A Statistical Approach to Recognizing Source Classes for Unassociated Sources in the Second Fermi-LAT Catalog

Maria Elena Monzani
and Nicola Omodei
on behalf of the Fermi-LAT Collaboration

HEAD Meeting – Apr 07, 2013 – Monterey, CA
1873 sources in 2FGL; 573 unassociated after all association efforts (~30%)

See Elizabeth C. Ferrara, session 103.04 and http://arxiv.org/abs/1108.1435
How to predict possible classifications

• Implement statistical methods to determine likely source classifications for 2FGL unassociated sources
 – goal: predict the likely classification of Fermi sources based solely on their observed gamma-ray properties
 – principle: use the properties of known objects to implement a classification analysis which provides the probability for an unidentified source to belong to a given astronomical class
 – examples: Classification Trees (this work), Logistic Regression and Artificial Neural Networks (see David Salvetti, poster 117.07)
 – input sample: all the associated AGN and blazars (1077 sources, 60% of total); all the associated/identified pulsar and pulsar-like objects (includes SNR and potential associations: 180 sources, 10% of total)

• Classification Trees are a well-established class of algorithms in the general framework of data mining and machine learning
 – definition: Classification Trees are built through a process known as binary recursive partitioning, an iterative process of splitting the data into partitions using *if-then* logical conditions
 – advantage: Classification Trees are especially flexible in handling sparse or uneven distributions
Selection of the training variables

• This is a crucial step in the analysis:
 – physical considerations about the gamma-ray properties of each class
 – ensure that the selected variables are not dependent on the flux, the location or the significance of the source
 – avoid using the Galactic coordinates of the sources

• Ranking of the selected variables after training:
 – variability index (20%)
 – spectral index (16%)
 – curvature signif. (13%)
 – low energy flux (10%)
 – low and high energy hardness ratios (15%)
 – 3-band curvature (7%)
 – intermediate energy hardness ratios (10%)
 – 4-band fluxes (9%)
The result of the training process is the Predictor, a parameter describing the probability for any given source to be either an AGN or a pulsar-like source. 2 fiducial thresholds: PSR candidates - \(P < 0.41 \), AGN candidates - \(P > 0.62 \) fiducial regions: 82% efficiency and <5% contamination on input samples.
Validation of the Classification Analysis

- 30% of input sources, randomly selected from AGN and pulsar samples, were set aside for internal validation (KS test and efficiency comparisons).
- The Galactic latitude distribution for pulsar and AGN candidates mirrors the expected one (as observed for the Associated sources).
- Further validation will be performed using input from multi-wavelength observations (now in progress; was successfully implemented for 1FGL).
Conclusions

- We implemented a method to predict likely source classifications for 2FGL unassociated sources, based solely on their gamma-ray properties
 - the performance of the method has been validated in several ways
 - the results from this technique have been used to help inform the next set of multi-wavelength observations