Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting 00000

Advice and Resources

Quantification of Discovery in Astrophysics Frequentist and Bayesian Perspectvies

David A. van Dyk

Statistics Section, Imperial College London

HEAD Meetings 2017, Sun Valley, Idaho

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $_{\rm OOOOO}$

Advice and Resources

Searching for Structure

• Bump Hunting: Is there a bump?

E.g., spectral line or Higgs Boson.

• Are circled photons due to background or a quasar jet?

Scientific and Statistical Issues

- High-stakes science: discovery vs. estimation.
- Model selection is much harder than estimation.
- Frequentist and Bayesian methods: different conclusions.
- Is a non-partisan approach possible?

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Comparing Models

|Δm²₃₂| well constrained, degeneracy of sign with other parameters.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $_{\rm OOOOO}$

Advice and Resources

Outline

2 Bayesian Discovery

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting 00000

Advice and Resources

Outline

2 Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Statistical Framework for Discovery

Model / Hypothesis Testing

- H₀: The null hypothesis (e.g., no jet; known cosmic sources)
- H1: The alternative hypothesis (e.g., jet; dark matter)
- Without further evidence, H_0 is presumed true.
- "Deciding" on *H*₁ means scientific discovery: new physics.
- Model Selection: No presumed model. (normal/inverted hierarchy)

Appropriate Statistical Approach Depends on

- Is H₀ the presumed model? or more than 2 possible models?
- Is H₀ a special case of H₁, "nested models"
- Parameters: (i) Unknown values under H₀?

(ii) No "true value" under H_0 ?, (iii) Boundary concerns.

• Bayesian vs. Frequentist methods

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $_{\rm OOOOO}$

Advice and Resources

Statistical Criterion for Discovery

The most common criterion is the p-value,

$$\mathsf{p} ext{-value} = \mathsf{Pr}\left(\mathcal{T}(\mathbf{y}) \geq \mathcal{T}(\mathbf{y}_{\mathrm{obs}}) \mid \mathcal{H}_{\mathsf{0}}
ight)$$

• $T(\cdot)$ is a *Test Statistic*, e.g., $\Delta \chi^2$ or likelihood ratio statistic

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Computing p-values

The most common criterion is the p-value,

$$p-value = Pr\left(T(y) \ge T(y_{obs}) \mid H_0\right)$$

Requires distribution of T(y) under H_0

Distributions depend on unknown parameters

(e.g., continuum / background parameters)

- Standard Theory: models nested, all parameters have values under *H*₀, "large" data set. ... often violated in astro/physics
- Monte Carlo / Bootstrap infeasible with 5σ criterion.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $_{\rm OOOOO}$

Advice and Resources

Misuse of P-values

The most common criterion is the p-value,

p-value
$$= \mathsf{Pr}\left(\mathcal{T}(m{y}) \geq \mathcal{T}(m{y}_{\mathrm{obs}}) \mid m{H}_0
ight)$$
 with $\mathcal{T} =$ test statistic

But....

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting 00000

Advice and Resources

Misuse of P-values

The most common criterion is the p-value,

p-value
$$= \mathsf{Pr}\left(\mathcal{T}(\mathbf{y}) \geq \mathcal{T}(\mathbf{y}_{\mathrm{obs}}) \mid \mathcal{H}_0
ight)$$
 with $\mathcal{T} = \mathsf{test}$ statistic

But....

NATURE | RESEARCH HIGHLIGHTS: SOCIAL SELECTION

Psychology journal bans P values

Test for reliability of results 'too easy to pass', say editors.

Chris Woolston

26 February 2015 | Clarified: 09 March 2015

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Misuse of P-values

The most common criterion is the p-value,

p-value
$$= \mathsf{Pr}\left(\mathcal{T}(y) \geq \mathcal{T}(y_{\mathrm{obs}}) \mid \mathcal{H}_0
ight)$$
 with $\mathcal{T} =$ test statistic

But....

NATURE | RESEARCH HIGHLIGHTS: SOCIAL SELECTION

Psychology journal bans P values

Test for reliability of results 'too easy to pass', say editors.

Chris Woolston

26 February 2015 | Clarified: 09 March 2015

Statisticians issue warning over misuse of P values

Policy statement aims to halt missteps in the quest for certainty.

Monya Baker

07 March 2016

(ASA Statement on Statistical Significance and P-values) February 5, 2016

Advice and Resources

The Problem with P-values

The misuse of P-values:

- Do not measure relative likelihood of hypotheses.
- Large p-values do not validate *H*₀.
- May depend on bits of H₀ that are of no interest.
- Single filter for publication / judging quality of research.
- Should be viewed as <u>a</u> data summary, not <u>the</u> summary

Reviewers, Editors, and Readers want a simple black-and-white rule: p < 0.05, $or > 5\sigma$.

But, statistics is about quantifying uncertainty, not expressing certainty.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $_{\rm OOOOO}$

Advice and Resources

Outline

Examples: Mass Hierarchy and Bump Hunting

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

A Bayesian Criterion for Discovery

When trying to detect a jet, suppose we find

$$\mathsf{p} ext{-value} = \mathsf{Pr}\left(\mathcal{T}(\mathbf{y}) \geq \mathcal{T}(\mathbf{y}_{\mathrm{obs}}) \mid \mathsf{No} \; \mathsf{Jet}
ight) = \mathsf{0.0001}$$

Questions

- Can we conclude that there is probably a Jet?
- Does Pr(Data | No Jet) small imply Pr(No Jet | Data) is small?

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

A Bayesian Criterion for Discovery

When trying to detect a jet, suppose we find

$$p-value = Pr\left(T(y) \ge T(y_{obs}) \mid No Jet\right) = 0.0001$$

Questions

- Can we conclude that there is likely a Jet?
- Does Pr(Data | No Jet) small imply Pr(No Jet | Data) is small?

Order of conditioning matters!

Consider Pr(A | B) and Pr(B | A) with

- A: A person is a woman.
- B: A person is pregnant.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Bayesian Methods

Bayes Theorem

 $\label{eq:Pr(Jet | Data)} \Pr(Jet \mid Data) = \frac{\Pr(Data \mid Jet) \Pr(Jet)}{\Pr(Data \mid Jet) \Pr(Jet) + \Pr(Data \mid No \; Jet) \Pr(No \; Jet)}$

Bayesian methods

- have cleaner mathematical foundations
- more directly answer scientific questions

... but they depend on prior distributions

• Pr(Jet) = probability of a Jet before seeing data.

Prior distributions must also be specified for model parameters.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting 00000

Advice and Resources

The Problem with Priors

Bayesian Criteria for Discovery:

Bayes Factor =
$$\frac{p_0(y)}{p_1(y)}$$
 with $p_i(y) = \int p_i(y|\theta)p_i(\theta)d\theta$.

$$Pr(H_0 \mid y) = \frac{p_0(y)\pi_0}{p_0(y)\pi_0 + p_1(y)\pi_1} = \frac{\pi_0}{\pi_0 + \pi_1(Bayes Factor)^{-1}}$$

Example: (simplified) Higgs search

Likelihood: $y|\lambda \sim \text{Poisson}(10+\lambda)$

Test:
$$\lambda = 0$$
 vs $\lambda > 0$

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Choice of Prior Matters!

Bayes Factor

Must think hard about choice of prior and report!

Frequentist vs Bayesian: Does it Matter?

Model Testing and Model Selection

- Frequency and Bayesian methods may not agree.
 - Bayes automatically penalizes larger models (Occam's Razor)
 - and adjusts for trial factors / look elsewhere effect.
- Choice of prior distribution is often critical.
- Difficult cases: Dimension of model parameters differ.
 - Higgs search: location and intensity of bump above bkgd.
 - Added structure in image.
- Anti-conservative: p-value $\ll \Pr(H_0 \mid y)$.
- Remember:

p-value and $Pr(H_0 | y)$ quantify different things!

Interpreting p-value as $Pr(H_0 | y)$ may significantly overstate evidence for discovery.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Example: Searching for a bump above background.

Solution: Report both.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $_{\odot \odot \odot \odot \odot}$

Advice and Resources

Outline

Using P-values For Discovery

2 Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting •0000 Advice and Resources

Normal Hierarchy versus Inverted Hierarchy

Non-nested parameterized models

 H_0 : normal hierarchy H_1 : inverted hierarchy

i.e.,
$$\Delta m_{32}^2 \le 0$$

i.e., $\Delta m_{32}^2 > 0$

... recall $|\Delta m_{32}^2|$ is well constrained.

Computing a p-value using LRT

- Non-nested models: If no unknown parameters in either model.
 - LRT follows a Gaussian distribution under H₀ or H₁.
- With unknown parameters (e.g., Bremsstrahlung vs. Power Law)
 - Std theory (Wilks, Chernoff) does not apply: dist'n of LRT unknown.
 - Problem-specific theory, requires strong assumptions.
 - What about uncertainty in |Δm²₃₂|?
 - PPP-values / parametric bootstrap, (e.g., Protassov et al., ApJ, 2002).

Back to Monte Carlo / Bootstrap? at 5σ ??

Is There an Easier Solution?

Two paradigms for statistical inference:

Likelihood: inference based on $p(y | \theta)$ and LRT, p-value, etc. Bayesian: inference based on $p(\theta | y) \propto p(y | \theta)p(\theta)$.

Model Fitting

- Specify one model, fit parameters, estimate uncertainty.
- Frequency and Bayesian methods tend to agree.
- Choice of prior distribution is often not critical.

Some "model selection" can be accomplished via model fitting, e.g., confidence intervals.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $_{\rm OO} \bullet_{\rm OO}$

Advice and Resources

Normal versus Inverted Hierarchy: Easier Way?

Non-nested parameterized models

 H_0 : normal hierarchyi.e., $\Delta m_{32}^2 \leq 0$ H_1 : inverted hierarchyi.e., $\Delta m_{32}^2 > 0$

Is there an easier solution??

Why not just compute $Pr(H_0 \mid y) = Pr(\Delta m_{32}^2 \le 0 \mid y)$?

In this case Bayes Criterion is particularly easy:

Posterior Odds =
$$\frac{\Pr(\Delta m_{32}^2 \le 0 \mid y)}{\Pr(\Delta m_{32}^2 > 0 \mid y)}$$

...model fitting with Δm_{32}^2 a free parameter.

One model and one prior, easy to compute, not sensitive to prior... what's not to like? Bayesian solution is easier in this case.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting $000 \bullet 0$

Advice and Resources

Bump Hunting: Frequency vs Bayes

Frequency Methods:

- Fixed bump location: standard methods apply
- Multiple testing problem.

(Algeri, van Dyk et al., 2016)

Bayesian Methods:

- Prior specification is key.
 - Intensity parameter
 P-values favor H₁
 Use prior most favorable for H₁.
 Bound Pr(H₀ | Data).
 - Location: Prior automatically corrects for multiple testing.

(van Dyk and Jones, 2017+)

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Bump Hunting: Frequency vs Bayes

Prior on location naturally and simply corrects for multiple testing.

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Outline

Using P-values For Discovery

2 Bayesian Discovery

3 Examples: Mass Hierarchy and Bump Hunting

Frequentist or Bayesian?

Do you have to choose??

- Bayes prescribes methodology.
- Frequentists evaluate methods.
- Frequency evaluation of Bayesian methods.
- Model fitting: often little difference in fits and errors.
- Why not control rate of false detection

and assess probability of new physics?

• Why throw away half of your tool box?

Be open to both Bayesian and Frequency based methods.

- Now lots of Bayesian and Frequentist methods in HEA.
- My experience with cosmologists and particle physicists.

Using	P-values	For	Discovery	

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

Strategies

What is a astrophysicist to do?

- Controlling false discovery is critical in physical sciences.
- Comparing p-values with a predetermined significant level can control false discovery.... *if used with care, e.g., no cherry picking!*
- When confronted with small p-values researchers ...even statisticians!!... may believe H₀ is unlikely.
- Bayesian solutions can better quantify likelihood of H₀ / H₁.
- Solution: Compute both global p-value and Bayes Factor.

But be Careful...

- quantification of p-values in non-standard problems
- 2 choice and validation of prior distributions

remain challenging!

Using	P-values	For	Discovery	

Bayesian Discovery

Examples: Mass Hierarchy and Bump Hunting

Advice and Resources

References

Protassov, R., van Dyk, D., Connors, A., Kashyap, V., Siemiginowska, A. (2002). Statistics: Handle with Care, Detecting Multiple Model Components with LRT. <i>The Astrophysical Journal</i> , 571 , 545–559.
van Dyk, D. A. (2014). The Role of Statistics in the Discovery of a Higgs Boson. Annual Review of Statistics and Its Application, 1, 41–59.
Stein, N. M., van Dyk, D. A., Kashyap, V. L., and Siemiginowska, A. (2015). Detecting Unspecified Structure in Low-Count Images. <i>The Astrophysical Journal</i> , 813 , 66 (15pp).
Algeri, S., Conrad, J., and van Dyk, D. A. (2016). Comparing Non-Nested Models in the Search for New Physics. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 458 (1), L84-L88.
Algeri, S., van Dyk, D. A., Conrad, J., and Anderson, B. (2016). Methods for Correcting the Look-Elsewhere Effect in Searches for New Physics. <i>Journal of Instrumentation</i> , 11 , P12010.
Algeri, S. and van Dyk, D. A. (2017+). Testing one Hypothesis Multiple Times. In preparation.