Cstat: Inference and Goodness-of-fit

Yang Chen

University of Michigan
August 2, 2022

Outline

Literature

Plan

Literature

Key Papers

- Cash, W., Parameter estimation in astronomy through application of the likelihood ratio, Astrophysical Journal, Part 1, vol. 228, Mar. 15, 1979, p. 939-947.
- Inference: MLE \& confidence intervals
- Goodness-of-fit Test: χ^{2} for difference of likelihood ratios - if there exists a hypothesized fixed subset of parameters?
- Kaastra, J. S. On the use of C-stat in testing models for X-ray spectra, Astronomy \& Astrophysics 605 (2017): A51.
- Goodness-of-fit Test: Approximate Gaussian
- Gaps and problems:
- Numbers of bins larger than number of counts for faint sources
- Goodness-of-fit tests are approximate
- Approximate likelihood with discretization

Multiple Attempts

- Asymptotics for C-stat with small counts per bin and large bin count
- Asymptotic/conservative test of goodness
- Dynamic bin split and merge
- Practical implementation with discretized likelihood

Results: Asymptotic Normality

Theorem

Let $\hat{\theta}_{n}$ be the maximum likelihood estimate. Assume that $\left\{s_{i}\left(\theta_{0}\right)\right\}_{i \geq 1}$ is bounded from above and $\operatorname{rank}\left(\left.\frac{\partial \boldsymbol{s}_{1: n}(\theta)}{\partial \theta}\right|_{\theta=\theta_{0}}\right)=d$.

1. Assume that for all $\theta \in \Theta, \sum_{i=1}^{n}\left[\log s_{i}(\theta)\right]^{2}=O\left(n^{1-\alpha}\right)$ for some $\alpha>0$. Then $\hat{\theta}_{n} \rightarrow \theta_{0}$ almost surely as $n \rightarrow \infty$.
Furthermore,

$$
I_{n}\left(\theta_{0}\right)^{-1}\left[-\left.\frac{\partial^{2} \log L_{n}(\theta)}{\partial \theta \partial \theta^{\top}}\right|_{\theta=\theta_{0}}\right] \xrightarrow{P} 1 \quad \text { as } \quad n \rightarrow \infty
$$

2. Assume that (a) for any θ in an small neighborhood of θ_{0}, each $s_{i}(\theta)$ is second order continuously differentiable and $\left[\log s_{i}(\theta)\right]^{\prime \prime}$ is uniformly bounded by a finite constant, (b) $[\log n]^{2} / I_{n}\left(\theta_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$; then
$\sqrt{I_{n}\left(\theta_{0}\right)}\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, I_{d}\right)$ as $n \rightarrow \infty$.

Results: C-stat Property

Lemma
For any $n,-C_{n}\left(\hat{\theta}_{n}\right)+C_{n}\left(\theta_{0}\right)=\mathrm{LR}_{n}^{*}$, where LR_{n}^{*} is given by

$$
\begin{aligned}
\mathrm{LR}_{n}^{*} & =-2 \log \frac{L\left(s_{1}\left(\theta_{0}\right), \ldots, s_{n}\left(\theta_{0}\right) \mid N_{1}, \ldots, N_{n}\right)}{L\left(s_{1}\left(\hat{\theta}_{n}\right), \ldots, s_{n}\left(\hat{\theta}_{n}\right) \mid N_{1}, \ldots, N_{n}\right)} \\
& =2 \sum_{i=1}^{n}\left[N_{i} \log s_{i}\left(\hat{\theta}_{n}\right)-N_{i} \log s_{i}\left(\theta_{0}\right)+s_{i}\left(\theta_{0}\right)-s_{i}\left(\hat{\theta}_{n}\right)\right]
\end{aligned}
$$

which is the likelihood ratio statistics for testing the null hypothesis $H_{0}: \theta=\theta_{0}$ versus the alternative $H_{1}:\left\{s_{i}(\theta), 1 \leq i \leq n\right\} \in \mathcal{S}$. As $n \rightarrow \infty, \mathrm{LR}_{n}^{*} \xrightarrow{\mathcal{D}} \chi_{d}^{2}$.

Results: Binning Impacts

Theorem
Performing finer partitions does not decrease the Fisher information. In fact, with any finer partition, the Fisher information increases unless in the following situation.

- there exists $s_{j}^{*}(\theta), 1 \leq j \leq M$ and a partition of $\{1, \ldots, n\}$, denoted by $\left\{\sigma_{1}, \ldots, \sigma_{M}\right\}$, such that for any $1 \leq i \leq n$, there exists $1 \leq j \leq M$ such that $i \in \sigma_{j}$ and $s_{i}(\theta)=c_{i j} s_{j}^{*}(\theta)$ for some constant $c_{i j}$

