = 1, \dots, G$

with

$$\theta_j \stackrel{\text{indep}}{\sim} \mathsf{NORM}(\mu, \tau^2).$$

Let
$$\phi = (\sigma^2, \tau^2, \mu)$$

 $E(\theta_j \mid \mathbf{Y}, \phi) = (1 - \omega^{HB})\hat{\theta}^{\text{naive}} + \omega^{HB}\mu \text{ with } \omega^{HB} = \frac{\sigma^2/n}{\sigma^2/n + \tau^2}.$

The Bayesian perspective

- automatically picks the best ν ,
- provides model-based estimates of ϕ ,
- requires priors be specified for σ^2, τ^2 , and μ .

Color Correction Parameter for SNIa Lightcurves

SNIa light curves vary systematically across color bands.

- Color Correction: Measure the peakedness of color dist'n.
- Details in the next section!!
- A hierarchical model:

$$\hat{c}_{j}|c_{j} \overset{\text{indep}}{\sim} \mathsf{NORM}(c_{j},\sigma_{j}^{2}) \;\; \mathsf{for} \;\; j=1,\ldots,288$$

with

$$c_j \stackrel{\text{indep}}{\sim} \operatorname{NORM}(c_0, R_c^2) \text{ and } p(c_0, R_c) \propto 1.$$

- The measurement variances, σ_i^2 are assumed known.
- We could estimate each c_j via $\hat{c}_j \pm \sigma_j$, or...

Fitting the Hierarchical Model with Gibbs Sampler

$$\hat{c}_{j}|c_{j} \overset{\text{indep}}{\sim} \text{NORM}(c_{j}, \sigma_{j}^{2}) \text{ for } j = 1, \dots, G$$

 $c_{j} \overset{\text{indep}}{\sim} \text{NORM}(c_{0}, R_{c}^{2}) \text{ and } p(c_{0}, R_{c}) \propto 1.$

To Derive the Gibbs Sampler Note:

• Given (c_0, R_C^2) , a standard Gaussian model for each *j*:

$$\hat{c}_j | c_j \overset{\text{indep}}{\sim} \mathsf{NORM}(c_j, \sigma_j^2) \text{ with } c_j \overset{\text{indep}}{\sim} \mathsf{NORM}(c_0, R_c^2).$$

2 Given c_1, \ldots, c_G , another standard Gaussian model:

$$c_j \stackrel{\text{indep}}{\sim} \text{NORM}(c_0, R_c^2) \text{ with } p(c_0, R_c) \propto 1.$$

Fitting the Hierarchical Model with Gibbs Sampler

The Gibbs Sampler:

Step 1: Sample c_1, \ldots, c_G from their joint posterior given (c_0, R_C^2) :

$$\begin{split} \mathbf{c}_{j}^{(t)} & \left| \ (\hat{\mathbf{c}}_{j}, \mathbf{c}_{0}^{(t-1)}, (\mathbf{R}_{C}^{2})^{(t-1)}) \sim \mathsf{NORM}\left(\mu_{j}, \ \mathbf{s}_{j}^{2}\right) \right. \\ \mu_{j} & = \left(\frac{\hat{c}_{j}}{\sigma_{j}^{2}} + \frac{\mathbf{c}_{0}^{(t-1)}}{(\mathbf{R}_{C}^{2})^{(t-1)}}\right) \Big/ \left(\frac{1}{\sigma_{j}^{2}} + \frac{1}{(\mathbf{R}_{C}^{2})^{(t-1)}}\right); \ \mathbf{s}_{j}^{2} & = \left(\frac{1}{\sigma_{j}^{2}} + \frac{1}{(\mathbf{R}_{C}^{2})^{(t-1)}}\right)^{-1}. \end{split}$$

Step 2: Sample (c_0, R_C^2) from their joint posterior given $c_1, \ldots c_G$:

$$[\mathcal{R}_{C}^{2})^{(t)}|(c_{1}^{(t)},\ldots,c_{G}^{(t)})\sim rac{\sum_{j=1}^{G}(c_{j}^{(t)}-ar{c})^{2}}{\chi_{G-2}^{2}} \text{ with } ar{c}=rac{1}{G}\sum_{j=1}^{G}c_{j}^{(t)}$$

 $c_{0}^{(t)}|(c_{1}^{(t)},\ldots,c_{G}^{(t)}),(\mathcal{R}_{C}^{2})^{(t)}\sim \text{NORM}\left(ar{c},(\mathcal{R}_{C}^{2})^{(t)}/G
ight)$
Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Shrinkage of the Fitted Color Correction

Simple Hierarchical Model for c

Pooling may dramatically change fits.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

Standard Deviation of the Fitted Color Correction

Simple Hierarchical Model for c

Borrowing strength for more precise estimates.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

The Bayesian Perspective

Advantages of Bayesian Perspective:

- The advantage of James-Stein estimation is automatic. James and Stein had to find their estimator!
- Bayesians have a method to generate estimators. Even frequentists like this!
- General principle is easily tailored to any problem.
- Specification of level two model may not be critical.
 James-Stein derived same estimator using only moments.

Cautions:

• Results can depend on prior distributions for parameters that reside deep within the model, and far from the data.

Multi-Level Models Example: Selection Effects Hierarchical Models and Shrinkage

The Choice of Prior Distribution

Suppose

$$y_{ij}| heta_j \overset{ ext{indep}}{\sim} \mathsf{NORM}(heta_j, \sigma^2)$$
 for $i = 1, \dots, n$ and $j = 1, \dots, G$

with

$$\theta_j \stackrel{\text{indep}}{\sim} \mathsf{NORM}(\mu, \tau^2).$$

- Reference prior for normal variance: $p(\sigma^2) \propto 1/\sigma^2$, flat on $\log(\sigma^2)$
- Using this prior for the level-two variance,

$$p(\tau^2) \propto 1/\tau^2$$

leads to an improper posterior distribution:

$$p(\tau^2|\boldsymbol{y},\sigma^2) \propto p(\tau^2) \sqrt{\frac{\operatorname{Var}(\boldsymbol{\mu}|\boldsymbol{y},\tau)}{(\sigma^2/n+\tau^2)^G}} \exp\left\{\sum_{j=1}^G -\frac{(\bar{\boldsymbol{y}}_{,j} - \mathrm{E}(\boldsymbol{\mu}|\boldsymbol{y},\tau^2))^2}{2(\sigma^2/n+\tau^2)}\right\}$$

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Outline

Model Building

- Multi-Level Models
- Example: Selection Effects
- Hierarchical Models and Shrinkage

2 Extended Modeling Examples

- Hierarchical Model: Supernovae & Cosmology
- Non-Representiative Data and StratLearn
- Discussion

The Expanding Universe

Redshift

http://www.noao.edu/image_gallery/html/im0566.html

For "nearby" objects,

- z = redshift \propto velocity
 - = H_0 distance.

Hubble's Famous Diagram

Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against distances estimated from involved stars and mean luminosities of nebulae in a cluster. The black discs and full line represent the solution for solar motion using the nebulae individually; the circles and broken line represent the solution combining the nebulae into groups; the cross represents the mean velocity corresponding to the mean distance of 22 nebulae whose distances could not be estimated individually.

Hubble (1929)

The Big Bang!

Distance Modulus in an Expanding Universe

Apparent magnitude - Absolute magnitude = Distance modulus:

$$\boldsymbol{m} - \boldsymbol{M} = \mu$$
 [= 5 log₁₀(distance [Mpc]) + 25

Relationship between μ and z

For nearby objects,

distance = $\mu \propto z$.

(Correcting for peculiar/local velocities.)

• For distant objects, involves expansion history of Universe:

 $\mu = \boldsymbol{g}(\boldsymbol{z}, \Omega_{\Lambda}, \Omega_{\boldsymbol{M}}, \boldsymbol{H}_{\boldsymbol{0}})$

[function of density of dark energy and of total matter]

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

If we observe both m and M we can infer μ and the cosmological parameters.

Type la Supernovae

If mass surpasses "Chandrasekhar threshold" of $1.44M_{\odot}$...

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Due to their common "flashpoint", SN1a have similar absolute magnitudes:

$$M_j \sim \text{NORM}(M_0, \sigma_{\text{int}}^2).$$

Non-linear Regression: $m_{Bj} = g(z_j, \Omega_\Lambda, \Omega_M, H_0) + M_j$

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

PHilips Corrections

- Recall: $M_j \sim \text{NORM}(M_0, \sigma_{\text{int}}^2).$
- Regression:

$$M_j = -\alpha x_j + \beta c_j + M_j^{\epsilon},$$

- $M_j^{\epsilon} \sim \text{NORM}(M_0, \sigma_{\epsilon}^2).$
- x_j is a LC stretch
- c_j is color correction.

•
$$\sigma_{\epsilon}^2 \leqslant \sigma_{\text{int}}^2$$

 Reduce variance, increase precision of estimates.

Low-z calibration sample

Brighter SNIa are slower decliners over time.

Aandel et al (2011)

Non-linear Regression: $m_{Bj} = g(z_j, \Omega_\Lambda, \Omega_M, H_0) + \alpha x_j + \beta c_j + M_j^{\epsilon}$

Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics of the explosion / light curve:

- x_i: rescale light curve to match mean template
- c_j: describes how flux depends on color (spectrum)

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

A Hierarchical Model.

Level 1:³ c_j , x_j , and m_{Bj} are observed with error.

$$\begin{pmatrix} \hat{c}_j \\ \hat{x}_j \\ \hat{m}_{Bj} \end{pmatrix} \sim \text{NORM} \left\{ \begin{array}{c} c_j \\ x_i \\ m_{Bj} \end{pmatrix}, \begin{array}{c} \hat{c}_j \\ \hat{c}_j \end{array} \right\}.$$

Level 2:

- $c_j \sim \text{Norm}(c_0, R_c^2)$
- 2 $x_j \sim \text{NORM}(x_0, R_x^2)$
- Solution The conditional dist'n of m_{Bj} given c_j and x_j is specified via

$$m_{Bj} = \mu_j + M_j^{\epsilon} - \alpha x_j + \beta c_j,$$

with $\mu_i = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0)$ and $M_i^{\epsilon} \sim \text{NORM}(M_0, \sigma_{\epsilon}^2)$.

Level 3: Priors on α , β , Ω_{Λ} , Ω_{M} , H_{0} , c_{0} , R_{c}^{2} , x_{0} , R_{x}^{2} , M_{0} , σ_{ϵ}^{2}

³Shariff et al (2016). BAHAMAS: SNIa Reveal Inconsistencies with Standard Cosmology. ApJ 827, 1.

Other Model Features

Results are based on an SDSS (2009) sample of 288 SNIa.⁴

In our full analysis, we also

- account for systematic errors that have the effect of correlating observation across supernovae,
- 2 allow the mean and variance of M_i^{ϵ} to differ for galaxies with stellar masses above or below 10¹⁰ solar masses, and
- use a larger JLA sample⁵ of 740 SNIa observed with SDSS, HST, and SNLS.

⁵Betoule, et al., 2014, arXiv:1401.4064v1

⁴Shariff et al (2016). BAHAMAS: New SNIa Analysis Reveals Inconsistencies with Standard Cosmology. ApJ 827, 1.

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Shrinkage Estimates in Hierarchical Model

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Shrinkage Errors in Hierarchical Model

Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by

$$M_j^{\epsilon} = m_{Bj} - \mu_j + \alpha x_j - \beta c_j$$
 with $\mu_i = g(z_j, \Omega_{\Lambda}, \Omega_M, H_0)$

Setting

• $\alpha, \beta, \Omega_{\Lambda}$, and Ω_M to their minimum χ^2 estimates,

2 $H_0 = 72 km/s/Mpc$, and

• m_{Bj}, x_j , and c_j to their observed values we have

$$\hat{M}_{j}^{\epsilon} = \hat{m}_{Bi} - g(\hat{z}_{j}, \hat{\Omega}_{\Lambda}, \hat{\Omega}_{M}, \hat{H}_{0}) + \hat{lpha}\hat{x}_{j} - \hat{eta}\hat{c}_{j}$$

with error

$$\approx \sqrt{\operatorname{Var}(\hat{m}_{Bj}) + \hat{\alpha}^2 \operatorname{Var}(\hat{x}_j) + \hat{\beta}^2 \operatorname{Var}(\hat{c}_j)}$$

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Comparing the Estimates

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Model Checking

We model:

$$m_{Bi} = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0) - \alpha x_i + \beta c_i + M_i^{\epsilon}$$

How good of a fit is the cosmological model, $g(z_i, \Omega_{\Lambda}, \Omega_M, H_0)$?

We can check the model by adding a cubic spline term:

$$m_{Bi} = g(z_i, \Omega_{\Lambda}, \Omega_M, H_0) + h(z_i) - \alpha x_i + \beta c_i + M_i^{\epsilon}$$

where, $h(z_i)$ is cubic spline term with K knots.

Model Checking

1:0

Fitted cubic spline, h(z), and its errors:

Can use similar methods to compare with <u>competing cos</u>mological models.

David A. van Dyk

Classification of Sources

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Due to common "flashpoint", SN1a have similar absolute magnitudes:

$$M_j \sim \text{NORM}(M_0, \sigma_{\text{int}}^2).$$

Non-linear Regression: $m_{Bj} = g(z_j, \Omega_{\Lambda}, \Omega_M, H_0) + M_j$

It is critical that we are able to identify a sample of Type 1a Supernovae.

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Identifying Type Ia SN is Critical

Spectral Classification

• Type la

- Reignition of nuclear fusion in WD.
- No Hydrogen, strong Silicon

Others

 Gravitational collapse in massive stellar core.

Spectroscopic and Photometric Data

Spectroscopic Redshift

http://www.noao.edu/image_gallery/html/im0566.html

Can we Train a Classifier

- Train on Spectroscopic
- Target = Photometric

Photometric Redshift

- Integrated average in each passband.
- More readily available, but far less informative.

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Photometric Lightcurve Data

Supernova photometric classification challenge (Kessler, 2010).

Irregular observation times: interpolate for comparison

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and Sleag-earn

Gaussian Process Interpoloation

Herarchical Model: Supernoval, & Cosmology Non-Representiative Data and StratLearn Discussion

Photometric Classification of Supernovae

- Gaussian process fit of LCs (four color bands, g, r, i, z)
- Diffusion map, plus redshift and a measure of brightness, to extract 102 covariates
- Random forest: cross validation to select hyperparameter

^bRevsbech, Trotta, and van Dyk (2018). STACCATO: A Novel Solution to Supernova Photometric Classification with Biased Training Samples, **473**, 3969-3986.

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Outline

Model Building

- Multi-Level Models
- Example: Selection Effects
- Hierarchical Models and Shrinkage

2 Extended Modeling Examples

- Hierarchical Model: Supernovae & Cosmology
- Non-Representiative Data and StratLearn
- Discussion

Spectroscopic and Photometric Data

Spectroscopic Redshift

http://www.noao.edu/image_gallery/html/im0566.html

Can we Train a Classifier

- Train on Spectroscopic
- Target = Photometric

Photometric Redshift

- Integrated average in each passband.
- More readily available, but far less informative.

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Spectroscopic Training Set Not Representative

A General Challenge

- Aim: use training set (*x*, *y*) to predict target set (*y* from *x*).
- Spectroscopic data more available for bright/near objects.
- These object differ systematically from population.

[Image Credit: Izbicki, Lee, Freeman, 2017, AoAS]

wilding Non-Representiative Data and StratLearn Discussion

Covariate Shift

We Assume Covariate Shift:

$$p_{\text{training}}(y \mid x) = p_{\text{target}}(y \mid x)$$
 but $p_{\text{training}}(x) \neq p_{\text{target}}(x)$

Supernovae classification:

Learning methods must be adapted to account for non-representative training data.

Does a new drug improve health outcomes?

Causal Inference:

- Split subjects: treatment (Z = 1) and control (Z = 0) group
- What if treatment group differs systematically from control group, e.g., in terms of *x*.

$$p_{\text{treatment}}(x) \stackrel{?}{=} p_{\text{control}}(x)$$

• Randomiziation is the gold standard, not always possible.

Propensity Scores:

• Rosenbaum and Rubin (1983) define propensity scores:

$$e(x) = \Pr(Z = 1 \mid x).$$

• Demonstrate that *e*(*x*) is a *balancing score*:

$$p_{\text{treatment}}(x \mid e(x)) = p_{\text{control}}(x \mid e(x)).$$

Propensity for Selection to Training Set

Setup:

- We wish to predict *y* from *x* in target set.
- Use prediction function, f(x), estimated in training set.
- In this context we define the propensity score:

 $e(x) = \Pr(\text{training set } | x), \text{ with } 0 < e(x) < 1.$

Result:

Because e(x) is a balancing score, under covariate shift,

$$p_{\text{target}}(x, y \mid e(x)) = p_{\text{train}}(x, y \mid e(x)).$$

I.e, given e(x) the joint test and target distributions are equal. It follows, that for any loss function $\ell(f(x), y)$,

$$\mathrm{E}_{\mathrm{target}}[\ell(f(x), y) \mid \boldsymbol{e}(x)] = \mathrm{E}_{\mathrm{train}}[\ell(f(x), y) \mid \boldsymbol{e}(x)].$$

StratLearn: Improved Learning under Covariate Shift

Propensity scores

Estimate:

 $\hat{e}(x) = \Pr(\text{target set} \mid \text{covariates})$

- Check: $p_{\text{train}}(x \mid \hat{e}(x)) = p_{\text{target}}(x \mid \hat{e}(x))$
- Given e(x), expected loss of predictor,
 f(x), is same in target & training sets.

StratLearn

- Stratify training & target sets on $\hat{e}(x)$.
- Classify data separately in each strata.

Reduce covariate shift and thus expected classification/prediction error.

Partition on two covariates

Partition on all covariates

Reference: Autenrieth, van Dyk, Trotta, and Stenning (2023). Stratified Learning: A General-Purpose Statistical Method for Improved Learning under Covariate Shift, SADM, 1-16.

Results for Supernova Classification

ROC for StratLearn and several existing weighting methods.

- "Biased" ignores Covariate Shift.
- With an unbiased training set AUC = 0.965.

Weighting Methods for Cov Shift

$$\mathrm{E}_{\mathrm{target}}[\ell(f(x), y)] = \mathrm{E}_{\mathrm{train}}\left[\frac{p_{\mathrm{target}}(x)}{p_{\mathrm{train}}(x)}\ell(f(x), y)\right]$$

- KLIEP (Sugiyama et al., 2008)
- uLSIF (Kanamori et al.. 2009);
- NN: Nearest-Neighbor (Kremer et al.. 2015);
- IPS: probabilistic classification (Kanamori et al.. 2009);

Unfortunately, large weights are highly variable and cause unreliable target predictions.

Example: Photo-z Conditional Density Estimation

Objective:

Conditional density estimation f(z|x) of redshift given photometric magnitudes.

Significant covariate shift in magnitudes.

Data (following Izbicki et al., 2017):

- 468k galaxies (Sheldon et al. 2012), spectroscopic redshift, 5 photometric magnitudes.
- Create non-representative training set.
- Add $k \in \{10, 50\}$ i.i.d. Gaussian covariates.

What is the effect of high-dimensional irrelevant covariates?

Example: Photo-z conditional density estimation

Generalized risk (Izbicki, et al., 2017):

$$\hat{R}(\hat{f}) = \frac{1}{n_{\text{target}}} \sum_{i=1}^{n_{\text{target}}} \int \hat{f}^2(z | x_{\text{target}}^{(i)}) dz - \frac{2}{n_{\text{train}}} \sum_{i=1}^{n_{\text{train}}} \hat{f}(z_{\text{train}}^{(i)} | x_{\text{train}}^{(i)}) \hat{w}(x_{\text{train}}^{(i)}),$$

Conditional density estimation models:

- hist-NN, ker-NN, Series
- Comb (combination model):

$$\hat{f}^{\alpha}(\boldsymbol{Z}|\boldsymbol{X}) = \sum_{k=1}^{p} \alpha_{k} \hat{f}_{k}(\boldsymbol{Z}|\boldsymbol{X}),$$
[where $\alpha_{i} \ge 0$ and $\sum_{k=1}^{p} \alpha_{k} = 1.J$

StratLearn:

- Minimize risk separately in each stratum (with $w(x) \equiv 1$).
- Optimize α separately for each strata (with $w(x) \equiv 1$).

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Photo-z: Stress Test:

Target risk of photometric redshift estimates, using different sets of predictors.

StratLearn is especially advantageous with high dimensional covariates.

Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Outline

Model Building

- Multi-Level Models
- Example: Selection Effects
- Hierarchical Models and Shrinkage

2 Extended Modeling Examples

- Hierarchical Model: Supernovae & Cosmology
- Non-Representiative Data and StratLearn
- Discussion
Hierarchical Model: Supernovae & Cosmology Non-Representiative Data and StratLearn Discussion

Discussion

- Estimation of groups of parameters describing populations of sources not uncommon in astronomy.
- These parameters may or may not be of primary interest.
- Modeling the distribution of object-specific parameters can dramatically reduce both error bars and MSE ...
- ... especially with noisy observations of similar objects.
- Shrinkage estimators are able to "borrow strength".

Don't throw away half of your toolkit!! (Bayesian and Frequency methods)