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Motivation

Lx based on the BEHR fluxes - Sample 30% per SFR.D bin

Study the connection between X-ray luminosity of 10% ¢

galaxies & their stellar population parameters (i.e.
SFR, M, Z)
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Il.  What about the sample itself ? =%+
We need well characterized data . . i
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The characterisation of a complete sample of T i o o ol -+ o e
bona-fide star-forming (or passive) galaxies is SFR [M, yr]
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Traditional way of activity classification
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Stampoulis et al. 2019 developed a 4-D diagnostic S o5 {8
following a soft clustering analysis. I
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Why do we need a new activity diagnostic ? 20 15 1.0 05 0.0 05

LOG ([NIlJ/Ha)

The need of spectroscopic information limits the
applicability of these diagnostics.

Acquisition of more spectra is time expensive.

Galaxies without emission lines cannot be
classified.
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Traditional way of activity classification
3) mid-IR/ multi-band photometry

Widely use/ Well characterized
Easily applied
All-sky coverage (WISE)

Why do we still need a new activity diagnostic ?

Limited to identify only luminous AGN in high-redshift
galaxies.

Cannot discriminate the galaxies in other classes apart
from star-forming and AGN.

Not applicable in low redshift galaxies.

Development of a new galaxy activity classifier by
training Machine Learning algorithm on

multiwavelength data.
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Training sample

Definition of labels

Spectroscopic information:

SDSS-MPA-JHU catalog of galaxies

Applying Stampoulis et. al.,2019 to get the 4-activity
classes.
> Using only spectra with S/IN>5

Passive galaxies definition:
> Emission-line: S/N < 3 && Continuum: S/N > 3

5 Labels :

Star-forming, AGN, LINERs, Composite, Passive

Balancing the sample

z range: 0.02-0.08
Strong imbalance between the classes as a function of
z. (AGN & Passive galaxies dominate in high-z)

Splitting the training sample in 2 z bins: low & high z .

Balancing the sample according the number of
objects per class in the low-z.

Total sample: 52001 galaxies

Class Number of objects  Percentage (%)
Star forming 41425 197
Seyfert 2606 5.0
LINER 1640 5.1
Composite 3649 7.0

Passive 2681 5.2




Photometric information:

>  WISE all-sky survey: W1,W2, W3 mid-IR bands

Training sample

Definition of features
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Random Forest algorithm and its Optimization

Hyper-parameters tuning
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Final combination of Hyper-parameters

Based on the validation curves we defined a

smaller range for the hyper-parameters within wieh — performance.

a GridSearch was performed.

values — RF reaches the highest



Random Forest algorithm and its Optimization

Feature optimization

Investigating if there is a specific combination of o2 . + + *
features that results in a better performance. osl ¢ ; t . ]
Evaluating the RF algorithm for different combinations of 0.7} , .
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Il.  Model 2: W1-W2, W2-W3, g-r AGN
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VI. Model 6: W1-W2, W2-W3, W3-W4, g-r, u-g



Random Forest algorithm and its Optimization

Feature optimization
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Results
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Best performing classes:
Star-forming & Passive

True class
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Results

All classes
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Checking the confidence and the reliability of the algorithm
The results look very promising !



W1-W2

Application of the new diagnostic
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Application of the activity diagnostic on the
HECATE catalog

The classifier reveals a population of lower
Luminosity AGN that the standard diagnostics
cannot discriminate.



Take home message

A new activity diagnostic tool based on a RF classifier
o No need for spectroscopic information.
o Completely based on mid-IR and optical colors.
o Applicable in large datasets and catalogs

Able to classify galaxies without emission lines.

High performance for Star-forming and Passive galaxies

High reliability and confidence on the predictions



