Cstat: Inference and Goodness-of-fit

Yang Chen

University of Michigan

August 2, 2022

Outline

Literature

Plan

Literature

Key Papers

- Cash, W., Parameter estimation in astronomy through application of the likelihood ratio, Astrophysical Journal, Part 1, vol. 228, Mar. 15, 1979, p. 939-947.
 - Inference: MLE & confidence intervals
 - Goodness-of-fit Test: χ² for difference of likelihood ratios if there exists a hypothesized fixed subset of parameters?
- Kaastra, J. S. On the use of C-stat in testing models for X-ray spectra, Astronomy & Astrophysics 605 (2017): A51.
 - Goodness-of-fit Test: Approximate Gaussian
- Gaps and problems:
 - Numbers of bins larger than number of counts for faint sources
 - Goodness-of-fit tests are approximate
 - Approximate likelihood with discretization

Multiple Attempts

- Asymptotics for C-stat with small counts per bin and large bin count
- Asymptotic/conservative test of goodness
- Dynamic bin split and merge
- Practical implementation with discretized likelihood

Results: Asymptotic Normality

Theorem

Let $\hat{\theta}_n$ be the maximum likelihood estimate. Assume that $\{s_i(\theta_0)\}_{i\geq 1}$ is bounded from above and $\operatorname{rank}\left(\frac{\partial s_{1:n}(\theta)}{\partial \theta}\Big|_{\theta=\theta_0}\right) = d$.

1. Assume that for all $\theta \in \Theta$, $\sum_{i=1}^{n} [\log s_i(\theta)]^2 = O(n^{1-\alpha})$ for some $\alpha > 0$. Then $\hat{\theta}_n \to \theta_0$ almost surely as $n \to \infty$. Furthermore,

$$I_n(\theta_0)^{-1} \left[-\frac{\partial^2 \log L_n(\theta)}{\partial \theta \partial \theta^\top} \Big|_{\theta=\theta_0} \right] \xrightarrow{P} 1 \quad \text{as} \quad n \to \infty.$$

2. Assume that (a) for any θ in an small neighborhood of θ_0 , each $s_i(\theta)$ is second order continuously differentiable and $\left[\log s_i(\theta)\right]''$ is uniformly bounded by a finite constant, (b) $\left[\log n\right]^2/I_n(\theta_0) \to 0$ as $n \to \infty$; then $\sqrt{I_n(\theta_0)} \left(\hat{\theta}_n - \theta_0\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, I_d)$ as $n \to \infty$.

Results: C-stat Property

Lemma

For any n, $-C_n(\hat{\theta}_n) + C_n(\theta_0) = LR_n^*$, where LR_n^* is given by

$$\begin{aligned} \mathrm{LR}_n^* &= -2\log\frac{L(s_1(\theta_0),\ldots,s_n(\theta_0)|N_1,\ldots,N_n)}{L(s_1(\hat{\theta}_n),\ldots,s_n(\hat{\theta}_n)|N_1,\ldots,N_n)} \\ &= 2\sum_{i=1}^n \left[N_i\log s_i(\hat{\theta}_n) - N_i\log s_i(\theta_0) + s_i(\theta_0) - s_i(\hat{\theta}_n)\right],\end{aligned}$$

which is the likelihood ratio statistics for testing the null hypothesis $H_0: \theta = \theta_0$ versus the alternative $H_1: \{s_i(\theta), 1 \le i \le n\} \in S$. As $n \to \infty$, $\operatorname{LR}^*_n \xrightarrow{\mathcal{D}} \chi^2_d$.

Results: Binning Impacts

Theorem

Performing finer partitions does not decrease the Fisher information. In fact, with any finer partition, the Fisher information increases unless in the following situation.

there exists s^{*}_j(θ), 1 ≤ j ≤ M and a partition of {1,..., n}, denoted by {σ₁,...,σ_M}, such that for any 1 ≤ i ≤ n, there exists 1 ≤ j ≤ M such that i ∈ σ_j and s_i(θ) = c_{ij}s^{*}_j(θ) for some constant c_{ij}