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Astronomers often use nonparametric (inverse) methods for analyzing
survey data: Lynden-Bell’sC− method, Efron-Petrosian estimators, step-
wise maximum likelihood (SWML). Unfortunately,measurement error
greatly compromises the performance of nonparametric methods.

The best-studied such approach—mixture deconvolution—has a depress-
ingly slow asymptotic convergence rate: it islogarithmicin N for Gaus-
sian errors (compare to

√
N for conventional parametric modeling).

Recent research finds promise in nonparametric Bayesian multilevel mod-
eling, but the field is still young.

We find the faint end of the efficiency function is significantly altered
by omitting either effect. Using an efficiency that ignores atmospheric
scattering and counting uncertainties seriously corrupts inferences.

As an attempted remedy, we exploredthresholdingthe catalog: only an-
alyzing GRBs with fluxes> Φth, and finding a threshold so the approx-
imate and accurate likelihoods were close. We simulated several sur-
veys, calculating the true and approximate likelihoods for bursts above
a threshold, both for the true population parameters, and the resulting
maximum-likelihood fit. Accurate inference requires getting the change
in log-likelihood,∆L, correct to≪ 1. The figures shows scatterplots of
the true and approximate∆L, for various threshold choices.

The threshold must be disappointingly high, corresponding toη ≈ 0.95.
Thus many faint bursts cannot be accurately modeled with tabulated ef-
ficiencies. This cuts the useable BATSE catalog size by nearly1/2.

The 4B catalog team recognized this problem and an improved algo-
rithm was developed. Unfortunately work on a more accurate efficiency
was not completed.

Accurate population modeling requires accurate efficiencyfunctions for
analyzed catalogs.

Calculating the survey efficiency is one of the most challenging tasks
for surveyors, typically requiring extensive and detailedMonte Carlo
simulation of the instrument and analysis pipeline.

Limitations of the BATSE efficiency: For BATSE, two effects that
would have significantly complicated the calculation were omitted: at-
mospheric scattering, andcounting uncertainties.

We have simulated a significantly simplified BATSE mission, from pho-
ton counting and triggering through a multilevel analysis,drawing GRB
peak fluxes from a power law distribution. This allows exploration of
the importance of these two effects. The figure shows three different
efficiency calculations: dotted—ignores scattering and counting uncer-
tainties; dashed—incorporates counting uncertainties; solid—adds at-
mospheric scattering (true efficiency).

For N = 1000, the Bayesian estimates have converged closer to the
truth. The plug-in estimates have convergedawayfrom the truth.

Inflating Uncertainties Corrupts Inferences

We have adapted this same framework to the analysis of other popula-
tions, e.g., trans-Neptunian objects (TNOs, including Kuiper Belt Ob-
jects, KBOs). There we have encountered the practice of surveyors
sometimes reporting “inflated” uncertainties, in an effort to be “con-
servative.” Despite the laudable motivation of this practice, it corrupts
inferences.

We repeated the previous exercise with a new set of simulations. But
here the green crosses are estimates from a Bayesian calculation, only
with uncertainties inflated by 15%.

Clearly, the uncertainties must be accurately calculated (and reported)
to guarantee sound inferences.

Ignoring Uncertainties Corrupts Inferences

An important virtue ofBayesianmultilevel modeling is its ability to
account for source uncertainties via marginalization.

It is tempting to argue that, as catalog size grows, the measurement er-
rors should “average out,” so they may be ignored. One would then just
plug in the best-fit estimates for the observables inL(θ, {Oi}). The ma-
jority of published GRB population studies do this (or something simi-
lar).

We simulated 100 data sets as described above, and found maximum
likelihood estimates for(α, α′), using both the marginal likelihood, and
just plugging in the best-fit fluxes. The figure shows resulting estimates
(blue circles= Bayesian, green crosses= plug-in), for catalogs ofN =
100 and 1000 bursts. (Crosshair shows true values.)

For N = 100, the Bayesian estimates are distributed roughly symmet-
rically about the truth; plug-in estimates are biased toward largeα and
smallα′, though the uncertainties are large enough that plug-in is some-
times accurate.

Simulate a (peak) flux survey catalog (producing a “number counts” or
“ log N–log S” distribution):

• Draw source fluxes from a 3-parameter slowly rolling power-law dis-
tribution (Φ0 is a fiducial flux):
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• For each source, simulate a measurement from a photon counting de-
tector with Poisson distributed counts.

• Consider the measurement a detection only if the counts are above a
fixed threshold.

Instrument parameters were chosen so the dimmest detected sources had≈ 15% flux
uncertainties.

Though clearly a “caricature” of real surveys, this setup allows us to generateand
analyzehundredsof simulated survey catalogs relatively quickly.

We can use a multilevel model to calculate the joint likelihood for all the
population and source parameters, i.e., the probability for predicting all
the data,D, if these parameters are known:L(θ, {Oi}) ≡ p(D|θ, {Oi}).
For astronomical surveys, we adopt aninhomogeneous Poisson point
processmodel. We divide theO space into empty regions∆j, and small
regionsδi populated by a single source. The figure shows the construc-
tion for a single observable, peak fluxΦ.
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The likelihood is found by multiplying independent Poisson probabili-
ties for empty intervals, and intervals with a single event:

L(θ, {Oi}) ∝ exp

[

−
∫

dO η(O)Σ(O; θ)

] N
∏

i=1

ℓi(Oi)Σ(Oi; θ)

In a Bayesian calculation, we summarize the information about the pop-
ulation parameters bymarginalizing(integrating over) the uncertain
source parameters:

L(θ) ∝ exp

[

−
∫

dO η(O)Σ(O; θ)

] N
∏

i=1

∫

dOi ℓi(Oi)Σ(Oi; θ)

This is themarginal likelihood for the population parameters.

Inverse methodstry to undo the survey process bycorrectingcatalog
estimates. Models are assessed by comparison with corrected data.

Forward methodsapply the survey process to candidate models topre-
dict the catalog. Models with superior predictions are favored.

Multilevel modeling: A forward approach that handles measurement
uncertainties by dividing the prediction process into two pieces:

• Upper level: Consider the sources’ trueO values to be drawn in-
dependently fromΣ(O; θ), adjusted by adetection efficiencyη(O)

→ {Oi} for i = 1 to N (catalog size).

• Lower level: With Oi given, model the data for each source,Di,
via independent sampling distributions,p(Di|Oi). Considered as a
function ofOi, this defines asource likelihood, ℓi(Oi) , for each

source (e.g.,∝ exp[−χ2(Oi)/2] for χ2 fitting of observables).

Parameter count: The number of parameters in this model is

ν = νpop + νobs × N

# of population parameters inθ
# of uncertain observables per source

The number of parametersgrows with catalog size; this makes accurate
inference challenging when there is significant measurement error.

Multilevel modeling is now seen as a framework uniting many previously distinct parts
of statistics: measurement error models, shrinkage estimation, ridge regression, latent
variable methods, and empirical and hierarchical Bayes methods.
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• Source properties:Each GRB has propertiesS (e.g., peak luminos-
ity, distance, direction, spectral parameters). Thepopulation distribu-
tion is f (S; θ) (e.g., luminosity function), with parametersθ.

• Observables:Source properties are not directly observable. The ob-
servablesO (e.g., peak flux, redshift, direction, spectrum) are related
to S via some mappingS → O (inverse-square law, cosmology, ex-
tinction), which may have unknown parametersφ. This implies an
observable distribution Σ(O; θ) .

• Measurement error: Observables must be estimated from analyses
of “raw” survey data; estimates areuncertain. Uncertainties may be
summarized, e.g., byχ2 or likelihood contours.

• Selection: Measurements enter the final source catalog only if they
meet detection and/or classification criteria (burst trigger criteria; so-
lar flare rejection).

Primary goal of population modeling:
Learn aboutf (S; θ) or Σ(O; θ) from the survey catalog

(We may alternatively seek to infer theS → O mapping, e.g., infer the cosmology.)
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