Cosmological time delay estimation with Continuous Auto-Regressive Moving Average processes

Antoine D. Meyer (antoine.meyer@cfa.harvard.edu - adm18@ic.ac.uk) Statistics Section, Department of Mathematics, Imperial College London Predoc at CfA In collaboration with David van Dyk, Hyungsuk Tak, Aneta Siemiginowska

CHASC 19 April 2022

The gravitational lensing phenomenon

- Light rays are bent by the strong gravitational field of the intervening object (i.e. the lens) on their way to Earth.
- Different rays travel along different paths of different distances, and therefore arrive to the observer at different times (separated by a delay Δ).

Figure: Source: Tak et al. [2017]

- Multiple copies of the original light curve, **brightness fluctuations are observed at different times** in the different copies.
- Refsdal [1964]: Estimates of time delays can be used to **constrain important cosmological parameters** such as *H*₀.

A challenging statistical problem

Goal: estimate the time shift (x-axis) between multiple lensed light curves

Figure: Source: Tak et al. [2017]

Data is subject to:

- Irregular sampling (observational patterns)
- Seasonal gaps (celestial cycles)
- Brightness magnifications due to multiple effects (strong lensing, micro-lensing)
- Measurement errors (heteroskedastic)

Current methods:

Two families of methods for time delay estimation:

- Grid-based optimization methods (\approx non-parametric)
 - Minimize measure of distance between light curves, on a grid of Δ values
 - Produce uncertainty estimates using Monte Carlo simulation
 - Computationally expensive!
- Statistics modelling the stochastic variability og AGN light curves
 - More principled
 - "Direct" quantification of uncertainty in time delay parameter

Time Delay Challenge (TDC, Liao et al. [2015]) surveyed and evaluated a variety of time delay estimation techniques

- Winners: COSMOGRAIL collaboration (combine estimates from 4 different non-parametric techniques)
- Tak et al. [2017] did very well too! Bayesian method + DRW process to model AGN variability)

Goals of this project :

- Improve Bayesian time delay estimation method, based on Tak et al. [2017]
- Improve on the accuracy and applicability of time delay estimation method
- Address some of the computational limitations of current estimation strategies.

Current limitations:

- (Tak et al. [2017]) limited applicability of the DRW process to model AGN light curves.
- Difficult computation, in part due to multi-modality issues
- High sensitivity to initial guess for Δ , most methods require method to compute plausible/starting value of Δ .

Our contributions

Limitation: use of the DRW to model AGN light curves restricts the range of observations on which time delay method can be applied

- Recent success in modeling AGN light curves with flexible CARMA(*p*, *q*) in astrophysics literature [Kelly et al., 2014, Moreno et al., 2019].
- AGNs and particularly quasars are sources for which strong gravitational lensing is more likely to happen
- Generalization of DRW, which is a CARMA(1,0).

Main development: update the intrinsic light curve model from DRW process to flexible Continuous Auto-Regressive Moving Average (CARMA) process

- Finer modeling tool can better fit a wider range of observations.
- $\bullet\,$ Better fit to the lightcurve data $\rightarrow\,$ better accuracy

Our method: TD-CARMA Tak et al. [2017]: TD-DRW

Contributions

Additional development: update the parameter inference algorithm from MCMC [Tak et al., 2017] to nested sampling (MultiNest)

- Deal with multi-modality of CARMA(p, q) and time delay parameters
 - MultiNest identifies multiple modes in posterior distribution
 - MultiNest output can be used to quantify relative probability of the modes
- Blind Search: no initial value of Δ required
 - Most existing time delay methods are highly sensitive to initial values
 - Require an extra method to compute a plausible initial value
 - ► Tak et al. [2017] compute the expensive profile likelihood
- **Model Selection:** MultiNest estimates the Bayesian evidence (marginal distribution of the data) at no extra computational cost

Data

Figure: Source: Tak et al. [2017]

$$\mathbf{D} = \{t_i, x_i, \delta_i^x, y_i, \delta_i^y\}_{i=1}^n$$

- Observation times $\mathbf{t} = \{t_1, \dots, t_n\}$
- Observed magnitudes $\mathbf{x} = \{x_1, \dots, x_n\}$, and \mathbf{y}
- Measurement errors $\delta^{\mathbf{x}} = \{\delta_1^{\mathbf{x}}, \dots, \delta_n^{\mathbf{x}}\}$ and $\delta^{\mathbf{y}}$ (standard deviation).

Time Delay Estimation Framework

Assumptions of the time delay model:

- Assumption I: x and y = discrete realizations of unobserved continuous lightcurves x(t) and y(t) (true source magnitudes), $t \in \mathbb{R}$.
- Assumption II: y(t) is time and magnitude shifted version of x(t).

Let's translate them into our model:

Strong lensing effect 1: Time shift

$$y(t) = x(t - \Delta) \tag{1}$$

Strong lensing effect 2: different average magnitudes

$$y(t) = x(t - \Delta) + \theta_0 \tag{2}$$

Micro lensing effect: extrinsic long-term variability

$$y(t) = x(t - \Delta) + \boldsymbol{w}_m(t - \Delta)\boldsymbol{\theta}$$
(3)

w_m(t − Δ) := {1, t − Δ,..., (t − Δ)^m} vector of polynomial time variables *θ* = {θ₀,...,θ_m} micro-lensing coefficients

Time Delay Estimation Framework

Plan:

- **Q** Reconstruct intrinsic light curve from its lensed counterparts
- Ø Model stochastic variability in intrinsic lightcurve with CARMA process

Reconstructing the intrinsic light curve:

- Given Δ and θ , construct measurements for the intrinsic light curve, denoted $z = \{z_j\}_{j=1}^{2n}$.
- Measured at times $\boldsymbol{t}^{\boldsymbol{\Delta}} = \{t_i\}_{i=1}^n \cup \{t_i \boldsymbol{\Delta}\}_{i=1}^n$.

Time Delay Estimation Framework

$$z_j = \begin{cases} x_i & \text{for some } i \text{ if } t_j^{\Delta} \text{ is in } \boldsymbol{t}, \\ y_i - \boldsymbol{w}_m(t_j - \Delta)\boldsymbol{\theta} & \text{for some } i \text{ if } t_j^{\Delta} \text{ is in } \boldsymbol{t} - \Delta, \end{cases}$$

• Similarly, for the vector measurement error standard deviations $\{\delta_i^z\}_{i=1}^{2n}$:

$$\delta_j^z = \begin{cases} \delta_i^x & \text{for some } i \text{ if } t_j^\Delta \text{ is in } \boldsymbol{t}, \\ \delta_i^y & \text{for some } i \text{ if } t_j^\Delta \text{ is in } \boldsymbol{t} - \Delta. \end{cases}$$

(4)

(5)

Time Delay Measurement Framework

We constructed our intrinsic light curve:

- Given Δ and θ , we have $\{t^{\Delta}, z, \delta^z\}$ for the intrinsic light curve.
- Assumption: z = discrete realization of unobserved continuous process z(t).

Let's model the stochastic variability in the intrinsic lightcurve:

- Parametric model, with parameter vector Ω , i.e. define $p(\boldsymbol{z}|\Delta, \boldsymbol{\theta}, \Omega)$
- Tak et al. [2017]: CARMA(1,0) (DRW) process.
- We generalize this to CARMA(p, q) processes.

Likelihood function of model parameters (Δ, θ, Ω) given observed data

$$L(\Delta, \theta, \Omega) = p(\mathbf{x}, \mathbf{y} | \Delta, \theta, \Omega)$$

= $p(\mathbf{z} | \Delta, \theta, \Omega)$ (6)

DRW and CARMA(p, q) processes

• A **Damped Random Walk (DRW)** process with mean μ is the solution to the following stochastic differential equation:

$$dX(t) = -\frac{1}{\omega}(X(t) - \mu)dt + \epsilon(t)$$
(7)

- $\epsilon(t) \sim N(0, \sigma^2)$ is a white noise process.
- ω = timescale for the process to revert to its long-term mean
- DRW = CARMA(1,0)
- A **CARMA**(*p*, *q*) process is the solution to the following stochastic differential equation:

$$\frac{d^{p}y(t)}{dt^{p}} + \alpha_{p-1}\frac{d^{p-1}y(t)}{dt^{p-1}} + \dots + \alpha_{0}y(t) = \beta_{q}\frac{d^{q}\epsilon(t)}{dt^{q}} + \dots + \epsilon(t)$$
(8)

α = {α₀,..., α_{p-1}} = auto-regressive parameters
 β = {β₀,..., β_{q-1}} = moving-average coefficients

DRW and CARMA(p, q) processes

In time-space (Auto-Correlation Function):

- DRW auto-correlations: single exponentially decaying auto-correlation function
- CARMA auto-correlations: weighted sum of exponentially decaying auto-correlation functions and exponentially damped sinusoidal functions

In frequency-space (Power Spectral Density)

• CARMA: multiple breaks and frequencies (QPOs) in the PSD

$$R(t_i - t_j) = \frac{\sigma^2 \omega}{2} e^{-\frac{(t_i - t_j)}{\omega}}$$
(9)

• exponentially decaying with e-folding timescale ω

ACF of a CARMA(p, q) process: $(t_i > t_j)$

$$R(t_{i}-t_{j}) = \sigma^{2} \sum_{k=1}^{p} \frac{\left[\sum_{l=0}^{q} \beta_{l} r_{k}^{l}\right] \left[\sum_{l=0}^{q} \beta_{l} (-r_{k})^{l}\right] \exp(r_{k}\tau)}{-2 \operatorname{Re}(r_{k}) \prod_{l=1, l \neq k} (r_{l} - r_{k}) (r_{l}^{*} + r_{k})}.$$
 (10)

• r_k = roots of auto-regressive polynomial $A(z) = \sum_{k=0}^{p} \alpha_k z^k$

- ACF of CARMA is a weighted sum of:
 - exponentially decaying components (when r_k is real)
 - exponentially damped sinusoids (when r_k is complex)
- Enforce $Re(r_k) < 0$ for stationarity

$$P(f) = \sigma^2 \frac{1}{\left(\frac{1}{\omega}\right)^2 + (2\pi f)^2}$$
(11)

 \bullet Lorentzian centered at 0, with a break frequency at $1/2\pi\omega^2$

PSD of a CARMA process:

$$P(f) = \sigma^2 \frac{|\sum_{j=0}^{q} \beta_j (2\pi i f)^j|^2}{|\sum_{k=0}^{p} \alpha_k (2\pi i f)^k|^2}$$
(12)

- Weighted sum of Lorentzian functions
- Lorentzian centered at $0 \rightarrow$ break frequency (when r_k is real)
- Lorentzian centered away from $0 \rightarrow \text{Quasi-Periodic Oscillation (QPO, when <math>r_k$ is complex).

Characteristics such as multiple break-like features and QPOs have been observed in AGN optical data Kelly et al. [2014], Ryan et al. [2019]

Likelihood

CARMA and **DRW** process are Gaussian $\rightarrow p(z|\Delta, \theta, \Omega)$ is Gaussian

• Typically, the computation of the likelihood of an *n*-point realization of a Gaussian process requires the inversion of an $n \times n$ covariance matrix \rightarrow scales $O(n^3)$.

$$\begin{split} \mathcal{L}(\Delta, \theta, \Omega) &= p(\boldsymbol{z} | \Delta, \theta, \Omega) \\ &= \prod_{i=1}^{2n} p(z_i | \boldsymbol{z}_{< i}, \Delta, \theta, \Omega) \\ &\propto \prod_{i=1}^{2n} \frac{1}{\mathsf{Var}(z_i | \boldsymbol{z}_{< i}, \Delta, \theta, \Omega)} \quad \times \exp\left(-\frac{1}{2} \frac{(z_i - \mathsf{E}(z_i | \boldsymbol{z}_{< i}, \Delta, \theta, \Omega))^2}{\mathsf{Var}(z_i | \boldsymbol{z}_{< i}, \Delta, \theta, \Omega)}\right) \end{split}$$

• But CARMA processes are special!

• They admit a linear state-space representation that allows to compute the likelihood in linear time O(n)!

Computing the likelihood: state-space representation

Linear state-space representation of a CARMA(p,q) process denoted by z(t) is:

$$\begin{cases} z(t) = \mathbf{b}\mathbf{x}(t) + \delta(t), \\ d\mathbf{x}(t) = A\mathbf{x}(t)dt + \mathbf{e}dW(t) \end{cases}$$
(13)

- Latent state process $\boldsymbol{x}(t)$ governs the underlying dynamics of the system
- Observation equation gives relationship between latent process x and observed process z(t).
- $\delta(t)$ measurement error process.

Kalman Filter algorithm efficiently computes $\{\mathbf{E}(z_i|\mathbf{z}_{< i}, \Delta, \theta, \Omega)\}_{i=1}^n$ and $\{\mathbf{Var}(z_i|\mathbf{z}_{< i}, \Delta, \theta, \Omega)\}_{i=1}^n$ with linear complexity O(n).

• CARMA processes modelling is scalable to large datasets

Bayesian Inference

We operate under the Bayesian paradigm:

- Quantify the uncertainty in model parameters via their (joint) posterior distribution
- Bayes' Theorem:

$$p(\Delta,eta,\Omega|m{D})=rac{L(\Delta,eta,\Omega)p(\Delta,eta,\Omega)}{p(m{D})}$$

•
$$p(\Delta, eta, \Omega | oldsymbol{D}) o$$
 posterior distribution

- p(D) ≡ Z → marginal distribution of the data (can be used for Bayesian model comparison).
- $p(\Delta, \beta, \Omega) \rightarrow$ prior distribution (we choose uniform priors)

Prior distributions:

- $\Delta \sim [t_1 t_n, t_n t_1]$, $\mu \sim [-30, 30]$, $\theta \sim [-M, M]$ with M large
- α , β , σ sampled on log-scale, [-15,15].

(14)

Posterior sampling

We produce a sample of the posterior distribution using the MultiNest implementation of Nested Sampling (NS).

- Standard MCMC have trouble sampling from multi-modal posteriors
- MultiNest is designed to sample from multi-modal posterior posteriors

Most time delay estimation techniques are highly sensitive and require the input of an initial guess for Δ

- $\bullet\,$ Need auxiliary method or prior knowledge to find plausible initial value for Δ
- Tak et al. [2017] compute expensive profile likelihood to find good initial guess.

MultiNest does not require the input of an initial value

- You just need to specify the boundaries of the parameter space!
- Method is blind search and standalone

Bayesian Model Selection

Model selection problem:

- what is the (p, q, m) triplet that best fits the data?
- CARMA(p, q) models are non-nested.

MultiNest evaluates the Bayesian evidence \mathcal{Z} :

$$\mathcal{Z} = \int_{\Theta} p(\boldsymbol{D}|\theta) p(\theta) d\theta \tag{15}$$

- \mathcal{Z} is a measure of the "goodness of fit" of a model to the data \boldsymbol{D} .
- **Incorporates Occam's razor:** more complex models, i.e. models defined on higher-dimensional parameter spaces, are penalized if they do not sufficiently improve the fit to the data.
- $\bullet\,$ No extra computational cost: ${\cal Z}$ is computed jointly to the posterior sampling

Tackling multi-modality with MultiNest

Two multi-modality issues:

• CARMA(p, q) parameters α, β, σ

TD-CARMA

 $\bullet\,$ Time Delay parameter $\Delta\,$

Multi-modal posterior distributions are difficult to sample from. But MultiNest can help!

- MultiNest identifies modes in the posterior distribution
- Partitions the parameter space into regions Θ_{i} on which the separated modes are supported
- Evaluates the local-evidence Z_i of each mode *i*, defined as:

$$\mathcal{Z}_{i} = \int_{\Theta_{i}} p(\boldsymbol{D}|\theta) p(\theta) d\theta.$$
 (16)

• Compute the relative probability p_i of mode *i*:

$$p_i \equiv \int_{\Theta_i} p(heta|oldsymbol{D}) d heta = rac{1}{\mathcal{Z}} \int_{\Theta_i} p(oldsymbol{D}| heta) p(heta) d heta = rac{\mathcal{Z}_i}{\mathcal{Z}}.$$

Time Delay Challenge dataset

Generated under the DRW model

Figure: Doubly-lensed simulated quasar dataset from Time Delay Challenge (TDC)

Time Delay Challenge (TDC) results

• We fit TD-CARMA(p, q, m) with $p = \{2, 3, 4\}$, $q = \{0, 1, 2, 3\}$ and $m = \{1, 2, 3\}$.

Model	Â	$SD(\hat{\Delta})$	$ln(\mathcal{Z})$
Truth	5.86		
TD-DRW(3) [Tak et al., 2017]	6.33	0.28	
TD-DRW(3) (This work)	6.343	0.267	692.32
TD-CARMA(4, 3, 2)	6.296	0.255	699.11
TD-CARMA(4, 2, 2)	6.282	0.252	698.98
TD-CARMA(4, 1, 2)	6.287	0.259	698.49
TD-CARMA(2, 1, 2)	6.254	0.230	698.44
TD-CARMA(2, 0, 2)	6.269	0.242	698.39

Table: Posterior mean and standard deviation for Δ under the five models with highest Bayesian log-evidence, comparing to true value and estimates from DRW methods, as reported by Tak et al. [2017] and computed by our own code.

Dataset Application - HS2209

HS2209: Results

Technique	Reference	Â	$SD(\hat{\Delta})$
Combined estimate (COSMOGRAIL)	Eulaers et al. [2013]	-20.0	5
Difference-smoothing (modified)	Kumar et al. [2015]	-22.9	5.3
$\Delta CARMA(3,2,3)$	This work	-21.96	1.448
$\Delta CARMA(2,1,3)$	This work	-21.74	1.423

DRW process on HS2209 data

- Inconclusive results using *timedelay* package from Tak et al. [2017].
- With our code, MultiNest finds 10 modes in the posterior distribution of Δ. Modes for Δ include [-14.30, -11.72, 16.44, 17.50, 20.38, 43, 64] days.

Model	Â	$SD(\hat{\Delta})$	$ln(\mathcal{Z})$	р
TD-CARMA(3, 2, 3)	-21.96	1.448	2760.24	0.601
TD-CARMA(4, 2, 3)	-21.95	1.403	2759.83	0.399
TD-CARMA(2,1,3)	-21.74	1.423	2752.52	$4.4 imes10^{-4}$
TD-DRW(3)	20.23	0.934	2536.03	$4.23 imes10^{-98}$

SDSS J1001+5027 doubly lensed quasar

J1001: Multi-modality of CARMA parameters

• Two modes in the posterior distribution of CARMA parameters are identified by MultiNest.

Numerical Results

• One mode corresponds to a frequency in the PSD (*f* = 2), but this frequency falls below the **measurement noise level** (so we are discarding modes/models that feature the frequency)

• Detection of frequency can dramatically reduce uncertainty in time delay Δ (SD($\hat{\Delta}$) = 0.686 without freq, 0.224 with) \rightarrow but only if we believe the frequency exists!

J1001: Results

Technique	Reference	Â	$SD(\hat{\Delta})$
Combined estimate (COSMOGRAIL)	Kumar et al. [2013]	119.1	3.3
Gaussian Processes	Hojjati et al. [2013]	117.8	3.2
Difference-smoothing (modified)	Kumar et al. [2015]	119.7	1.8
$\Delta CARMA(2,1,3)$	This work	120.18	0.749
Δ CARMA(4, 3, 2)	This work	120.93	1.015

DRW process on J1001 data

- Inconclusive results using *timedelay* package from Tak et al. [2017].
- With our code, MultiNest finds 20 modes in the posterior distribution of Δ. Modes for Δ include [122.8, 127.6, 130.5, 132.8] days.

Model	Â	$SD(\hat{\Delta})$	$ln(\mathcal{Z})$	р
TD-CARMA(4, 3, 2)	120.93	1.015	2761.25	0.416
TD-CARMA $(2, 1, 3)$	120.18	0.749	2744.05	4.1×10^{-8}
TD-OU(3)	132.71	0.750	1803.24	0.0

Improvements of the method:

- Speed up likelihood computation using *celerite* model [Foreman-Mackey et al., 2017] (same complexity).
- Multi-band light curves?

Applications of the method:

- *H*₀ estimation
- Time delays arising in reverberation mapping

THANK YOU!

- Hyungsuk Tak, Kaisey Mandel, David A Van Dyk, Vinay L Kashyap, Xiao-Li Meng, Aneta Siemiginowska, et al. Bayesian estimates of astronomical time delays between gravitationally lensed stochastic light curves. *The Annals of Applied Statistics*, 11(3):1309–1348, 2017.
- Sjur Refsdal. On the possibility of determining hubble's parameter and the masses of galaxies from the gravitational lens effect. *Monthly Notices of the Royal Astronomical Society*, 128(4):307–310, 1964.
- Kai Liao, Tommaso Treu, Phil Marshall, Christopher D Fassnacht, Nick Rumbaugh, Gregory Dobler, Amir Aghamousa, Vivien Bonvin, Frederic Courbin, Alireza Hojjati, et al. Strong lens time delay challenge. ii. results of tdc1. *The Astrophysical Journal*, 800(1):11, 2015.
- Brandon C Kelly, Andrew C Becker, Malgosia Sobolewska, Aneta Siemiginowska, and Phil Uttley. Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets. *The Astrophysical Journal*, 788(1):33, 2014.
- Jackeline Moreno, Michael S Vogeley, Gordon T Richards, and Weixiang Yu. Stochastic modeling handbook for optical agn variability. *Publications of the Astronomical Society of the Pacific*, 131(1000):063001, 2019.
- James L Ryan, Aneta Siemiginowska, MA Sobolewska, and Jonathan Grindlay. Characteristic variability timescales in the gamma-ray power spectra of blazars. *The Astrophysical Journal*, 885(1):12, 2019.

- Eva Eulaers, Malte Tewes, Pierre Magain, Frédéric Courbin, Ildar Asfandiyarov, Sh Ehgamberdiev, S Rathna Kumar, CS Stalin, TP Prabhu, George Meylan, et al. Cosmograil: the cosmological monitoring of gravitational lenses-xii. time delays of the doubly lensed quasars sdss j1206+ 4332 and hs 2209+ 1914. *Astronomy & Astrophysics*, 553:A121, 2013.
- S Rathna Kumar, CS Stalin, and TP Prabhu. H0 from ten well-measured time delay lenses. *Astronomy & Astrophysics*, 580:A38, 2015.
- S Rathna Kumar, M Tewes, CS Stalin, F Courbin, I Asfandiyarov, G Meylan, Eva Eulaers, TP Prabhu, Pierre Magain, Hans Van Winckel, et al. Cosmograil: the cosmological monitoring of gravitational lenses-xiv. time delay of the doubly lensed quasar sdss j1001+ 5027. *Astronomy & Astrophysics*, 557:A44, 2013.
- Alireza Hojjati, Alex G Kim, and Eric V Linder. Robust strong lensing time delay estimation. *Physical Review D*, 87(12):123512, 2013.
- Daniel Foreman-Mackey, Eric Agol, Sivaram Ambikasaran, and Ruth Angus. Fast and scalable gaussian process modeling with applications to astronomical time series. *The Astronomical Journal*, 154(6):220, 2017.