Modeling GRB (and other) populations: Lessons from mwé&lenodeling
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e = precise = uncertain

e Source properties: Each GRB has properties (e.g., peak luminos-
ity, distance, direction, spectral parameters). population distribu-

tionis f(S;60) (e.g., luminosity function), with parametets
e Observables:Source properties are not directly observable. The go-
servables) (e.g., peak flux, redshift, direction, spectrum) are relat¢

to S via some mapping — O (inverse-sguare law, cosmology, ex
tinction), which may have unknown parametexs This implies an

observable distributior »(O;8) .

e Measurement error. Observables must be estimated from analysgs
of “raw” survey data; estimates aumcertain Uncertainties may be
summarized, e.qg., by? or likelihood contours.

e Selection: Measurements enter the final source catalog only if thpy
meet detection and/or classification criteria (burst ®mggyiteria; so-
lar flare rejection).

Primary goal of population modeling:
Learn aboutf(S; 6) or X(O; 0) from the survey catalog

(We may alternatively seek to infer tile— O mapping, e.g., infer the cosmology.)

Simulation

Simulate a (peak) flux survey catalog (producing a “numbents’ or
“log N—log S” distribution):

e Draw source fluxes from a 3-parameter slowly rolling povaav-tlis-
tribution (& is a fiducial flux):
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e For each source, simulate a measurement from a photon nguidt
tector with Poisson distributed counts.

e Consider the measurement a detection only if the counts aneeab
fixed threshold.

Instrument parameters were chosen so the dimmest detextszes hads 15% flux
uncertainties.

Though clearly a “caricature” of real surveys, this setupved us to generatand
analyzehundredsof simulated survey catalogs relatively quickly.

Multilevel Modeling

Inverse methodfy to undo the survey process loprrecting catalog
estimates. Models are assessed by comparison with corrected data

Forward methodspply the survey process to candidate modelsrés
dict the catalog. Models with superior predictions are favored.

Multilevel modeling: A forward approach that handles measuremgnt
uncertainties by dividing the prediction process into two pieces:

e Upper level: Consider the sources’ tru@ values to be drawn in-
dependently front(O; #), adjusted by aetection efficiency n(O)
— {0;} fori = 1to N (catalog size).

e Lower level: With O; given, model the data for each sourde,,
via independent sampling distributiong,D;|0;). Considered as a

function of O;, this defines aource likelihood ¢;(O;) , for each
source (e.g.o< exp[—x2(0;) /2] for x? fitting of observables).

Parameter count: The number of parameters in this model is
UV — Vpop _|_ VObS XN

# of population parameters ﬁhj J
# of uncertain observables per souwce

The number of parametegsows with catalog sizghis makes accurate
Inference challenging when there is significant measurement error.

Multilevel modeling is now seen as a framework uniting mamyipusly distinct parts
of statistics: measurement error models, shrinkage esiimaridge regression, latent
variable methods, and empirical and hierarchical Bayeshuods.

Bayesian Multilevel Modeling

We can use a multilevel model to calculate the joint likelihood for all tije
population and source parameters, i.e., the probability for predictingjal
the dataD, if these parameters are knowfx.t, {O;}) = p(D|6,{O;}).

For astronomical surveys, we adopt @mmomogeneous Poisson poin
processmnodel. We divide the€ space into empty regions;, and small
regionso; populated by a single source. The figure shows the constrjic-
tion for a single observable, peak fldx
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The likelihood is found by multiplying independent Poisson probabij-
ties for empty intervals, and intervals with a single event:
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In a Bayesian calculation, we summarize the information about the ppp-
ulation parameters byarginalizing(integrating over) the uncertain
source parameters:
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This is themarginal likelihood for the population parameters

Accounting For Source Uncertainties

Ignoring Uncertainties Corrupts Inferences

An important virtue ofBayesianmultilevel modeling is its ability to
account for source uncertainties via marginalization.

It Is tempting to argue that, as catalog size grows, the measuatame
rors should “average out,” so they may be ignored. One would then just
plug in the best-fit estimates for the observablesifh, {O;}). The ma-
jority of published GRB population studies do this (or something simi-
ar).

We simulated 100 data sets as described above, and found maximum

likelihood estimates fofa, o), using both the marginal likelihood, and
just plugging in the best-fit fluxes. The figure shows resulting estisnat
(blue circles= Bayesian, green crossesplug-in), for catalogs ofV =
100 and 1000 bursts. (Crosshair shows true values.)

0.00 w 0.00 w

N =100 N = 1000

—0.05 F Q.05 [ Oml ................................................ i

—-0.10 —0.10

_015 I I : I I I I _015 I I - I I I I
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6
0% a

For N = 100, the Bayesian estimates are distributed roughly symmet-
rically about the truth; plug-in estimates are biased toward largad
smallc’, though the uncertainties are large enough that plug-in is some-
times accurate.

A BATSE Issue: Detection Efficiency Accurae

Accurate population modeling requires accurate efficidnngtions for
analyzed catalogs.

Calculating the survey efficiency is one of the most challegdasks
for surveyors, typically requiring extensive and detaiMdnte Carlo
simulation of the instrument and analysis pipeline.

Limitations of the BATSE efficiency. For BATSE, two effects that
would have significantly complicated the calculation wenatted: at-
mospheric scatteringandcounting uncertainties

We have simulated a significantly simplified BATSE missiaon pho-
ton counting and triggering through a multilevel analydiswing GRB
peak fluxes from a power law distribution. This allows exptan of
the importance of these two effects. The figure shows thriéereint
efficiency calculations: dotted—ignores scattering anghtiog uncer-
tainties; dashed—incorporates counting uncertaintiebg-s-adds at-
mospheric scattering (true efficiency).
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We find the faint end of the efficiency function is significantly alterep
by omitting either effect. Using an efficiency that ignores atmosphe
scattering and counting uncertainties seriously corrupts inferences

As an attempted remedy, we explotadesholdinghe catalog: only an-
alyzing GRBs with fluxes> ¢y, and finding a threshold so the approx
Imate and accurate likelihoods were close. We simulated several pur
veys, calculating the true and approximate likelihoods for bursts abgve
a threshold, both for the true population parameters, and the resulfing
maximume-likelinood fit. Accurate inference requires getting ¢thange

In log-likelihood, AL, correct to< 1. The figures shows scatterplots o
the true and approximat&L, for various threshold choices.
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The threshold must be disappointingly high, corresponding~400.95.
Thus many faint bursts cannot be accurately modeled with tabulateq ef-
ficiencies. This cuts the useable BATSE catalog size by néaply

The 4B catalog team recognized this problem and an improved algo-
rithm was developed. Unfortunately work on a more accurate efficiecy
was not completed.

For N = 1000, the Bayesian estimates have converged closer to fhe
truth. The plug-in estimates have converg@eayfrom the truth.

Inflating Uncertainties Corrupts Inferences

We have adapted this same framework to the analysis of other popjla-
tions, e.qg., trans-Neptunian objects (TNOs, including Kuiper Belt Op-
jects, KBOs). There we have encountered the practice of surveyors
sometimes reporting “inflated” uncertainties, in an effort to be “coj-
servative.” Despite the laudable motivation of this practice, it cosrugt
Inferences.

We repeated the previous exercise with a new set of simulations. But
here the green crosses are estimates from a Bayesian calculation, jonl
with uncertainties inflated by 15%.
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Clearly, the uncertainties must be accurately calculated (andtegf)or
to guarantee sound inferences.

Nonparametric Method

Astronomers often use nonparametric (inverse) methods for analy4ing
survey data: Lynden-Bell§'— method, Efron-Petrosian estimators, stgp-
wise maximum likelihood (SWML). Unfortunatelypeasurement error
greatly compromises the performance of nonparametric methods

The best-studied such approach—mixture deconvolution—has a depres:
Ingly slow asymptotic convergence rate: itagarithmicin N for Gaus-
sian errors (compare t@ N for conventional parametric modeling).

Recent research finds promise in nonparametric Bayesian multilevel jnoc
eling, but the field is still young.
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