Statistics in X-ray Polarimetry

Overview of some statistics in use or development for X-ray Polarimetry

Herman L. Marshall (MIT)

CHASC Aug. 3, 2022

A Few Basics

- Stokes parameters are handy:
 - I = total intensity
 - Q, U are orthogonal linearly polarized parts
 - V is circular (+ or -) polarized intensity
- Common alternative: Π , ϕ
 - $\Pi = (Q^2 + U^2)^{1/2} / 1$
 - $\phi = \tan^{-1}(U/Q) = 2 \times EVPA$
- MDP = 'Minimum Detectable Polarization' (at 99% conf.) =

RISE/CHASC — 8/3/22

• A beam is "unpolarized" if the photon <u>set</u> is randomly polarized ($\Pi = V = 0$) μN_S $4.292 = 2(-\log[0.01])^{1/2}$

Modulation of Polarized Signals Modulation Curve 100% polarized source

Relevant Work • Elsner, O'Dell, & Weisskopf (2012): Gaussian statistics, BG

- Kislat+ (2015): Unbinned analysis, event weighting
- Strohmayer (2017): Fitting IQU spectra in xspec, mRMF = $\mu R(E; E')$
- Burgess+ (2019): Likelihood method for GRB polarimetry
- Peirson+ (2021): Machine learning to get better μ
- Marshall (2021, 2022): Likelihood method, modeling μ
- Di Marco+ (2022): Event weights using IXPE track ellipticities α
- Gonzales-Caniulef+ (2022): Likelihood method for pulsars
- Marshall (in prep.): Likelihood with BG, nonuniform ψ , mRMF(E, α ; E') RISE/CHASC — 8/3/22 4/18

Likelihood Formulation (Marshall 2021)

- Expected counts in $dEd\psi$ in time T for Q = qI, U = uI:
 - $\lambda(E, \psi; f_0, q, u)dEd\psi = [1 + \mu_E(q\cos 2\psi + u\sin 2\psi)]f_EA_ETdEd\psi$, where
 - A_E is the instrument effective area (independent of q or u by definition)
 - $f_E = f_0 \eta(E)$ has units of ph/cm²/s/keV per unit (measured) phase angle, ψ
 - Require $\Pi^2 \equiv q^2 + u^2 \leq 1$ physically (Π is fractional linear polarization)
 - Define $\phi_0 = \tan^{-1}(u/q) = 2\varphi$
- Likelihood: $S(f_0, q, u) = -2 \ln \mathscr{L} = -2 \sum_i \ln \lambda(q_i)$ or $\tilde{S}(q, u) = -2\sum \ln(1 + q\mu_i \cos 2\psi_i + u\mu_i \sin 2\psi_i)$
- MDP₉₉ = $4.29/\sqrt{\sum \mu_E^2 C(E)}$ for small $\Pi \mu$

$$(E_i, \psi_i) + 2T \int f_E A_E dE \int_0^{2\pi} [1 + \mu(E)(q\cos 2\psi + u\sin 2\psi)] dE_i dE_i$$

n $2\psi_i$

Adding BG to Likelihood (Marshall, in prep)

• $\lambda_S(\psi) = \frac{1}{2\pi} \{ N_0 [1 + \mu(q \cos 2\psi + u \sin 2\psi)] + \zeta B \}$ for the $N = C_S + C_B$ counts in the

source region, $\lambda_B(\psi) = \frac{B}{2\pi}$ for the N_B counts in the BG region, and $C_B = \zeta B$ is the expected BG in the source region

• Likelihood: $S(N_0, q, u) = -2 \sum_{n=1}^{N} \ln[N_0(1 + 1)]$ i=1

minimized to give $\hat{B} = N_B$ and 3 equations to solve mutually (and numerically): $\hat{N}_0 = \sum w_i$, $0 = \sum w_i c_i$, and $0 = \sum w_i s_i$, where $w_i = [1 + \hat{q}c_i + \hat{u}s_i + \zeta N_B/\hat{N}_0]^{-1}$

$$\text{MDP}_{99} = \frac{4.29\sqrt{C_S + C_B}}{C_S\sqrt{<\mu_i^2 >}} \text{ for unpolarized}$$

RISE/CHASC — 8/3/22

$$+ qc_i + us_i + \zeta B + 2N_0 + 2B(1 + \zeta) - 2N_B$$

data, similar to Elsner+ (2012) result.

Imaging Polarimetry Detector

- Photons ionize atoms in the detector gas
- Direction of the photoelectron is related to the photon's polarization angle
- The electron loses energy through the gas; charge is proportional to E
- Charge drifts to anode

Measuring IXPE Event Tracks

- Current photoelectron track measurement: moments based
- How to do better full track modeling?

Fig.2. Real track produced in the gas by a 5.9 keV photon. The reconstruction algorithm develops in the following steps: 1) barycenter evaluation of the charge distribution (red cross), 2) reconstruction of the principal axis direction (red line), 3) conversion point evaluation (blue cross), 4) emission direction reconstruction (blue line). The polarization is derived from the photoelectrons angular distribution. Bellazzini+ '06

A Neural Network Approach (Peirson+ 2021)

- Convolutional Neural Net (CNN): N events, M networks
- Train to minimize angle errors on simulated data
- Estimate uncertainties in track angles
- Validate on additional simulated data
- Optimize using lab data

RISE/CHASC — 8/3/22

 Optimize for best nets using "importanceweighted" likelihood

 $\begin{array}{ll} \underset{\text{over}\mu,\phi}{\text{minimize}} & -\sum\limits_{j=1}^{M}\sum\limits_{i=1}^{N}\sigma_{ij}^{-\lambda} \log\bigl(1+\mu \cos\bigl(2(\theta_{ij}-\phi)\bigr)\bigr) \\ \text{subject to} & 0 \leq \mu \leq 1 \\ & -\pi/2 \leq \phi < \pi/2, \end{array}$

Likelihood Analysis Update (Marshall (2021)

- Original: $\lambda(f_E, \Pi, \varphi; E, \psi) = [1 + \Pi \mu_E \cos(2\psi 2\varphi)] f_E A_E T dE d\psi$
 - gives MDP₉₉ = $4.29/\sqrt{\sum \mu_E^2 C(E)}$
- Update with: $\lambda(f_0, \Pi, \varphi; E, \psi, \sigma) = \left[d\psi' \left[1 + \Pi \cos(2\psi' - 2\varphi) \right] G(\psi; \psi', \sigma) f_E A_E T p(\sigma; E) \right] = 0$ $[1 + \Pi e^{-2\sigma^2} \cos(2\psi - 2\varphi)] f_E A_E T \phi(\sigma; E)$ (for Gaussian, also solved for von Mises)
- Transform to σ space: $\tilde{\lambda}(f_0, q, u; \psi, \sigma) = \int \lambda dE =$

and
$$\tilde{S}(q, u) = -2\sum_{i} \ln(1 + qe^{-2\sigma_i^2} \cos 2\psi_i + u)$$

• Result: MDP₉₉ = $4.29/\sqrt{\sum e^{-4\sigma^2}C(\sigma)}$, for small Π (or large C[σ])

$$= [1 + e^{-2\sigma^2}(q\cos 2\psi + u\sin 2\psi)]f_0AT\eta(\sigma)$$
$$= e^{-2\sigma_i^2}\sin 2\psi_i$$

How do we fit IXPE data?

- Split spectra into I, Q, U
- E is "observed", E' is "true" and unknown
- Need RMFs, R(E', E). and ARFs, $\epsilon(E')$
- Assumes mRMF = $\mu(E')R(E', E)$
- Complication: $\mu = f(\alpha), \alpha =$ ellipticity (Di Marco+ 2022)

$$I(E) = \int_{E'} F(E')\epsilon(E')R(E', E)dE'$$

 $U(E) = \int_{E'} W(E') \mu(E') \epsilon(E') R(E', E) dE'$

 $Q(E) = \int_{E'} Z(E') \mu(E') \epsilon(E') R(E', E) dE' \ . \label{eq:QE}$

 $O(E,\psi) = I(E) + U(E)\sin(2\psi) + Q(E)\cos(2\psi) .$

Strohmayer (2017)

Inferring the Modulation Factor 0.7 0.6 (m)Principal axis 0.5 Mod. factor 0.4 0.3 Ξ 1.4 0.2 1.2 0.0 0.2 x [mm] 0.1 Conversion point 0.0 0.5 0.7 0.1 0.6 0.2 0.3 0.4 (Di Marco, et al. 2022)

IXPE Ellipticity Weighting (Di Marco+ 2022)

- Compute $w_i = \alpha_i^{0.75}$ for each event
- Estimate I,Q,U: $\mathcal{I} = \sum w_i, \quad \mathcal{Q} = 2 \sum w_i \cos 2\psi_i, \quad \mathcal{U} = 2 \sum w_i \sin 2\psi_i$ • Compute $\hat{\Pi} = \frac{\sqrt{Q^2 + \mathcal{U}^2}}{\mu \mathcal{F}}$ with uncertainty $\sigma_{\Pi}^2 \simeq \frac{2\sum w_i^2}{\mu^2 \mathcal{F}^2} = \frac{2}{\mu^2 N_{\text{eff}}}$ (for $\Pi \ll 1$)
- Develop "weighted" modulation functions
- Weighted MDPs are ~5% better than standard
- Not likelihood based can do better... RISE/CHASC — 8/3/22

|3/|8

How do we fit IXPE data?

- Split spectra into I, Q, U
- E is "observed", E' is "true" and unknown
- Need RMFs, R(E', E). and ARFs, $\epsilon(E')$
- Assumes mRMF = $\mu(E')R(E', E)$
- Complication: $\mu = f(\alpha), \alpha =$ ellipticity (Di Marco+ 2022)

Suggestion: mRMF for J (~10) values of α_j $\mathcal{M}_j(E', E) = \mu(\alpha_j, E')\epsilon(E')\phi(\alpha_j, E')R(E', E)$

$$I(E) = \int_{E'} F(E') \epsilon(E') R(E', E) dE'$$

 $U(E) = \int_{E'} W(E') \mu(E') \epsilon(E') R(E', E) dE'$

$$Q(E) = \int_{E'} Z(E') \mu(E') \epsilon(E') R(E', E) dE'$$
.

 $O(E,\psi) = I(E) + U(E)\sin(2\psi) + Q(E)\cos(2\psi) .$

Strohmayer (2017)

Updating X
New model is
$$Q_j(E, \Theta) = T \int A(E') Q(E', \Theta) \mathcal{M}_j(E)$$

- Index j refers to specific values of α_i
- New detector mRMF is $\mathcal{M}_{i}(E', E) = \mu(\alpha_{i}, E')\epsilon(E')\phi(\alpha_{i}, E')R(E', E)$
- where $\sum_{i} \phi(\alpha_{j}, E') = 1$ and $\sum_{i} \mu(\alpha_{j}, E') \phi(\alpha_{j}, E') = \mu(E')$ (unweighted, uncut)
- Original: $\lambda(f_0, \Pi, \varphi; E, \psi) = [1 + \Pi \mu_E \cos(2\psi + 2\varphi)]f(E')A(E')TdE'd\psi$
 - gives MDP₉₉ = $4.29/\sqrt{\sum \mu_{E_i}^2 C(E_i)}$

• Now $\lambda(f_0, \Pi, \varphi; E, \alpha_j, \psi) = \int dE'[1 + \Pi \mathcal{M}_j(E', E)\cos(2\psi + 2\varphi)]f(E')A(E')Td\psi$ and $\tilde{S}(q, u) = -2\sum \ln[1 + q\mu(\alpha_i, E_i)\cos 2\psi_i + u\mu(\alpha_i, E_i)\sin 2\psi_i]$

and MDP₉₉ = 4.29/ $\sqrt{\sum_{j} \sum_{i} \mu_{j}(E_{i})^{2}C(E_{i}, \alpha_{j})}$ RISE/CHASC — 8/3/22

(SPEC analysis $E', E)dE', \quad U_j(E, \Theta) = T \left[A(E') \mathscr{U}(E', \Theta) \mathscr{M}_j(E', E) dE' \right]$

New!

Azimuthally Nonuniform Response • Define $w(\psi)$ as the relative exposure to angle ψ , s.t. $\int w(\psi)d\psi = 1$

- - If uniform (like IXPE), $w(\psi) = 1/(2\pi)$

• For a Bragg reflector, where
$$w(\psi) = \delta(\psi - \psi_0)$$
 or $w(\psi) = \frac{1}{n_B} \sum_{i=1}^{n_B} \delta(\psi - \psi_i)$ for n_B reflectors
Count density: $\lambda(\psi) = [1 + \mu_E(q \cos 2\psi + u \sin 2\psi)]n_E A_E T w(\psi) d\psi$
Likelihood: $S(f_0, q, u) = -2N \ln f_0 - 2 \sum_i \ln(1 + q\mu_i \alpha_i + u\mu_i \beta_i) + 2K f_0 + 2K_\mu f_0 A q + 2K_\mu f_0 B u$, where
 $\alpha(\psi) \equiv w(\psi) \cos 2\psi$, $\beta(\psi) \equiv w(\psi) \sin 2\psi$, $A \equiv \int \alpha(\psi) d\psi$, and $B \equiv \int \beta(\psi) d\psi$, and

$$K = \frac{T}{f_0} \int f(E;\xi) A_E dE \text{ and } K_\mu = \frac{T}{f_0} \int f(E;\xi) A_E \mu_E$$

If $w(\psi) \neq f(\psi)$ or $\psi_i = \psi_0 + \frac{\pi i}{\pi}$ (so A = B = 0) or n_B

• All parameters are covariant otherwise RISE/CHASC — 8/3/22

 $E_E dE$ are treated as uninteresting constants

if
$$q = u = 0$$
, then $n_0 = N$

Azimuthally Nonuniform Response II

Minimizing the log likelihood gives
$$\hat{f}_0 = \frac{N}{K + K_\mu (A\hat{q} + B\hat{u})}$$
,
 $AK_\mu \hat{f}_0 = \sum_i W_i \mu_i \alpha_i$ and $BK_\mu \hat{f}_0 = \sum_i W_i \mu_i \beta_i$, where $W_i \equiv (1 + \hat{q}\mu_i \alpha_i + \hat{u}\mu_i \beta_i)$

• Transform to (Π, φ) space: $S(\hat{f}_0, \Pi, \phi) = 2N \ln[K + K_\mu \Pi(A \cos 2\phi + B \sin 2\phi)]$

• As
$$\Pi \to 0$$
, $\frac{1}{\sigma_{\Pi}^2} \approx \sum_i w_i^2 \mu_i^2 \cos^2(2\psi_i - 2\varphi) - \frac{NK_{\mu}^2(A\cos 2\varphi + B\sin 2\varphi)^2/K^2}{\text{"watch out!"}}$

Thus, want A=B=0 as much as possible!

$$2\phi)] - 2\sum_{i} \ln[1 + \Pi w_i \mu_i (\cos 2\psi_i \cos 2\phi + \sin 2\psi_i \sin 2\phi_i)] + \frac{1}{2} \ln[1 + \Pi w_i \mu_i (\cos 2\psi_i \cos 2\phi_i + \sin 2\psi_i \sin 2\phi_i)]$$

$(2\phi)]$

Summary

- Polarimetry adds complexity to spectral fits
- xspec: updated for simple case
- Real IXPE data require mRMFs in E and ellipticity α Accounting for background is a simple addition
- Important to design instruments with uniform $w(\psi)$