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Inference and Prediction Problems for Spatial and Spatiotemporal
Data

Abstract

This dissertation focuses on prediction and inference problems for complex spatiotemporal

systems. I explore three specific problems in this area—motivated by real data examples—and

discuss the theoretical motivations for the proposed methodology, implementation details, and

inference/performance on data of interest.

Chapter 1 introduces a novel time series model that improves the accuracy of lung tumor

tracking for radiotherapy. Tumor tracking requires real-time, multiple-step ahead forecasting

of a quasi-periodic time series recording instantaneous tumor locations. Our proposed model is

a location-mixture autoregressive (LMAR) process that admits multimodal conditional distribu-

tions, fast approximate inference using the EM algorithm and accurate multiple-step ahead pre-

dictive distributions. Compared with other families of mixture autoregressive models, LMAR is

easier to fit (with a smaller parameter space) and better suited to online inference and multiple-

step ahead forecasting as there is no need for Monte Carlo. Against other candidate models in

statistics and machine learning, our model provides superior predictive performance for clinical

data.

Chapter 2 develops a stochastic process model for the spatiotemporal evolution of a basket-

ball possession based on tracking data that records each player’s exact location at 25Hz. Our

model comprises of multiresolution transition kernels that simultaneously describe players’ con-

tinuous motion dynamics along with their decisions, ball movements, and other discrete actions.

Many such actions occur very sparsely in player × location space, so we use hierarchical models

to share information across different players in the league and disjoint regions on the basketball

court—a challenging problem given the scale of our data (over 400 players and 1 billion space-

time observations) and the computational cost of inferential methods in spatial statistics. Our
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framework, in addition to offering valuable insight into individual players’ behavior and decision-

making, allows us to estimate the instantaneous expected point value of an NBA possession by

averaging over all possible future possession paths.

In Chapter 3, we investigate Gaussian process regression where inputs are subject to measure-

ment error. For instance, in spatial statistics, input measurement errors occur when the geo-

graphical locations of observed data are not known exactly. Such sources of error are not special

cases of “nugget” or microscale variation, and require alternative methods for both interpolation

and parameter estimation. We discuss some theory for Kriging in this regime, as well as using

Hybrid Monte Carlo to provide predictive distributions (and parameter estimates, if necessary).

Through simulation study and analysis of northern hemipshere temperature data from the sum-

mer of 2011, we show that appropriate methods for incorporating location measurement error are

essential to reliable inference in this regime.
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0
Preface

The chapters in this dissertation are each self-contained research topics, motivated by distinct

data sets and applications. However, these chapters share common methodological challenges and

reflect a unified approach to statistical research. Time series, spatial, and spatiotemporal data

are indexed by observations in time and/or space. As such, they generally share a unique, non-

exchangeable dependence structure: the joint distribution of a collection of variables that are

close together (either in space, time, or both) behaves differently from a collection of variables

that are spaced far apart.

Futhermore, the data applications considered in this thesis, and their corresponding statistical
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models, can be represented by a general two-level model:

Yi|θi
iid∼ f(y; θi) (1)

θ ∼ g(θ;ϕ) (2)

Yi ∼ m(y;ϕ) =

∫
f(y; θi)g(θ;ϕ)dθ (3)

θ|Y ∼ h(θ;ϕ,Y) ∝
n∏

i=1

f(yi; θi)g(θ;ϕ) (4)

Y ∗|Y ∼ p(y∗;ϕ,Y) =

∫
f(y∗;θ)h(θ;ϕ,Y)dθ. (5)

Morris (1995) refers to (1)–(2) as the “descriptive model”, which describes the data conditional

on a multi-dimensional parameter of interest θ and the prior for θ, and to (3)–(4) as the “infer-

ential model”. The marginal likelihood m summarizes all information in the data for inferring

hyperparameters ϕ, and the posterior h provides inference for θ given the hyperparameters and

observed data. (5) is the posterior predictive distribution. A fully Bayesian treatment of (1)–(4)

might place a prior on ϕ, while an empirical Bayes approach estimates ϕ using m, and fixes ϕ in

subsequent analysis.

Each chapter of this dissertation, taken in view of (1)–(5), features θ as a process of interest.

In Chapter 1, θ represents a sequence of motifs (distinctive patterns) that describe the shape and

future evolution of a time series (individual measurements of this time series are Yi). In Chapter

2, θ is a latent process describing basketball players’ hazards (small-scale probabilities) to initiate

various actions, such as passing or attempting a shot. Y can be thought of as spatiotemporal

point process data, with θ representing an underlying space-time intensity. The investigation

in Chapter 3 treats θ as a Gaussian process—an unknown real-valued function supported on a

spatial domain, and Yi as measurements of this function at various locations in the domain.

Much of the methodology discussed in each chapter focuses on inferring the latent process of

interest θ, given the data Y. Of course, the models in this dissertation feature additional param-

eters and structural assumptions specific to each problem. The methodological and computa-

tional techniques necessary to leverage the information in the data also further vary by problem,

yet the general structure of (1)–(5) is a common framework for my research.
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The work throughout this thesis is motivated by computational challenges and constraints. In

the three chapters to follow, these challenges originate from different features of each problem.

In Chapter 1, our data application demands real-time inference and prediction, which motivates

models and techniques that are computationally simple and efficient. In Chapter 2, we analyze a

massive data set, consisting of around a billion observed data points in space-time, and are thus

forced to design models and implement inference that is feasible for this data. Chapter 3 treats

Gaussian process regression, which is a computationally expensive model that scales poorly with

data size; traditional implementations fail with any more than several thousand observations.

Even more than by shared methodology, this work is anchored by application and scientific

utility. Each chapter is motivated by—and includes analysis of—data that has scientific and/or

cultural value, and is of broad interest outside Statistics. The famous quote attributed to John

Tukey, “The best thing about being a statistician is that you get to play in everyone’s backyard”,

while clichéd, truly describes my own passion for Statistics, and this dissertation reflects that.
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1
A Location-Mixture Autoregressive Model for

Online Forecasting of Lung Tumor Motion

1.1 Introduction

Real-time tumor tracking is a promising recent development in External Beam Radiotherapy

(XRT) for the treatment of lung tumors. In XRT, a compact linear accelerator is used to de-

liver photon radiation to the tumor locations in a narrow beam, minimizing exposure to nearby

healthy tissue. As the location of the lung tumor is in constant motion due to respiration, some

patients who undergo this treatment are implanted with a small metal marker (known as a fidu-

cial) at the location of a tumor. During XRT, X-ray imaging reveals the location of the fiducial,
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thus providing the desired target of the radiation beam. Tumor tracking is an advanced tech-

nology that minimizes normal tissue exposure by moving the radiation beam to follow the tu-

mor position [Rottmann et al. (2013); D’Souza et al. (2005); Schweikard et al. (2000)]. However,

there is a system latency of 0.1–1.0 seconds (depending on the equipment used) that causes the

aperture of the radiation beam to lag behind the real-time location of the tumor. This latency is

estimated empirically by comparing the motion history of the fiducial and radiation beam aper-

ture. For tumor tracking XRT to be successful, hardware and software system latencies must be

overcome by the introduction of a predictive algorithm.

As accurate radiotherapy is essential for both minimizing radiation exposure to healthy tissue

and ensuring the tumor itself is sufficiently irradiated, the subject of predicting tumor motion to

overcome the system latency has received a good deal of attention in the medical community.

Any possible forecasting approach must provide k-step ahead predictive distributions in real-

time, where k is approximately equal to the system latency multiplied by the sampling frequency

of the tumor tracking imagery. Real-time forecasting requires that a (k-step ahead) prediction be

made before any further data on the tumor’s motion has been recorded.

Statistical methods for tumor prediction in the literature include penalized linear models (e.g.,

Sharp et al. (2004) and many others), the Kalman filter [Murphy et al. (2002)], state-space mod-

els [Kalet et al. (2010)], and wavelets [Ernst et al. (2007)]; machine learning methods include ker-

nel density estimation [Ruan & Keall (2010)], support vector regression [Riaz et al. (2009); Ernst

& Schweikard (2009)], and neural networks [Murphy et al. (2002); Murphy & Dieterich (2006)].

All of these examples include simulations of out-of-sample prediction using real patient data in

order to assess forecasting accuracy. Because predictive performance varies considerably from

patient to patient and across different equipment configurations, of particular importance to the

literature are comparisons of different prediction methods for the same set of patients with the

same conditions for data preprocessing [Sharp et al. (2004); Krauss et al. (2011); Ernst et al.

(2013)]. While standard, “off-the-shelf” time series forecasting models can be applied to lung

tumor tracking, better predictive performance can be achieved with a model that explicitly in-

corporates the dynamics of respiratory motion.

We propose a novel time series model which we call a location-mixture autoregressive process

2



(LMAR). A future observation (Yn) given the observed history of the time series is assumed to

follow a Gaussian mixture,

Yn|Yn−1, Yn−2, . . . ∼
dn∑
j=1

αn,jN (µn,j , σ
2), (1.1)

where
∑dn

j=1 αn,j = 1, and µn,j is of the form

µn,j = µ̃n,j +

p∑
l=1

γlYn−l. (1.2)

We refer to this as a location-mixture autoregressive model because the autoregressive part of

the component means,
∑p

l=1 γlYn−l, is the same for all j, and only the location parameter, µ̃n,j ,

changes across the components in (1.1). Our model differs from other time series models that

yield mixture-normal conditional distributions (e.g., the class of threshold autoregressive mod-

els [Tong & Lim (1980)], including Markov-switching autoregressive models [Hamilton (1989)]

and the mixture autoregressive models of Wong & Li (2000)) in that µ̃n,j in (1.2) depends on an

unknown subseries of the time series, at least p observations in the past. The mixture weights,

{αn,j}, also depend on the entire history of the observed time series, and the number of mixture

components in our model, dn, increases with n.

Another noteworthy characteristic of our model is that all parameters in (1.1) are obtained

from a single, unknown, (p + 1) × (p + 1) positive definite matrix. This parsimonious parame-

terization is motivated in part by the need for real-time parameter estimation and forecasting.

Compared with other mixture autoregressive models, LMAR is simpler to fit and admits accu-

rate closed-form expressions for k-step ahead predictive distributions. While the data application

we consider shows the promise and appeal of the LMAR model, we believe a thorough treatment

of its theoretical properties (a future endeavor) is necessary before the LMAR model is a viable

“off-the-shelf” method for diverse data sets.

We motivate our model in the context of time series motifs, which offers a geometric inter-

pretation of the components in our model. In general terms, motifs catalog recurring pattens in

time series and are commonly used in data mining tasks for which a symbolic representation of a

3



time series is useful, such as event detection and time series clustering or classification [Lin et al.

(2002); Ye & Keogh (2009); Tanaka et al. (2005); Fu (2011)]. For the purposes of forecasting,

predictive state representations [Littman et al. (2002); Shalizi (2003); Boots & Gordon (2011)]

categorize time series motifs not as subseries of the observed data, but as equivalence classes of

conditional predictive distributions.

Section 1.2 of this paper discusses the important features of the data we use and graphically

motivates our model. Section 1.3 formally introduces the LMAR model and describes parameter

estimation and forecasting using principled methods that are feasible in real-time. Section 1.4

describes the procedure for comparing out-of-sample prediction error under our model with com-

peting forecasting methods for tumor tracking, including the selection of tuning parameters. The

results of this comparison are discussed in Section 1.5, and Section 1.6 summarizes and points

out future directions.

1.2 Tumor tracking data

We have data on 11 patients treated at the Radiation Oncology Clinic at the Nippon Telegraph

and Telephone Corporation Hospital in Sapporo, Japan. A detailed discussion of the conditions

and instruments involved in the data aquisition is available in Berbeco et al. (2005). The data

is derived from observations of the position of gold fiducial markers implanted into the tumors

of lung cancer patients. The marker position is determined via stereoscopic x-ray imaging con-

ducted at 30 Hz. In each of the two stereoscopic images, the marker position is automatically

detected using thresholding and edge detection. The position of the marker in these two images

is used to triangulate its position in 3D space relative to the radiation beam. Data consists of

tumor positions measured over one or multiple days of radiotherapy treatment delivery (range 1-

12), and for multiple sequences on each day, denoted beams. In our data set, there are a total of

171 such distinct sequences, with lengths varying from 637 observations (about 21 seconds at 30

observations per second) to 8935 observations (about 5 minutes).

Note that this paper focuses on within-beam forecasting—that is, each beam is treated inde-

pendently and there is no information sharing between patients or within different beams from

the same patient. Developing methodology for combining prediction models from distinct time

4



series (both within and across patients) is an important area for further research.

1.2.1 Features of the data

Each observation in each sequence is a point in R3, representing the real-time 3D location of the

lung tumor. The X axis is the lateral-medial (left-right) direction, the Y axis is superior-inferior,

and the Z axis is anterior-posterior, with all measurements in millimeters*. Figure 1.1 shows the

motion in each dimension during the first 100 seconds of a particular observation sequence. As

expected with respiratory motion, the pattern is approximately periodic, with inhalation closely

corresponding to decreasing values in the Y direction. However, the amplitude of each breath

varies considerably (in Figure 1.1 the variation seems periodic, though this is not a typical fea-

ture of the data). The curves undergo gradual baseline location shifts, and, while it may not be
*The origin is set to the isocenter, which is the center of rotation for the linear accelerator axis mo-

tions. During treatment, the patient is positioned so that this coincides with the centroid of the region
being treated. However, there is uncertainty in determining this point, so the data is best thought of as
relative tumor motion on each day.
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Figure 1.1: Sample time series of 3D locations of lung tumor. The X axis is the lateral-medial
(left-right) direction, Y axis superior-inferior, and Z axis anterior-posterior
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visually discerned from Figure 1.1, it is common for respiratory cycles to change periodicity, ei-

ther sporadically or gradually over time. Table 1.1 shows the variability in period and amplitude

of the respiratory traces, both within and between patients.

Patient Total
beams

Total
time (s)

Amplitude (mm) Period(s)
mean SD mean SD

1 4 212.27 14.57 6.98 3.66 1.16
2 2 136.87 13.74 1.84 3.89 1.06
3 2 80.93 9.84 3.16 3.97 0.56
4 38 2502.67 8.86 1.35 2.88 0.31
5 26 2769.33 7.90 1.66 3.61 0.68
6 28 2471.93 10.07 2.51 2.58 0.55
7 11 1661.37 9.66 2.41 5.05 1.09
8 8 832.80 14.38 4.02 3.15 1.18
9 15 2599.90 11.45 1.61 3.09 0.41
10 15 3497.67 14.88 3.65 3.77 0.64
11 22 3674.77 21.81 5.05 3.38 0.52

Table 1.1: Summary statistics for the first principal component of respiratory trace data, at the
patient level

Due to the extremely high correlations between series of observations from different dimen-

sions, it is useful to consider a lower-dimensional representation of the 3D process. Transforming

each 3D sequence into orthogonal components using principal component analysis (PCA) loads

the periodic respiratory dynamics onto the first component, representing about 99% of the total

variance in the 3D data. The last two principal components still exhibit some periodic behavior

(see Figure 1.2), but the signal is weak relative to the noise†. In addition to dimension reduction

and useful interpretability, the PCA transformation prevents any loss of statistical efficiency if

models are fit independently for each component. Ruan & Keall (2010) compared independent-

component prediction before and after PCA using kernel density estimation, finding smaller 3D

root mean squared prediction error when using the PCA-transformed data for prediction. When

comparing several algorithms for predicting lung tumor motion, both Ernst et al. (2013) and
†A referee pointed out that while the first principal component gives the linear combination of the 3D

data with maximum variance, it is not necessarily the most forecastable linear combination. Alternative
linear transformations (e.g., forecastable components [Goerg (2013a)]) may load additional periodic fea-
tures to the first component than we observe with PCA. In choosing an appropriate transformation, the
goal is to find an orthogonal basis in which componentwise predictions have the smallest error when trans-
formed back to the original basis. We do not explore this issue here; however, one advantage in using the
first principal component is that the signal-to-noise ratio will be high, allowing for forecast procedures that
aren’t well suited for measurement error in the observed data.
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Krauss et al. (2011) used the principal components, then transformed their predictions to the

original linear basis of the data.
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Figure 1.2: Time series of principal components. Components 2 and 3 exhibit periodic behavior,
but with much smaller magnitude.

For the remainder of this study, we focus on modeling the first principal component only, as

it encodes such a large portion of the system dynamics. In clinical implementation, we would

forecast independently on each orthogonal component and transform back to the original linear

basis in order to inform the location of the radiation treatment beam.

1.2.2 Time series motifs for forecasting: a graphical example

Because the data are quasi-periodic, it is useful to look at short patterns that recur at possibly

irregular intervals, which we call motifs (we provide a more rigorous definition of time series mo-

tifs in Section 1.3.2). Figure 1.3 highlights different motifs in the first principal component at the

end of the exhale (start of the inhale) for a particular observation sequence. The highlighted ar-

eas appear to be heartbeats, which affect the location of the tumor differently depending on the
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real-time location of the tumor relative to the heart.

Observing repeated patterns within each time series in the data suggests a modeling/prediction

framework that leverages this structure. In general, if the recent past of the time series resembles

a motif we have observed previously in the data, then the shape of this motif should inform our

predictions of future observations; this idea is formalized through predictive state representations

[Littman et al. (2002); Shalizi (2003)]. For a graphical illustration, consider predicting 0.4s (12

steps) ahead for the first principal component of the curve displayed in Figure 1.2. We have ob-

served 100 seconds of the process, and it appears as though we have just observed the start of the

exhale; the current observation at time t = 100 seconds, as well as the previous 12 observations,

are colored orange in Figure 1.4. Colored in black are segments earlier in the time series that re-

semble the current motif (specifically, we highlighted subseries of length 13 where the tenth point

has the largest magnitude, and the 11th–13th points are decreasing).

To predict future observations, we can incorporate the points immediately succeeding the end-

points of black motifs. Figure 1.5 shows these trajectories (in gray), and the actual current tra-

jectory of the process is shown in orange, with a point giving the value 0.4s in the future. The
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Figure 1.3: Recurring patterns (coded by color and line type) in the first principal component of
patient 10, day 1, beam 3. Areas boxed by lines of the same color/line type resemble one another.
The behavior highlighted in these motifs is most likely caused by the patient’s heartbeat.
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Figure 1.4: The most recent 0.43s (13 observations) are in black. The thicker, orange segments
share similar local history.
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Figure 1.5: The recent history of the process (thick black line) instantiates a motif. Previous
instances of this motif, and their subsequent evolutions, are in orange and provide reasonable
predictions for future points (black dot).
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gray curves provide reasonable forecasts for the future evolution of the time series, and indeed

the actual future value is close to where these trajectories predict.

Our model, formally introduced in Section 1.3, implements the forecasting approach sketched

in this subsection using an autoregressive model for the data-generating process.

1.3 Location-mixture autoregressive processes

Here, we define the LMAR process and provide computationally efficient algorithms for param-

eter estimation and k-step ahead forecasting. To establish terminology, we denote a time series

as an ordered sequence of real numbers {Yi ∈ R, i = 0,±1,±2, . . .} measured at regular, equally

spaced intervals. Also, a subseries of length p + 1 is a subset of a time series {Yi, i = 0,±1, . . .}

comprised of consecutive observations, Yi, Yi+1, . . . , Yi+p. For notational ease, we will denote sub-

series as Yi:(i+p), or equivalently Yi+0:p.

1.3.1 A model for the data-generating process

Let {Yi, i = −m, . . . , n} be a time series. Also, assume Σ is a (p + 1) × (p + 1) symmetric, non-

negative definite matrix, where Σ11 is the upper-left p × p submatrix, Σ22 is the single bottom-

right element, and Σ21 and Σ12 are the respective off-diagonal row and column vectors. p is as-

sumed to be fixed and known. For notational ease, let γ = Σ−1
11 Σ12, σ2 = Σ22 − γ′Σ12, and

Ji = {p+ 1, . . . , i+m− p}. Lastly, let

Vij =



Yi−p − Yi−j−p

...

Yi−2 − Yi−j−2

Yi−1 − Yi−j−1


.
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As in (1.1), we assume that the distribution of Yi given Y−m, . . . , Yi−1 is a normal mixture:

Yi|Y(−m):(i−1) ∼
∑
j∈Ji

αi,j N(µi,j , σ
2), (1.3)

where αi,j =
exp

(
−1

2V
′
ijΣ

−1
11 Vij

)
∑

l∈Ji
exp

(
−1

2V
′
ilΣ

−1
11 Vil

)
and µi,j = Yi−j + γ′Vij .

The model in (1.3) defines the location-mixture autogressive process with parameter Σ (ab-

breviated LMAR(Σ)). We can recognize the location-mixture form originally given in (1.1) by

writing µi,j = µ̃i,j +
∑p

l=1 γlYi−l where

µ̃i,j = Yi−j −
p∑

l=1

γlYj−l (1.4)

and (γp γp−1 . . . γ1)
′ = γ. Thus, the distribution for Yi|Y(−m):(i−1) is a normal mixture with

|Ji| different mean components—each sharing a common autoregressive component but different

location parameter—equal variance across components (σ2), and data-driven mixture weights

(αi,j). We assume (1.3) for all i ≥ 0, but we do not make any distributional assumptions about

Y(−m):(−1).

As Σ parameterizes the entire mixture distribution, the component means and mixture weights

are linked through a common parameter which encourages self-similarity in the data-generating

process. If two subseries, Y(i−p):(i−1) and Y(i−p−j):(i−1−j) resemble one another in that V ′
ijΣ

−1
11 Vij

is small, then we have a large weight on the mixture component with mean Yi−j + γ′Vij . This

means that the next observation of the process, Yi, is centered near a previous value of the series

Yi−j inasmuch as the subseries of observations preceding Yi and Yi−j have a similar shape. Sim-

ply put, if Yi and Yi−j are preceded by similar values, then the components of Vij will be close

to 0. This drives up the mixture weight αi,j , implying the mean of Yi will be close to µi,j (which

itself is close to Yi−j).

The dimension of Σ, p + 1, can in principle be chosen using standard model selection methods

(e.g., Bayes factors), though if the goal of fitting a LMAR model is prediction, we recommend
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cross-validation or hold-out testing for choosing p. For quasi-periodic time series, a reasonable

choice for p might be anywhere between one tenth and one third of the average number of ob-

servations per period. Larger values of p increase the computational load in estimating Σ while

favoring sparser component weights.

The model (1.3) specifies the role of time series motifs in the data-generating process, which

was informally discussed in Section 1.2.2. To illustrate this, we introduce a latent variable Mi

that takes values in Ji, such that for all j ∈ Ji,

P(Mi = j|Y(−m):(i−1)) ∝ exp

(
−1

2
V ′
ijΣ

−1
11 Vij

)
. (1.5)

Then, given Mi = j, we induce the same distribution for Yi as in (1.3) by assuming

Yi | [Mi = j, Y(−m):(i−1)] ∼ N (Yi−j + γ′Vij , σ
2). (1.6)

Expression (1.6) can be used to define a motif relation: each subseries of length (p + 1) is a mo-

tif, and Y(i−p):i is an instance of motif Y(i−p−j):(i−j) if Mi = j (thus yielding (1.6)). We denote

this by writing

(motif) Y(i−p−j):(i−j) → Y(i−p):i (instance).

Note that our indexing set Ji is defined in such a way that instances of a particular motif cannot

overlap (share a common component Yj) with the motif itself.

Our definition of motifs is atypical of the literature for data mining tasks [Lin et al. (2002)]

and predictive state representations of time series [Littman et al. (2002)]. For instance, the re-

lationship that instantiates motifs (notated →) is not symmetric, and is not an equivalence re-

lation; for this reason we have defined a motif instance distinctly from a motif. Also, we define

motifs as observed subseries of the data and motif instances as latent states (we do not observe

Mi). For most data mining tasks, time series motifs represent an equivalence class of observed

subseries of the data (possibly transformed) [Fu (2011)] whereas predictive state representations

of time series treat motifs as latent equivalence classes of predictive distributions [Shalizi (2003)].

However, our definition of motifs preserves the interpretation of geometric similarity we sketched
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in Section (1.2.2). From (1.5), we have Mi = j (meaning Y(i−p−j):(i−j) → Y(i−p):i) with high prob-

ability if Vij is small with respect to the Σ−1
11 inner product norm. Our model thus expects a sub-

series that is an instance of a particular motif to be close to the motif, and Σ parameterizes this

distance metric.

1.3.2 Comparison with other mixture autoregressive processes

We may compare the LMAR(Σ) to a general form of regime-switching autoregressive models,

for which we can write the distribution function of Yi conditional on all available history of the

process Y(−m):(i−1) as

F (y|Y(−m):(i−1)) =
d∑

j=1

αi,jΦ

(
y − (β0,j +

∑p
l=1 βl,jYi−l)

σj

)
, (1.7)

where
∑d

j=1 αi,j = 1 for all i and Φ denotes the standard normal CDF. Models satisfying (1.7)

can be represented in the framework of threshold autoregressive models [Tong (1978); Tong &

Lim (1980); see Tong (1990) for a book-length treatment], which represent (1.7) using an indica-

tor series {Mi} taking values on {1, . . . , d}, such that

Yi = β0,Mi +

p∑
l=1

βl,Mi
Yi−l + σMiϵi, (1.8)

where {ϵi} are i.i.d. standard normals. Generally, M is not observed, although there are notable

exceptions such as the self-exciting threshold AR model of Tong & Lim (1980).

A canonical model of this form is the mixture autoregressive model of Le et al. (1996) and

Wong & Li (2000), which assumes {Mi} are i.i.d. and independent of Y . Another special case

of (1.8) is when M is a Markov chain, such as in the Markov-switching autoregressive models

of Hamilton (1989) and McCulloch & Tsay (1994). More general stochastic structure for M is

considered by Lau & So (2008), as well as in mixture-of-experts models in the machine learning

literature [Carvalho & Tanner (2005)]. These models seem favorable over the mixture autoregres-

sive models of Wong & Li (2000) when the data is seasonal or quasi-periodic, as is the case with

the time series we consider.
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The LMAR(Σ) process differs from (1.7) in that the mixture means, following (1.3)–(1.4), are

given by

µi,j = µ̃i,j +

p∑
l=1

γlYi−l

= Yi−j +

p∑
l=1

γlYi−l −
p∑

l=1

γlYj−l,

instead of µi,j = β0,j +
∑p

l=1 βl,jYi−l as in (1.7). Thus, for LMAR(Σ), the autoregressive coef-

ficients (γ) are fixed, and the normal-mixture form of the conditional distribution is induced by

a location shift that is a function of a random subseries of past observations, µ̃i,j . The normal-

mixture form of (1.7), however, is induced by a mixture distribution for autoregressive coeffi-

cients of the same lagged values of the time series. The mixture weights of the LMAR(Σ) process

are also strongly data-driven, depending on the entire history of the process. Unlike many forms

of mixture autoregressive models, there is no prior distribution or conditional dependence struc-

ture assumed for M ; the distribution of M is supplied entirely by the data.

Another key difference is that LMAR(Σ) does not assume a fixed number of mixture compo-

nents, as is clear from (1.3). But because the same autoregressive coefficient vector (γ) parame-

terizes all mean components µi,j , we actually have a much smaller parameter space than all the

instances of (1.7) cited above, which include the parameters for the mixture components (d vec-

tors of length p + 1 for the means) as well as for the distribution of M . A small parameter space

is advantageous in the context of our data application as it facilitates rapid updating. Also, time

constraints will not allow for any goodness-of-fit or model selection procedures for choosing struc-

tural parameters such as d or p in (1.7), or structural parameters for M . The only structural pa-

rameter in the LMAR(Σ) model is p, and in our analysis of this data set we found that predictive

distributions were quite stable for different choices of p.

The most important distinction of the LMAR(Σ) model is the existence of good approxima-

tions for k-step ahead predictive distributions, for k ≤ p, which are given in Section 1.3.4. Closed-

form predictive distributions for k > 1 are not available for many models of the form (1.7) (the

exception is the Markov-switching autoregressive models of Hamilton (1989); for a discussion see

Krolzig (2000)). Wong & Li (2000) recommended Monte Carlo estimates of k-step ahead pre-
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dictive distributions, although Boshnakov (2009) found for them a closed-form representation as

a normal mixture. Calculating the mixture component parameters for moderate k, however, is

quite laborious. For the general model (1.7), De Gooijer & Kumar (1992) discussed the difficulty

in k-step ahead forecasting and question whether predictive performance is improved over classes

of linear time series models (also see Tong & Moeanaddin (1988) for a discussion of the robust-

ness of medium-to-long range forecasts using threshold autoregressive models).

1.3.3 Parameter estimation

In order to be able to adjust radiotherapy treatments in real-time to the patient’s breathing pat-

tern, we seek estimation procedures that are fast enough to run online (in less than a few sec-

onds). As a general rule, this favors approximate closed-form solutions to estimating equations

over exact numerical or Monte Carlo methods. To estimate Σ, which is the only unknown param-

eter of this model, we take a conditional likelihood approach based on the conditional distribu-

tion Y0:n|Y(−m):(−1). We assume the full-data likelihood can be written as

L(ψ,Σ) = L1(ψ,Σ)L2(Σ),

where L1(ψ,Σ) ∝ P(Y(−m):(−1);ψ,Σ) and L2(Σ) ∝ P(Y0:n|Y(−m):(−1); Σ). The distribution of the

first m observations, and thus L1, is left unspecified, and all information for Σ comes from L2.

If L1 depends on Σ, there will be some loss of efficiency when using only L2 for inference versus

the complete-data likelihood, though under mild conditions the maximum conditional likelihood

estimate is consistent and asymptotically efficient [Kalbfleisch & Sprott (1970)].

The conditional likelihood, L2(Σ), can be written as

L2(Σ) =

n∏
i=0

1

σ

∑
j∈Ji

exp

(
− 1

2σ2
(Yi − Yi−j − γ′Vij)2

)

×

(
exp(−V ′

ijΣ
−1
11 Vij/2)∑

l∈Ji
exp(−V ′

ilΣ
−1
11 Vil/2)

)]
.

(1.9)

To maximize (1.9), we augment the data to {Y0:n,M0:n}, with Mi as in (1.5). This invites the use

of the Expectation-Maximization (EM) algorithm [Dempster et al. (1977)] to estimate Σ. The
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augmented-data (complete-data) conditional likelihood is

L2,com(Σ) =
n∏

i=0

1

σ

∏
j∈Ji

[
exp

(
− 1

2σ2
(Yi − Yi−j − γ′Vij)2

)

×

(
exp(−V ′

ijΣ
−1
11 Vij/2)∑

l∈Ji
exp(−V ′

ilΣ
−1
11 Vil/2)

)]1[Mi=j]

.

This can be simplified further. Let W ′
ij = (V ′

ij Yi − Yi−j), and recalling the notation for σ and γ,

we have

L2,com(Σ) =
n∏

i=0

exp
(
−1

2

∑
j∈Ji

1[Mi = j]W ′
ijΣ

−1Wij

)
σ
∑

l∈Ji
exp(−V ′

ilΣ
−1
11 Vil/2)

. (1.10)

The term
∑

l∈Ji
exp(−V ′

ilΣ
−1
11 Vil/2) can be viewed as an approximation of a Gaussian integral;

if we assume that, for all i, {Vil, l ∈ Ji} resemble |Ji| i.i.d. draws from some distribution V ∼

N (0,Ω), then we have

∑
l∈Ji

exp(−V ′
ilΣ

−1
11 Vil/2) ≈ |Ji|

∫
exp(−V ′Σ−1

11 V/2)
exp(−V ′Ω−1V/2)

(2π)p/2|Ω|1/2
dV

= |Ji|
(
|(Σ−1

11 +Ω−1)−1|
|Ω|

)1/2

= |Ji|
(
|Σ11|
|Σ11 +Ω|

)1/2

. (1.11)

Noting that σ|Σ11|1/2 = |Σ|1/2, and ignoring multiplicative constants, we arrive at an approxi-

mate augmented-data conditional likelihood:

L2,com(Σ) ≈
(
|Σ11 +Ω|
|Σ|

)(n+1)/2

exp

−1

2

n∑
i=0

∑
j∈Ji

1[Mi = j]W ′
ijΣ

−1Wij

 .

Typically Σ11 ≪ Ω, meaning

∂ (log(|Σ11 +Ω|)− log(|Σ|)) = Tr((Σ11 +Ω)−1∂Σ11)− Tr(Σ−1∂Σ)

≈ −Tr(Σ−1∂Σ)

as ∂ log(|Σ|) dominates ∂ log(|Σ11+Ω|). This justifies the approximation log(|Σ11+Ω|)−log(|Σ|) ≈
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− log(|Σ|) in the augmented-data conditional log-likelihood, as it will admit nearly the same

maximizer. Thus, we have

log(L2,com(Σ)) ≈ −
n+ 1

2
log(|Σ|)− 1

2

n∑
i=0

∑
j∈Ji

1[Mi = j]W ′
ijΣ

−1Wij . (1.12)

While (1.12) is much easier to work with than the logarithm of the exact conditional likelihood

(1.10), the assumptions of this approximation are somewhat tenuous. Under this model (1.3),

both conditional and marginal distributions of observations at each time point follow a normal

mixture, meaning for l randomly chosen from Ji, we have a difference of normal mixtures (itself

a normal mixture) for Vil, instead of i.i.d. normals as (1.11) suggests. We nevertheless proceed

with approximation (1.12) in place of (1.10), noting that convergence of the EM algorithm needs

to be more carefully monitored in this instance.

At each iteration of the EM algorithm, we maximize the so-called Q function:

Q(t)(Σ) = EΣ(t) [log(L2,com(Σ))|Y ]

≈ −n+ 1

2
log(|Σ|)− 1

2

n∑
i=0

∑
j∈Ji

ωijW
′
ijΣ

−1Wij , (1.13)

with Σ(t) = argmax(Q(t−1)(Σ)) and ωij = EΣ(t) [1[Mi = j]|Y ]. Clearly,

ωij =
exp(−W ′

ij [Σ
(t)]−1Wij/2)∑

l∈Ji
exp(−W ′

lj [Σ
(t)]−1Wlj/2)

.

The maximizer of (1.13) can be found in closed form as a weighted sample covariance matrix,

Σ(t+1) =
1

n+ 1

n∑
i=0

∑
j∈Ji

ωijWijW
′
ij . (1.14)

Again, due to several different approximations used in maximizing the original conditional

likelihood (1.9), it is necessary to monitor the convergence to a suitable (if slightly sub-optimal)

solution, as the log-likelihood is not guaranteed to increase at each iteration.
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1.3.4 A prediction model for fast implementation

Exact closed-form expressions for k-step ahead predictive distributions are not available for the

model (1.3). Because of the need for real-time forecasting of many steps ahead, we explore ap-

proximations to k-step ahead predictive distributions that are available in closed form. An imme-

diate approach to doing so is to explore whether the approximate complete-data conditional log-

likelihood used for inference (1.12) corresponds to a probabilistic model (perhaps misspecified)

that admits closed-form predictive distributions. In other words, if the previous section derives

an approximate log-likelihood (1.12) from an exact model (1.3), here we treat (1.12) as exact and

explore corresponding approximate models.

Let Zi = (Yi−p . . . Yi−1 Yi)
′ for 0 ≤ i ≤ n. Since Wij = Zi − Zj , we may arrive at the

likelihood expression (1.12) by assuming Zi ∼ N (Zi−Mi ,Σ) independently. This is obviously a

misspecification, since for any k ≤ p, Zi and Zi+k contain duplicate entries and thus cannot be

independent. But assuming the {Zi} independent, and further assuming P(Mi = j) = 1/|Ji|

independently for all i, we can write the (conditional) likelihood for a independent multivariate

normal mixture model, denoted La to distinguish from L2,com:

La(Σ) =
n∏

i=0

∏
j∈Ji

[
|Σ|−1/2 exp

(
−1

2
W ′

ijΣ
−1Wij

)]1[Mi=j]

. (1.15)

Indeed, we see that La(Σ) is equal to the approximation of L2,com(Σ) given in (1.12). Thus,

the misspecified independent mixture model for Zi yields the same likelihood (La) as the approx-

imation to L2, the exact (conditional) likelihood corresponding to the data-generating process.

Also, recall that Mi = j denotes Zi as an instance of motif Zj . The implied relation in (1.15) is

that

Zj → Zi if Zi|Zj ∼ N (Zj ,Σ), (1.16)

and indeed this relation is closely connected to the one defined in (1.6). They appear equivalent,

as (1.6) is recovered by assuming Zi|Zj ∼ N (Zj ,Σ), and then considering the conditional distri-

bution Yi|Y(−m):(i−1). However, for (1.16) to hold for all i requires the impossible assumption of

Zi being independent of Zi−1, while the relation in (1.6) does not.
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The corresponding Q function for this complete-data conditional likelihood (1.15) is

Q(t)
a (Σ) =

n∑
i=0

−1

2
log(|Σ|)− 1

2

∑
j∈Ji

EΣ(t) [1[Mi = j]|Z]W ′
ijΣ

−1Wij .

Working EΣ(t) [1[Mi = j]|Z] = ωij , we see that Q(t)
a is identical to Q(t) given in (1.13), confirming

that the “same” Σ parametrizes both the original data-generating process assumed in (1.3), and

its degenerate approximation that we will use to make predictions (1.15). We may also think of

maximizing Q as inferring motif instances given by the relation (1.16), i.e., minimizing a distance

metric.

The independent multivariate mixture distribution of {Zi} considered here very easily provides

k-step predictive distributions for k ≤ p. If we have observed the process up to Yn and wish to

predict Yn+k, this is equivalent to having observed Z up to Zn and wishing to predict the last

component of Zn+k. Having observed Zn completely, we have observed the first p − k + 1 com-

ponents of Zn+k, and thus by the (misspecfied) independence assumed for {Zi}, the predictive

distribution for Yn+k depends only on these p − k + 1 values. To write this, we denote Z̃k
n as the

first p−k+1 components of Zn+k (or the last p−k+1 components of Zn); also let W̃ k
nj = Z̃k

n−Z̃k
j

and partition Σ into Σk
11 as the upper-left (p − k + 1) × (p − k + 1) submatrix, Σk

22 as the single

bottom-right element (thus identical to Σ22), and Σk
12,Σ

k
21 accordingly. Then we have

Yn+k|Y(−m):n ∼
∑

j∈Jn+k

αk
j N (µkj , σ

2
k), (1.17)

where

• αk
j = P(Mn+k = j|Z̃k

n) ∝ exp(−(W̃ k
nj)

′[Σk
11]

−1W̃ k
nj/2),

• µkj = Yn+k−j +Σk
21[Σ

k
11]

−1W̃ k
nj ,

• σ2k = Σk
22 − Σk

21[Σ
k
11]

−1Σk
12.

In terms of motifs, these predictive distributions result from considering the most recent sub-

series of the data of length p − k + 1 as a partially observed motif instance, Zn+k, which includes

the future observation we wish to predict, Yn+k. Using the implied motif relation in (1.16), we in-

19



fer both the motif for which Zn+k is an instance, and derive predictive distributions using simple

multivariate normal properties (1.17).

Of course, we use Σ̂, the solution to (1.14), in place of Σ in the above expressions, acknowledg-

ing that the resulting predictive distributions fail to account for the uncertainty in our estimate

of Σ.

1.3.5 Interpreting Σ̂

Figure 1.6 shows estimates Σ̂ from two of the time series in our data. Interpreting these as co-

variance matrices, we see relatively high correlations across components, favoring instantiating

motifs where the difference between the motif instance and the original motif is roughly linear

with a slope near 0. Also, the diagonal terms are decreasing from top to bottom, implying that

more weight is given to the most recent components of the observed time series when inferring

the latent motif instance and making predictions.

1.52 2.37 3.23 4.08 4.93

(a) Σ̂ for patient 10,
day 1, beam 1.

1.62 2.35 3.09 3.82 4.56

(b) Σ̂ for patient 9,
day 1, beam 2.

Figure 1.6: Illustration of Σ̂ for two of the time series in our data, using p = 22. Note that the
color scale differs slightly for each figure.
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1.4 Evaluating out-of-sample prediction error with competing methods

We compare out-of-sample prediction performance for tumor tracking using the LMAR(Σ) model

with three methods that are straightforward to implement, provide real-time forecasts. Neural

networks (1.4.1) and ridge regression (1.4.2) both compare favorably to alternative methods with

regards to prediction accuracy [Sharp et al. (2004); Krauss et al. (2011)]. LICORS (1.4.3) is a

nonparametric and non-regression forecasting method based on predictive state representations of

the time series [Goerg & Shalizi (2012, 2013)]. For each method, Sections 1.4.4–1.4.6 discuss data

preprocessing and computational considerations relevant for real-time tumor tracking.

1.4.1 Feedforward neural networks

Multilayer feedforward neural networks with at least one hidden layer have been used to fore-

cast lung tumor motion by Murphy et al. (2002) and Murphy & Dieterich (2006), as well as in

simultaneous comparisons of several methods [Sharp et al. (2004); Krauss et al. (2011); Ernst

et al. (2013)]. Using p × h × 1 neural networks, we can predict Yi+k as a function of Y(−m):i. Let

Xi = Y(i−p)+1:p, then

Ŷi+k = β0 + β′G(Xi), (1.18)

where G(Xi) = (g(w01 + w′
1Xi) g(w02 + w′

2Xi) . . . g(w0h + w′
hXi))

′ with activation function

g; here we assume g(x) = 1/(1 + exp(−x)). Hyperparameters p and h are set by the user (as

is the form of the activation function). Unknown parameters β0, β, w01, . . . , w0h, w1, . . . , wh are

estimated by minimizing sum of squares using the R package nnet [Venables & Ripley (2002)].

Because the number of unknown parameters is large (w1, . . . , wh are p-vectors), to prevent over-

fitting, a regularization term is often used in the sum of squares minimization. Then, the model

is fit by minimizing

C(Y, θ) =
n−k∑
i=0

(Ŷi+k − Yi+k)
2 + λθ′θ, (1.19)

where θ represents a vector of all unknown parameters stacked together, and λ is a penalty hy-

perparameter that is supplied by the user, with higher values providing more shrinkage.
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1.4.2 Ridge regression

The second competing method considered is a linear predictor of the form

Ŷi+k = β0 + β′Xi, (1.20)

with Xi = Y(i−p)+1:p and where β0, β are found by minimizing

C(Y, β0, β) =

n−k∑
i=0

(Ŷi+k − Yi+k)
2 + λ(β20 + β′β). (1.21)

Nearly all studies involving forecasting lung tumor motion consider predictors of this form, usu-

ally referred to as ridge regression. However, since ridge regression assumes {Yi} to be indepen-

dent [Hoerl & Kennard (1970)], the model implied by (1.20)–(1.21) is better described as fitting

an autoregressive model of order p + k − 1 (the first k − 1 coefficients being 0) using conditional

least squares, with an L2 penalty on the vector of autoregressive coefficients (yet we shall refer to

this prediction method as ridge regression). Linear models lack many features that seem appro-

priate for this forecasting example, such as multimodal and/or heteroskedastic conditional dis-

tributions, yet still perform reasonably well and are commonly used as a baseline for comparing

tumor prediction methods.

1.4.3 Light Cone Reconstruction of States (LICORS)

Mixed LICORS [Goerg & Shalizi (2013)] is a recent nonparametric forecasting method based on

predictive state representations of spatiotemporal fields [Shalizi (2003); Goerg & Shalizi (2012)].

In the context of our forecasting example, mixed LICORS models Yi+k|Y(−m):i as depending only

on the past light cone (with horizon p) Xi = Y(i−p)+1:p; furthermore, ϵ(Xi) is a minimal sufficient

statistic for the predictive distribution of Yi+k, so that

Yi+k|Y(−m):i ∼ Yi+k|Xi ∼ Yi+k|ϵ(Xi), (1.22)
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and if ϵ(Xi) = ϵ(Xj), then Yi+k|ϵ(Xi) ∼ Yj+k|ϵ(Xj). Without loss of generality, we may assume ϵ

takes values in S = {s1, . . . , sK}, and for simpler notation let Si = ϵ(Xi) and denote Pj(Yi+k) =

P(Yi+k|Si = sj). The unknown parameters of this model are the mapping ϵ, the number of pre-

dictive states K, and the predictive distributions of the predictive states {Pj , 1 ≤ j ≤ K}. For

fixed K, the remaining parameters are estimated by maximizing

C(Y, ϵ,P1, . . . ,PK) =
n−k∏
i=0

K∑
j=1

Pj(Yi+k)P(Si = j|Xi), (1.23)

which acts as a likelihood, except for Pj being unknown. Goerg & Shalizi (2013) maximized

(1.23) with a nonparametric variant of the EM algorithm, using weighted kernel density estima-

tors to approximate the unknown densities of the predictive distributions {Pj , 1 ≤ j ≤ K}; they

also advocated data-driven procedures for choosing the number of predictive states K.

It is possible to embed the LMAR model in a parametric (Gaussian) mixed LICORS frame-

work, treating {Vij , j ∈ Ji} as the past light cone ℓ−i and {Vij where Mi = j} as the predic-

tive state Si = ϵ(ℓi). While this choice of ϵ does provide a minimal sufficient statistic for the

predictive distribution of Yi (or L+
i ) under the LMAR model, it will not provide any dimension

reduction or parsimony since ϵ(ℓi) will almost surely be unique for each i under our model as-

sumptions.

Fitting the mixed LICORS model to the time series in our data and using it for forecasting

was accomplished using the R package LICORS [Goerg (2013b)]. Note that point forecasts using

the inferred model (1.22) will be a weighted average of the means of the predictive states si ∈ S.

1.4.4 Data preprocessing

Similar to Krauss et al. (2011), we use a total of 80 seconds of data (2400 observations) from

each time series, 40 seconds for model fitting, and 40 seconds for out-of-sample prediction given

the model fit to the first 40 seconds of data. This necessitates removing time series for which we

have fewer than 2400 + k observations, where k is the forecast window. This eliminates 61 of the

171 time series in our data base, unfortunately including all time series from patients 1, 2, and 3.

An additional 15 time series were eliminated because there were several gaps in the observation
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Method Hyperparameter Description
LMAR p Motif length (1.16)

Neural Networks
p Length of input vector Xi (1.18)
h Number of neurons in hidden layer (1.18)
λ Shrinkage; L2 penalty (1.19)

Ridge Regression p Length of input vector Xi (1.20)
λ Shrinkage; L2 penalty (1.21)

Mixed LICORS p Length of input vector Xi (1.22)

Table 1.2: List of global, patient-independent hyperparameters to be tuned for each prediction
method

sequence. This leaves us with 95 total time series; patient 8 has only one time series, and pa-

tient 6 has the next fewest series with 9. Patient 11 has the most time series with 21. While each

time series is three-dimensional, we predict using only the first principal component (the princi-

pal component transformation is estimated from the initial 40s of training data) as discussed in

Section 1.2.1.

1.4.5 Tuning hyperparameters

Because of the need for real-time model fitting and prediction, all tuning and hyperparameters

for the methods we consider must be specified prior to the administration of radiotherapy—

before any data is observed. This suggests finding specifications for each model that perform rea-

sonably well for all patients, though perhaps sub-optimally for each patient individually. Indeed,

this is the approach usually taken in the literature [Sharp et al. (2004); Krauss et al. (2011);

Ernst et al. (2013)]. Because patients are typically given several or many instances of radiother-

apy during different sessions, there seems to be potential for more patient-specific tuning of hy-

perparameters, though this is left as a separate problem for now.

Table 1.2 lists the hyperparameters and/or tuning parameters for each of the prediction meth-

ods we consider. As described in Section 1.4.4, since the first 40 seconds of each time series will

not be used to evaluate out-of-sample prediction, we may use these subseries to find sensible,

patient-independent values for all hyperparameters. Each 40 second subseries is further divided,

where for a given set of hyperparameters each prediction method is fit to the first 30 seconds of
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data (900 observations), and then the remaining 10 seconds are used to generate out-of-sample

predictions, for which we store the vector of errors.

Using a course grid search over the parameter space given in Table 1.2, predictive error (both

root mean squared error (RMSE), as well as median absolute error (MAE), which is more robust

to heavy-tailed error distrbutions), is averaged across patients, allowing us to choose the best set

of patient-independent hyperparameter values [Krauss et al. (2011)]. Note that different hyperpa-

rameter values are chosen for different forecast windows.

1.4.6 Computational considerations

In addition to providing real-time forecasts, tumor tracking models require parameters that can

be estimated very quickly so that accurate (forecast-assisted) radiotherapy can begin as soon as

possible after observing a short window of training data.

Ridge regression yields almost instantaneous estimates of parameters necessary for prediction

(β in (1.20)), since (1.21) can be minimized in closed form. Fitting neural networks (1.18), how-

ever, requires numerical optimization of (1.19). This was carried out using the nnet package in R,

which implements the BFGS algorithm [Venables & Ripley (2002)]. Because (1.19) is not convex,

we recommend several random starting points for initiating the optimization, insomuch as time

allows; the dimension of the parameter space, as well as convergence criteria for the numerical

optimization, are both extremely important considerations in addition to the length of the time

series being fit. For example, on a Lenovo X220 laptop with an Intel Core i5-2520M 2.50 Ghz

processor, a 45× 6× 1 neural network required about 10 seconds to fit on 1200 observations when

using nnet’s default convergence criteria, with 10 randomly initialized starting points.

The computation time in fitting the LMAR(Σ) depends critically on both the convergence cri-

teria for the EM algorithm, as well as the initial value of Σ used. Typically, the likelihood (1.9)

or log-likelihood is used; however, the EM updates given in (1.14) are only approximate, meaning

the likelihood is not guaranteed to increase at every iteration. We found that using the approx-

imate log-likelihood (1.12) to check convergence yielded convergence in the exact log-likelihood.

This being the case, other metrics could possibly be used to check convergence that are quicker

to calculate than (1.12), such as the Frobenius norm of differences in the updates of Σ̂. To ob-
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tain good starting values, the algorithm can be run before having observed the entire training

sequence, using a simple starting value of a diagonal matrix. Using a relative tolerance of 0.0001

for the approximate log-likelihood, we were able to compute Σ̂ in no more than four seconds for

each of the time series considered. R code for fitting the LMAR model is included in this paper’s

supplementary materials [Cervone et al. (2014)].

The value of m for the LMAR model may also trade off estimation speed and accuracy; we

used m = 400, though found essentially identical results for m = 200 and m = 300 (higher values

of m favor faster, but less precise, estimation of Σ).

Parameter estimation for mixed LICORS took several minutes on our machine. However,

much of this computational cost is accrued in inferring K, the number of predictive states. The

procedure described in Goerg & Shalizi (2013) and implemented in the LICORS R package is to

start at an upper bound for the number of predictive states, optimize the likelihood approxima-

tion (1.23), and then merge the two states whose predictive distributions are closest (measured

by some distance or a hypothesis test). The optimizing and merging steps are repeated until we

either have 1 state remaining, or alternatively all pairwise tests for equality among predictive dis-

tributions are rejected. Then, cross validation is used to choose among these candidate models

indexed by different values of K.

While there may be some loss in prediction accuracy, estimation speed can be improved by

fixing K (perhaps tuning it as in Section 1.4.5). Furthermore, initializing the nonparametric EM

algorithm with informative starting values (learned from previously observed respiratory trace

curves) and relaxing the convergence criteria may substantially increase estimation speed with

little loss in predictive performance.

1.5 Prediction results for tumor tracking data

The results of out-of-sample predictions using the LMAR model, as well as the methods dis-

cussed in Section 1.4, are provided in this section. Point forecasts are discussed in Sections 1.5.1–

1.5.3 and interval/distributional forecasts in Section 1.5.4.

26



1.5.1 Results for point forecasts

The measures of predictive performance we consider are root mean squared error (RMSE) and

median absolute error (MAE), as well as the fraction of time each forecasting method obtains the

minimum prediction error among the methods compared. We report these quantities for each of

the 8 patients, at forecast windows of 0.2s (6 observations), 0.4s (12 observations), and 0.8s (18

observations) in Table 1.3.

We stress that RMSE may not be the most useful summary of predictive performance since

the error distributions are heavy-tailed, and in the application of radiotherapy, we are more

concerned with whether or not the treatment beam was localized to the tumor than with the

squared distance of the treatment beam to the tumor‡. For this reason, we feel that the median

(more generally, quantiles of the distribution function for absolute errors) is the best summary of

predictive performance for this data context. Ultimately, the dosimetric effects of these errors are

of most interest, but their determination is complicated, and beyond the scope of this work.

Two further points of emphasis regarding the accuracy summaries are that while we eliminated

time series with unevenly spaced observations from consideration, we still have quite a few time

series with unusual motion in our data base. Without actually observing the patient, we are not

sure whether observed deviations from normal breathing are caused by exogenous factors or are

instances of relevant components of the data-generating process, such as coughs, yawns, deep

breaths, etc. The other point is that there is a lot of disparity in the measures of predictive per-

formance within the literature on this subject; in addition to working with different data sets,

obtained from differing equipment, some authors account for the between-patient variation in res-

piratory dynamics by scaling or normalizing all curves, or by comparing errors from a prediction

method against errors from making no prediction and just using the lagged value of the series.

When using evaluation procedures of Krauss et al. (2011) and Murphy & Dieterich (2006), we

produced very similar results with ridge regression and linear models. However, the error sum-

maries we present here, in comparison with the LMAR model, are not directly comparable to

these results.
‡However, the loss function implied in the model fitting and point prediction is squared error loss,

which is the simplest for many computation reasons.
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1.5.2 Quantitative summaries of point forecasts

Summarizing Table 1.3, we see that ridge regression is actually sub-optimal in all accuracy mea-

sures for all patients and forecast windows. The LMAR model strongly outperforms the other

three methods for all forecast windows for patients 6, 7, 9, 10, and 11; neither neural networks

nor LICORS appear to be optimal for any patient across all forecast windows, although neural

networks perform well for patients 4, 5, and 8, while LICORS predicts well for patients 4, 8, and

11. Between-patient differences prevent any particular forecasting method from dominating other

methods across patients, but the LMAR model seems to offer the most accurate overall point

forecasts given these results.

1.5.3 Qualitative summaries of point forecasts

When looking at the predicted time series for each method used, the general pattern we observe

is that LMAR outperforms the other three methods when the data undergo changes in shape,

period, or amplitude—or more generally, when the test data do not resemble the training data.

Figure 1.7 shows one (atypically dramatic) instance of such behavior. The top curve is the first

40 seconds of the time series, on which all prediction methods were trained. The next four curves

give the predicted time series at a window of 0.2s for LMAR (red), NN (blue), ridge regression

(green), and LICORS (purple). It is clear from the figure that the end of the training period for

this time series coincided with a dramatic change in the patient’s respiration.

Both neural networks and LICORS suffer from the range of the curve being larger (dropping

below −5mm and exceeding 10mm) after the training period; for both methods, the training

data bounds the range of point forecasts, regardless of the input vector for future test cases. For

LICORS, when the test data is below the minimum of the training data (−5mm), the single pre-

dictive state associated with the minimal values of the training data will dominate, leading to

brief periods of static forecasts. With this time series, this particular predictive state represents

an abrupt transition between sharp exhale and sharp inhale. Thus the forecasts for the test data

are dramatic over-estimates throughout the “U” shaped motifs starting around t = 47, where the

patient does not actually fully inhale.
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0.2s forecast 0.4s forecast 0.6s forecast
Pat. Method RMSE MAE Best RMSE MAE Best RMSE MAE Best

4
LMAR 0.52 0.24 0.27 0.99 0.39 0.27 1.18 0.44 0.31
NNs 0.46 0.22 0.28 0.90 0.39 0.28 1.20 0.48 0.27
Ridge 0.53 0.31 0.20 1.08 0.62 0.17 1.50 0.86 0.18
LICORS 0.58 0.25 0.25 1.05 0.37 0.28 1.43 0.52 0.24

5
LMAR 0.56 0.25 0.30 0.96 0.42 0.29 1.15 0.51 0.30
NNs 0.55 0.27 0.27 0.89 0.40 0.30 1.15 0.51 0.30
Ridge 0.58 0.31 0.25 1.01 0.56 0.23 1.39 0.78 0.23
LICORS 0.79 0.35 0.19 1.33 0.63 0.18 1.79 0.89 0.17

6
LMAR 0.77 0.40 0.29 1.54 0.82 0.30 2.00 1.06 0.34
NNs 1.01 0.46 0.24 1.74 0.93 0.24 2.43 1.38 0.22
Ridge 0.83 0.42 0.28 1.59 0.88 0.28 2.14 1.28 0.28
LICORS 1.37 0.57 0.19 2.17 1.19 0.18 2.92 1.75 0.15

7
LMAR 0.40 0.15 0.35 0.85 0.27 0.37 1.23 0.41 0.36
NNs 0.43 0.19 0.26 0.88 0.36 0.25 1.35 0.51 0.25
Ridge 0.44 0.26 0.20 1.00 0.59 0.16 1.56 0.96 0.17
LICORS 0.62 0.25 0.20 1.05 0.41 0.21 1.56 0.56 0.23

8
LMAR 1.27 0.62 0.27 2.63 1.46 0.26 3.57 2.00 0.24
NNs 1.26 0.68 0.27 2.71 1.27 0.28 3.46 1.76 0.29
Ridge 1.44 0.69 0.20 2.86 1.54 0.19 4.11 2.26 0.19
LICORS 1.50 0.64 0.26 2.89 1.33 0.28 3.70 1.76 0.28

9
LMAR 0.58 0.22 0.39 1.29 0.52 0.35 2.03 0.90 0.30
NNs 0.73 0.32 0.24 1.69 0.64 0.26 2.45 0.92 0.24
Ridge 0.81 0.34 0.22 1.68 0.73 0.22 2.42 0.98 0.25
LICORS 1.35 0.53 0.15 2.20 0.98 0.17 2.64 1.19 0.20

10
LMAR 0.88 0.36 0.34 1.73 0.77 0.33 2.55 1.19 0.30
NNs 1.09 0.44 0.25 2.16 0.93 0.24 2.98 1.35 0.24
Ridge 0.95 0.45 0.24 1.84 0.94 0.24 2.67 1.41 0.26
LICORS 1.62 0.61 0.17 2.20 1.10 0.19 3.25 1.56 0.20

11
LMAR 1.13 0.44 0.32 2.59 1.06 0.29 3.70 1.49 0.31
NNs 1.24 0.50 0.25 2.95 1.19 0.24 3.99 1.70 0.23
Ridge 1.19 0.63 0.22 2.69 1.51 0.21 3.99 2.40 0.21
LICORS 1.64 0.57 0.21 3.04 1.09 0.26 4.21 1.65 0.25

Table 1.3: Summary of errors in point forecasts for all four methods and all three forecast win-
dows considered. RMSE is root mean squared error, MAE is median absolute error, and Best
refers to the proportion of time for which the absolute prediction error is smallest among the
methods considered. For each metric, the most desirable value among the four methods for each
patient/forecast window combination is in bold.

Ridge regression seems to accurately predict the magnitudes of increases and decreases, yet the

predictions are off by a nearly constant factor for t ∈ (48, 68). In the context of the ridge regres-

sion model (1.20), this suggests that β is correctly specified, but perhaps β0 is time-varying. The

LMAR model includes an autoregressive term for the most recent p observations in its forecast,

and thus, like ridge regression, accurately predicts rates of change in the time series. Moreover,
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Figure 1.7: Predictions for patient 9, day 3 beam 6 with a forecast window of 0.2s. Location
(mm) is the y axis and time (s) the x axis. The 40s training sequence is top, with predictions for
the next 40s from LMAR in red, NN in blue, ridge regression in green, and LICORS in purple.

the stochastic location-mixture component in the LMAR prediction adjusts predictions for grad-

ual magnitude shifts in the data.

Another reason why the LMAR model works relatively well when the test data differ from

the training data is that the form of the dependence of forecasts on the most recent p observa-

tions evolves, whereas it remains static for the other three methods. While the parameters of the

model are not re-estimated during real-time prediction, LMAR uses the entire history of the time

series in making forecasts, not just the first 40 seconds alongside the most recent p observations,

as is the case with the other three methods. With appropriate parallel computating resources, all

methods could theoretically update parameters continuously (or periodically) throughout treat-
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Figure 1.8: Predictions for patient 4, day 6 beam 1 with a forecast window of 0.2s. Location
(mm) is the y axis and time (s) the x axis. The 40s training sequence is top, with predictions for
the next 40s from LMAR in red, NN in blue, ridge regression in green, and LICORS in purple.

ment. Murphy & Dieterich (2006) continuously retrained neural networks using the updated

history of the respiratory trace. While they did not compare this to the alternative of not ac-

tively updating the forecast model, Krauss et al. (2011) did so and found a small improvement in

RMSE of about 1–3%.

When the time series are more well-behaved, all four methods perform quite well; in fact, neu-

ral networks tend to have the lowest errors when all four curves are accurate. Figure 1.8 shows

the training and prediction test series for a strongly periodic respiratory trace. We should expect

the performance of neural networks to be superior when the dynamics of the tumor motion are

stable, as the parameter space for neural networks is far larger; in theory, feedforward neural net-
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works with at least one hidden layer can approximate any continuous function arbitrarily well

[Hornik et al. (1989)], including time series prediction.

1.5.4 Interval and distributional forecasts

Unlike commonly used time series models in the tumor-tracking literature, the LMAR model pro-

vides multimodal, heteroskedastic predictive distributions, which are theoretically appropriate

for forecasting respiratory motion. Despite this, our analysis of predictive performance has fo-

cused exclusively on the accuracy of point forecasts because in current implementations of tumor-

tracking systems, there is no clinical value in obtaining interval or distributional forecasts. The

treatment beam has a fixed width and is always on, meaning an interval or distributional fore-

cast does not alter the optimal course of action of a tumor-tracking system already supplied with

a point forecast. However, interval/distributional forecasts would prove valuable if we could, for

instance, suspend the treatment beam instantaneously if the predicted probability of the tumor

location being enclosed by the treatment beam fell below a certain threshold.

Table 1.4 gives a summary of the performance of out-of-sample interval and distributional

forecasts to complement the summaries of point forecasts. The LMAR model, by specifying a

data-generating process, naturally provides full predictive distributions as a by-product of point

prediction. The same is true for ridge regression (assuming the typical homoskedastic Gaussian

structure for the residuals) and LICORS. Neural networks do not naturally provide predictive

distributions; following Tibshirani (1996) we obtain them by bootstrapping, while assuming pre-

diction errors are (heteroskedastic) independent Gaussians, with mean 0 and variance estimated

by bootstrapping.

We expect LMAR prediction intervals to undercover, since uncertainty in the estimation of Σ

is omitted from our forecasts. While this is indeed the case, for all patients and forecast windows,

90% prediction intervals have between 84% and 94% coverage—a more appropriate range than

any other method can claim.

The logarithmic score in Table 1.4 refers to the negative logarithm of the predictive density

evaluated at the true observation, averaged over each out-of-sample prediction (the result in Ta-

ble 1.4 then averages each of these scores over all beams from the same patient). The logarithmic
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0.2s Forecast 0.4s Forecast 0.6s Forecast
Patient Method Coverage Log PS Coverage Log PS Coverage Log PS

4
LMAR 0.84 0.72 0.86 1.30 0.93 1.37
NNs 0.88 0.57 0.83 1.34 0.85 1.58
Ridge 0.85 0.80 0.84 1.53 0.84 1.86
LICORS 0.89 0.70 0.84 1.03 0.84 1.32

5
LMAR 0.87 0.71 0.88 1.20 0.93 1.30
NNs 0.85 0.72 0.78 1.52 0.80 1.75
Ridge 0.85 0.91 0.84 1.53 0.82 1.91
LICORS 0.84 1.04 0.82 1.46 0.79 1.78

6
LMAR 0.87 1.25 0.88 1.85 0.93 2.07
NNs 0.79 1.31 0.74 2.16 0.76 2.53
Ridge 0.87 1.22 0.85 1.91 0.83 2.26
LICORS 0.79 1.58 0.70 2.57 0.66 2.82

7
LMAR 0.85 0.30 0.85 0.87 0.89 1.09
NNs 0.88 0.48 0.84 1.35 0.84 1.82
Ridge 0.86 0.63 0.83 1.49 0.82 1.95
LICORS 0.84 0.78 0.77 1.16 0.76 1.59

8
LMAR 0.89 1.67 0.91 2.30 0.94 2.60
NNs 0.94 1.53 0.82 2.36 0.90 2.59
Ridge 0.88 1.82 0.85 2.51 0.82 2.90
LICORS 0.94 1.71 0.90 2.11 0.88 2.39

9
LMAR 0.89 0.87 0.90 1.65 0.92 2.07
NNs 0.86 1.02 0.78 2.20 0.80 2.77
Ridge 0.81 1.54 0.81 2.21 0.81 2.64
LICORS 0.86 1.62 0.81 1.98 0.79 2.31

10
LMAR 0.86 1.18 0.88 1.94 0.91 2.33
NNs 0.84 1.23 0.76 2.25 0.79 2.65
Ridge 0.83 1.35 0.84 2.03 0.84 2.44
LICORS 0.86 1.61 0.82 2.02 0.81 2.31

11
LMAR 0.85 1.38 0.87 2.13 0.91 2.36
NNs 0.87 1.50 0.80 2.70 0.83 2.91
Ridge 0.86 1.63 0.85 2.44 0.85 2.84
LICORS 0.88 1.56 0.83 1.99 0.82 2.25

Table 1.4: Summary of interval and distributional forecasts for all four methods at all three fore-
cast windows. The interval coverage considered is 90% confidence intervals. Log PS refers to
the log probability score of the predictive distribution. For each metric, the most desirable value
among the four methods for each patient/forecast window combination is in bold.

score is a proper scoring rule—its expected value is minimized by the oracle (or true) predictive

distribution—thus lower values indicate a better fit between the predictive distributions and real-

ized values of a patient’s time series [Gneiting et al. (2007)].

Generalizing across patients and forecast windows, in comparison to the other methods consid-

ered, the LMAR model seems to most accurately characterize prediction uncertainty.
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1.6 Discussion

The location-mixture autoregressive (LMAR) model introduced in this paper provides accurate,

real-time forecasts of lung tumor motion. Our method achieves better performance on out-of-

sample prediction for forecasts windows of 0.2s, 0.4s, and 0.6s for the majority of the patients

considered than existing methods such as neural networks (which performed best in a prediction

comparison study of Krauss et al. (2011)) and penalized linear models (a common baseline for

judging predictive performance). We also note that uncertainty quantification is quite straight-

forward using our model, where as it is hard to do using neural networks.

The LMAR model is similar to other autoregressive models that yield multimodal conditional

distributions, such as the class of threshold autoregressive models [Tong (1978)], yet the param-

eter space consists of just a single, low-dimensional covariance matrix, and the model admits ac-

curate closed-form approximations of multiple-step ahead predictive distributions. The LMAR

model also has a useful interpretation in the context of time series motifs, which can describe the

data-generating process and the form of forecasts.

While the predictive performance of our method on this data set is very encouraging, the pa-

rameter inference for the LMAR model presented here is approximate, and the assumptions of

both the model and its inference may not be appropriate for some other non-linear time series.

Formalizing and generalizing the LMAR model is thus a fruitful area for future work.

Real-time prediction of lung tumor motion presents additional challenges to those presented in

this work. It is preferable to have as short a training window as possible, since during this time

the patient may be irradiated without actually receiving the benefit of tumor tracking. While

some training is actually necessary to estimate the system latency in some cases (we have treated

it as fixed throughout this work), the 40 seconds used for training in this paper (while typical in

the literature on the subject) could ideally be reduced.

Also, one can consider patient-specific hyperparameter values and/or tuning parameters or

modify the model to borrow information across the patients. Due to the need for real-time model

fitting before we can forecast, it is most likely infeasible to apply any model selection criteria (ei-

ther within-model, such as for hyperparameters, or between-model) after having begun to observe
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data. More study of between-patient and within-patient variability in model fits could help re-

searchers use more patient-optimal prediction methods (as well as begin prediction after a shorter

training sequence, as they wouldn’t need to rely solely on the observed data for parameter esti-

mation).

The parametric simplicity of the LMAR model, as well as its formalization as a statistical

model as opposed to a prediction algorithm, enable generalizations of our procedure to include

hierarchical models and other statistical structures that address the challenges of delivering ac-

curate external beam radiotherapy. Combined with its excellent predictive performance on real

data, the LMAR model represents a promising new contribution to this area of research.
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2
A Mutiresolution Stochastic Process Model for

Predicting Basketball Possession Outcomes

2.1 Introduction

Basketball is a fast-paced sport, free-flowing in both space and time, in which players’ actions

and decisions continuously impact their teams’ prospective game outcomes. Team owners, gen-

eral managers, coaches, and fans all seek to quantify and evaluate players’ contributions to their

team’s success. However, current statistical models for player evaluation such as “Player Effi-

ciency Rating” [Hollinger (2005)] and “Adjusted Plus/Minus” [Omidiran (2011)] rely on highly

reductive summary statistics of basketball games such as points scored, rebounds, steals, assists—
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the so-called “box score” summary of the game. Such models reflect the fact that up until very

recently, data on basketball games were only available in this low level of resolution. Thus pre-

vious statistical analyses of basketball performance have overlooked many of the high-resolution

motifs—events not measurable by such aggregate statistics—that characterize basketball strat-

egy. For instance, traditional analyses cannot estimate the value of a clever move that fools the

defender, or the regret of skipping an open shot in favor of passing to a heavily defended team-

mate. The advent of player tracking data in the NBA, coupled with the appropriate inferential

framework, has provided an opportunity to fill this gap.

In 2013 the National Basketball Association (NBA), in partnership with data provider STATS

LLC, installed optical tracking systems in the arenas of all 30 teams in the league. The sys-

tems track the exact two-dimensional locations of every player on the court (as well as the three-

dimensional location of the ball) at a resolution of 25Hz, yielding over 1 billion space-time obser-

vations over the course of a full season.

In this paper, we present a framework for modeling NBA tracking data that targets infer-

ences at the resolution of this exciting new data. Specifically, we estimate the expected number

of points the offense will score on a particular possession conditional on that possession’s evo-

lution up to time t. We term this quantity expected possession value (EPV). EPV acts like the

stock ticker of an NBA possession in providing an instantaneous summary of the possession’s

value given all available information. Ideally, EPV mirrors the intuition of coaches and basket-

ball strategists by attaching value to specific spatial positionings of players and personnel config-

urations. For instance, EPV may be high when a good shooter has an open look at the basket,

but low when the ballcarrier is heavily defended far from the basket without any clear passing

options. We may also, for example, see EPV as roughly constant while players are passing the

ball around the perimeter, far from the basket, but then spike upwards as a player drives through

an opening in the defense towards the basket. By monitoring how the EPV curves for various

possessions respond to player decisions, analysts can evaluate players and strategies in real time,

continuously throughout the entire course of any possession.

Our paper focuses specifically on modeling and calculating EPV curves by viewing basketball

possessions as realizations of endpoint-valued stochastic processes; that is, we assume possessions
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evolve probabilistically over space and time until reaching some endpoint (e.g., a made basket,

or a turnover) with an observable point value. Such frameworks have been used for in-game

points/run expectancy models in other sports—for instance, baseball [Bukiet et al. (1997)] and

football [Burke (2010)]—yet ours is the first treatment of a process that is continuous in both

space and time. To handle this additional complexity, we introduce the idea of multiresolution

transitions, which distinguish between the continuous evolution of all players’ positions (micro-

transitions) and motifs or events that unfold over longer time scales (macrotransitions), such as

passes and shot attempts. We show that multiresolution transitions crucially allow conditioning

that is both interpretable and computationally tractable.

While our methodology is motivated by basketball, we believe that this research can serve as

an informative case study for analysts working in other application areas where continuous mon-

itoring data are becoming widespread, including traffic monitoring [Ihler et al. (2006)], surveil-

lance, and digital marketing [Shao & Li (2011)], as well as other sports such as soccer and hockey

[Thomas et al. (2013)]. As such, we treat our particular approach to the player tracking problem

in basketball with as much generality as possible, and hope that aspects of our methodology may

also find use in these other contexts.

Section 2.2 formally defines EPV within the context of a stochastic process for basketball. Sec-

tion 2.3 introduces multiresolution transitions and discusses the assumptions and conditioning

statements that make EPV calculations tractable as averages over future paths of a stochastic

process. The models for macro- and microtransitions are discussed in Sections 2.4 and 2.5, re-

spectively, and represent the inferential component of our model, as transition probabilities rely

on players’ decision-making tendencies in various spatial and situational circumstances. Section

2.6 discusses Monte Carlo computation for EPV curves, given parameters for the multiresolution

transition models, with some results from actual NBA possessions highlighted in Section 2.7. Di-

rections for further work are discussed in Section 2.8.

The core of our paper is a high-level overview of the EPV estimation problem and our model,

focusing on the stochastic process, multiresolution approach to EPV, and highlighting the types

of inferences EPV and the associated multiresolution transition models provide basketball ana-

lysts. A substantial appendix follows the discussion section, in which we discuss specific details of
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our implementation for EPV estimation, including choices of prior distributions for model param-

eters, and computational methods for obtaining approximate inferences from such a large, high

dimensional data set. More than just a guide to reproducing our results, the appendix highlights

novel contributions to estimation problems in spatiotemporal data. For instance, our macrotran-

sition model employs a family of prior distributions that shares information across space as well

as across players, representing hierarchical Gaussian processes in a computationally tractable pa-

rameterization.

2.2 Expected Possession Value

Let Ω represent the space of all possible basketball possessions in full detail, with ω ∈ Ω describ-

ing the full path of a particular possession. Every basketball possession that we consider here

results in 0, 2, or 3 points scored for the offense, denoted X(ω) ∈ {0, 2, 3}. It is possible for the

offense to score exactly 1 or 4 points as well if a foul occurs and free throws are made, but we ex-

clude fouls and free throws from Ω due to limitations in our data. For any possession path ω, we

denote by Z(ω) the optical tracking timeseries generated by this possession so that Zt(ω) ∈ Z,

t > 0, is a “snapshot” of the tracking data exactly t seconds from the start of the possession

(t = 0). Z is a high dimensional space that includes (x, y) coordinates for all 10 players on the

court, (x, y, z) coordinates for the ball, summary information such as which players are on the

court and what the game situation is (game location, score, time remaining, etc.), and event an-

notations that are observable in real time, such as a turnover occurring, a pass, or a shot being

attempted and the result of that attempt.

This intuitive view of Ω as a sample space of possession paths provides the formalism for defin-

ing EPV in probabilistic terms. We define Z(ω) to be a stochastic process, and likewise, define

Zt(ω) for each t > 0 as a random variable in Z. Z(ω) provides the natural filtration F (Z)
t =

σ({Z−1
s : 0 ≤ s ≤ t}), which intuitively represents all information available from the optical track-

ing data for the first t seconds of a possession. Because the point outcome of a possession (X) is

apparent from observing Z(ω) for a sufficiently long time, X is F (Z)
∞ - measureable, and we can

define EPV as the expected value of the number of points scored for the possession (X) given all

available data up to time t (F (Z)
t ):
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Definition The expected possession value, or EPV, at time t ≥ 0 during a possession is νt =

E[X|F (Z)
t ].

Remark Except when introducing new summaries of the possession sample space Ω, we will

omit the dependence on ω when writing function- or scalar-valued random variables, e.g., Z and

Zt instead of Z(ω) and Zt(ω).

2.2.1 Possession Case Study

To illustrate the behavior of EPV, we consider the estimated EPV curve from a specific Miami

Heat possession against the Brooklyn Nets from the second quarter of a game on November 1,

2013. This possession was chosen arbitrarily among those during which LeBron James (widely

considered the best NBA player as of 2014) handles the ball. This is presented here in order to

describe and motivate the object of our estimation; the methodology itself will be discussed in

the sections that follow.
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Figure 2.1: Visualization of Miami Heat possession against Brooklyn Nets. Norris Cole wanders
into the perimeter (A) before driving toward the basket (B). Instead of taking the shot, he runs
underneath the basket (C) and eventually passes to Rashard Lewis(D), who promptly passes to
LeBron James (E). After entering the perimeter (F), James slips behind the defense (G) and
scores an easy layup (H).

In this particular possession, diagrammed in Figure 2.1, point guard Norris Cole begins with

possession of the ball crossing the halfcourt line (panel A). After waiting for his teammates to ar-

rive in the offensive half of the court, Cole wanders gradually into the perimeter (inside the three
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point line), before attacking the basket through the left post. He draws two defenders, and while

he appears to beat them to the basket (B), instead of attempting a layup he runs underneath the

basket through to the right post (C). He is still being double teamed and at this point passes to

Rashard Lewis (D), who is standing in the right wing three position and being defended by Joe

Johnson. As Johnson closes, Lewis passes to LeBron James, who is standing about 6 feet beyond

the three point line and drawing the attention of Andray Blatche (E). James wanders slowly into

the perimeter (F), until just behind the free throw line, at which point he breaks towards the

basket. His rapid acceleration (G) splits the defense—Joe Johnson had also begun defending

James as he entered the perimeter—and gains him a clear lane to the basket. He successfully

finishes with a layup (H), providing the Heat two points.

Plotting the EPV curve for this possession (Figure 2.2), we see several moments when the ex-

pected point yield of the possession, given its history, changes dramatically. Beginning around

0.99, the EPV first rises as Cole drives toward the basket, starting around 5 seconds into the

possession. It continues rising until peaking at around 1.34 when Cole is right in front of the

basket. As Cole dribbles past the basket (and his defenders continue pursuit), however, EPV

falls rapidly, bottoming out at 0.77 before “resetting” to 1.00 with the pass to Rashard Lewis.

The EPV increases slightly to 1.03 when the ball is then passed to James. As EPV is sensitive to

small changes in players’ exact locations, we see EPV rise slightly as James approaches the three

point line and then dip slightly as he crosses it. Shortly afterwards, EPV rises suddenly as James

breaks towards the basket, eluding the defense, and continues rising until he is beneath the bas-

ket, when an attempted layup boosts the EPV from 1.52 to 1.62.

We will revisit this example possession in more detail in Section 2.7. For now, it serves to

highlight the behavior and potential applications of EPV. Any point on the curve in Figure 2.2

provides an unbiased estimate of the possession’s eventual point total as a function of its entire

history, including but not limited to the identity and precise location of the ballcarrier, and those

of his teammates and the defense. We see EPV rise and fall—at times dramatically—as players

move the ball through the court, pass, attempt shots, and gain or lose separation from the de-

fense.
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Figure 2.2: Estimated EPV over time for the possession shown in Figure 2.1. Changes in EPV
are induced by changes in players’ locations and dynamics of motion; macrotransitions such as
passes and shot attempts produce immediate, sometimes rapid changes in EPV. The black line
slightly smooths EPV evaluations at each time point (gray dots), which are subject to Monte
Carlo error.

2.2.2 Stochastic Consistency

EPV is a theoretical quantity associated with the true distribution of possession paths Z. As

with all statistical estimands, the definition of EPV does not restrict the method that an inves-

tigator can use to estimate it. Indeed, because EPV is simply a conditional expectation, a num-

ber of marginal regression or classification methods that map features from F (Z)
t to the outcome

space (either [0, 3] or {0, 2, 3}) can be tempting options. While our data do not constitute the

independent input/output pairs characteristic of regression (each possession outcome X has a se-

ries of inputs Zt), a properly specified regression model would nevertheless consistently estimate

νt as a function of features of F (Z)
t .

Regression estimates, however, lack the stochastic consistency inherent to the probabilistic for-

mulation of EPV. ν is an instance of the “Doob martingale” with respect to the filtration F (Z)—

that is, a sequence of conditional expectations of the same end quantity X taken with respect to

increasing elements of the filtration F (Z). Thus, EPV evaluated at a particular time t can be rep-

resented as the expected EPV evaluated at a later time s > t: E[νs|F (Z)
t ] = νt. An important

consequence of this property is that no situation can systematically yield downstream events with

consistently higher or lower EPV. This is not trivial, as regression and other marginal methods
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that estimate each point of the EPV curve in isolation do not guarantee this coherence. For ex-

ample, under a marginal estimation scheme yielding a sequence of estimates ν̂t, it is possible for a

Simpson’s paradox to arise where for some t and ∆, ν̂t+∆ < ν̂t no matter what occurs at time t.

On the other hand, our methodology, which explicitly computes the integral in (2.1) with respect

to a model for the whole process Z, maintains stochastic consistency.

A simple model that does provide stochastic consistency is discretizing Zt and modeling it as

a homogeneous Markov chain. Markov chains have been commonly used for modeling final out-

comes conditional on observed progress in other sports, such as in-game win probability in base-

ball [Bukiet et al. (1997); Yang & Swartz (2004)] and in-possession point totals in football [Gold-

ner (2012)]. In both these examples, the data is naturally discrete in space and time; however,

our data Zt is essentially continuous in space and time (we do observe data only at regular in-

tervals of 1/25 second). Discretizing this process forces the investigator to trade off between the

smoothness and level of detail captured in the process νt (having a larger state space), and the

ease of estimation and computation. While a state space with a huge number of states may in

theory provide smooth, stochastically consistent estimated EPV curves, the associated transition

probabily matrix would be very difficult to estimate since a large number of states induces spar-

sity in the observed transition matrix. Moreover, computing expected values of a homogeneous

Markov chain requires solving a linear system of the same dimension as the number of states,

which is a cubic-time operation; this would be computationally infeasible for a huge state space.

Our methodology for estimating EPV, leveraging the idea of multiresolution transitions, largely

avoids this tradeoff and offers precise, stochastically consistent EPV curve estimates. Generating

such estimates is computationally demanding, but feasible given modern computing infrastruc-

ture and inference techniques.

2.3 Multiresolution modeling

The stochastic process approach to estimating EPV requires that we integrate over the distri-

bution of future paths the current possession can take. Letting T (ω) denote the time at which a
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possession following path ω ends*, the possession’s point total is a deterministic function of the

full resolution data at this time, X(ω) = h(ZT (ω)(ω)). Thus, evaluating EPV amounts to inte-

grating over the joint distribution of (T,ZT ):

νt = E[X|F (Z)
t ] =

∫
Ω
X(ω)P(dω|F (Z)

t )

=

∫ ∞

t

∫
Z
h(z)P(Zs = z|T = s,F (Z)

t )P(T = s|F (Z)
t )dzds. (2.1)

Note that we use probability notation P(·) somewhat heuristically, as P(T = s|F (Z)
t ) is a den-

sity with respect to Lebesgue measure, while Zs mixes both discrete (annotations) and continu-

ous (locations) components. The best way to integrate (2.1) is by simulating future paths of the

full resolution data with a transition kernel P(Zt+ϵ|F (Z)
t ) until the simulated possession ends by

reaching an observed point outcome. Such simulations provide a Monte Carlo estimate of (2.1).

A model for this transition kernel requires a novel mixture of components for both the continu-

ous spatial evolution of players, as well as their discrete decisions and ball movements.

Our approach is to model the possession process Z at two separate levels of resolution. In ad-

dition to modeling the short-term evolution of Z at full resolution, we simultaneously model a

coarsened view of the process Z that is discrete in space and continuous in time. We combine

these models in a multiresolution conditioning scheme that yields EPV calculations that are both

computationally tractable (using Monte Carlo) and interpretable in terms of relevant basketball

motifs.

2.3.1 A Coarsened Process

A key component of our approach is a coarsening of the full-resolution data Z that preserves the

characteristic dynamics of basketball play while shedding fine-resolution detail. For all time 0 <

t ≤ T during a possession, assume Ct summarizes the “state” of the possession, such that Ct ∈ C

for some finite set C. We populate the states c ∈ C with summaries of the full resolution data so

that transitions between these states represent meaningful events in a basketball possession. We
*The time of a possession is bounded, even for pathological examples, by the 12-minute length of a

quarter; yet we do not leverage this fact and simply assume that possession lenghts are almost surely
finite.
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Figure 2.3: Schematic of the coarsened possession process C, with states (rectangles) and possi-
ble state transitions (arrows) shown. The unshaded states in the first row compose Cposs. Here,
states corresponding to distinct ballhandlers are grouped together (Player 1 through 5), and the
discretized court in each group represents the player’s coarsened position and defended state.
The gray shaded rectangles are macrotransition states Ctrans, while the rectanbles in the third row
represent the end states Cend. Blue arrows are the beginnings of macrotransition that can result
when a player (WLOG Player 1 in this figure) possesses the ball. Red arrows are macrotransition
exits. The purple arrow (between Shot and Rebound) carries the same macrotransition (begin-
ning with the shot attempt) into the rebound state (from which it will exit). The black arrow is a
microtransition, as the ballcarrier is unchanged.

illustrate the coarsened process C in Figure 2.3.

First, there are 3 “bookkeeping” states, denoted Cend, that categorize the end of the possession,

so that CT ∈ Cend and for all t < T,Ct ̸∈ Cend (shown in the bottom row of Figure 2.3). These

are Cend ={made 2 pt, made 3 pt, end of possession}. These three states have associated point

values— 2 points for a made 2 point shot, 3 points for a made 3 point shot, and 0 points for the

generic possession end state (which can be reached by turnovers, defensive rebounds, etc.). Thus,

there is a map h : Cend → {0, 2, 3} allowing us to rewrite the EPV equation in terms of the coars-

ened process: νt = E[h(CT )|F (Z)
t ].

Next, whenever a player possesses the ball at time t, we assume Ct = (ballcarrier ID at t) ×

(court region at t) × (defended at t), having defined seven disjoint regions of the court and clas-

sifying a player as defended at time t by whether there is a defender within 5 feet of him. The

possible values of Ct, if a player possesses the ball at time t, thus live in Cposs = {player ID} ×
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{region ID}×{1[defended]}. These states are represented by the unshaded portion of the top row

of Figure 2.3, where the differently colored regions of the court diagrams reveal the court space

discretization.

Finally, if a player has initiated an annotated action currently in progress, we define Ct to take

a “transition” state value. These states encapsulate constrained motifs in a possession, for ex-

ample, when the ball is in the air traveling between players in a pass attempt. Explicitly, denote

Ctrans = {shot attempt from c ∈ Cposs, pass attempt toward c′ ∈ Cposs from c ∈ Cposs, turnover

in progress, rebound in progress} (listed in the gray shaded portions of Figure 2.3). These tran-

sition states carry information about the possession path, such as the most recent ballcarrier, or

the target of the pass, while the ball is in the air during shot attempts and passes.

Note that due to limitations of the data, this construction of C = Cposs ∪ Ctrans ∪ Cend excludes

several notable basketball events, such as fouls and violations, balls going out of bounds without

a change of possession, and other stoppages of play. In the case of turnovers, the event labels do

not discriminate among steals, intercepted passes, or lost balls out of bounds, thus we treat this

as a single category.

2.3.2 Multiresolution Conditioning

When the coarsened process Ct transitions from a state in Cposs to one in Ctrans, we call this tran-

sition between coarsened states a macrotransition.

Definition If Ct ∈ Cposs and Ct+ϵ ∈ Ctrans, then Ct → Ct+ϵ is a macrotransition.

Macrotransitions, which include all ball movements (passes, shot attempts, turnovers), mark

large-scale shifts that form the basis of offensive basketball play. The term carries a double mean-

ing, as a macrotransition describes both a transition among states in our coarsened process,

Ct → Ct+ϵ, as well as a transition of ballcarrier identity on the basketball court. By construction,

for a possession that is in a state in Cposs to proceed to a state in Cend or a state in Cposs corre-

sponding to a different ballhandler, a macrotransition must occur as possession passes through a

transition state in Ctrans (see possible transition paths illustrated in Figure 2.3).
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This structure reveals that at any time t during a possession, we are guaranteed to observe the

exit state of a future (or current, if Ct ∈ Ctrans) macrotransition. Specifically, let δ = min{s : s >

t, Cs−ϵ ∈ Ctrans and Cs ̸∈ Ctrans} denote the time the possession reaches the state after the next

(or current, if Ct ∈ Ctrans) macrotransition after time t. Thus, if the possession is currently in

a macrotransition, δ is the first time at which a new possession or end state is occupied (ending

the macrotransition), while if a player currently possesses the ball, δ is the time at which the

possession reaches the exit state of a future macrotransition. δ is a bounded stopping time, so we

can condition on Cδ to rewrite EPV (2.1) as

νt =
∑
c∈C

E[h(CT )|Cδ = c,F (Z)
t ]P(Cδ = c|F (Z)

t ). (2.2)

It is helpful to expand the second term in (2.2), P(Cδ = c|F (Z)
t ), by conditioning on the start

of the macrotransition that corresponds to the exit state Cδ. Denote M(t) as the event that a

macrotransition begins in (t, t + ϵ], and let τ = min{s : s > t,M(s)} be the time at which the

macrotransition ending in Cδ begins. Thus, τ and δ bookend the times during which the posses-

sion is in the next (or current, but ongoing) macrotransition, with Cτ being the state in C im-

mediately prior to the start of this macrotransition and Cδ the state immediately succeeding it.

Like δ, at any time t < T , τ is a bounded stopping time; however, note that if a macrotransition

is in progress at time t then τ < t, and, having been observed, τ has a degenerate distribution.

Defining τ allows us to write:

P(Cδ = c|F (Z)
t ) =

∑
c∈C

∫ ∞

t

∫
Z
P(Cδ = c|M(τ), Zτ = z, τ = s,F (Z)

t )

× P(M(τ), Zτ = z, τ = s|F (Z)
t )dzds. (2.3)

We make one additional expansion to the terms we have introduced for calculating EPV. The

second factor in (2.3), P(M(τ), Zτ = z, τ = s|F (Z)
t ), models the location and time of the next

macrotransition—implicitly averaging over the intermediate path of the possession in the process.

This is the critical piece of our multiresolution structure that connects the full-resolution process

Z to the coarsened process C, and the component of our model that fully utilizes multiresolution
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conditioning. We expand this term using our macro- and microtransition models.

Definition The macrotransition model is P(M(t)|F (Z)
t ).

Definition The microtransition model is P(Zt+ϵ|M(t)c,F (Z)
t ), where M(t)c is the complement of

M(t). Microtransitions are instantaneous changes in the full resolution data Zt → Zt+ϵ over time

windows where a macrotransition is not observed; thus, only location components (and not event

annotations) change from Zt to Zt+ϵ.

Multiresolution transition models allow us to sample from P(τ, Zτ |F (Z)
t ), enabling Monte Carlo

evaluation of (2.3). The basic idea is that we use the macrotransition model to draw from P(M(t)|F (Z)
t )

and if M(t)c and no macrotransition occurs in (t, t+ ϵ], we use the microtransition model to draw

from P(Zt+ϵ|M(t)c,F (Z)
t ). Iterating this process, we alternate draws from the macro- and micro-

transition models until observing (τ, Zτ )—of course, this also yields M(τ) as a consequence of

our definition of τ . Parametric forms for these macro- and microtransition models are dicussed

expcility in Sections 2.4 and 2.5 respectively, while Section 2.6 provides additional details on the

Monte Carlo integration scheme.

Expanding EPV by conditioning on intermediate values in principle does not ease the problem

of its evaluation. However several of the components we have introduced motivate reasonable

conditional independence assumptions that simplify their evaluation. Only by writing EPV as an

average over additional random variables defined in the probability space of our possession can

we articulate such assumptions and leverage them to compute EPV.

2.3.3 Conditional Independence Assumptions

Our expansions of νt = E[h(CT )|F (Z)
t ] introduced in the previous subsection (2.2)–(2.3) express

EPV in terms of three probability models:

νt =
∑
c∈C

E[h(CT )|Cδ = c,F (Z)
t ]

(∫ ∞

t

∫
Z
P(Cδ = c|M(τ), Zτ = z, τ = s,F (Z)

t )

×P(M(τ), Zτ = z, τ = s|F (Z)
t )dzds

)
. (2.4)
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The multiresolution transition models sample from P(M(τ), Zτ , τ |F (Z)
t ), eliminating the need

to evaluate the third term in (2.4) explicitly when computing νt via Monte Carlo. The second

term in (2.4) is actually quite easy to work with since Cδ is categorical, and given Zτ the space

of possible values it can take is relatively small. This is due to the manner in which macrotransi-

tions constrain the spatiotemporal evolution of the possession. Given Zτ , we can obtain the loca-

tion and separation from the defense of all four possible pass recipients given a pass in (τ, τ + ϵ],

so only a subset of states in Cposs are possible for Cδ. Similarly, if a shot attempt occurs in this

time window, Zτ indicates whether a successful shot would yield 2 or 3 points, further subsetting

the possible values of Cδ. Modeling Cδ thus reduces to predicting the type of macrotransition

corresponding to M(τ)—a pass, shot attempt, or turnover. We discuss this in Section 2.4 in the

context of our macrotransition model.

The first term in (2.4), E[h(CT )|Cδ = c,F (Z)
t ] provides the expected point value of the posses-

sion given the (coarsened) result of the next macrotransition. Prima facie, this term seems as dif-

ficult to evaluate as it has the same essential structure as EPV itself, requiring integration over

the future trajectory of the possession after time δ. However, we make a key assumption that

frees subsequent evolution of the possession, after time δ, from dependence on the full-resolution

history F (Z)
t :

E[h(CT )|Cδ,F
(Z)
t ] = E[h(CT )|Cδ]. (2.5)

This assumption is intuitive for two reasons. First, by constraining the possession to follow a re-

stricted spatiotemporal path, it is reasonable to assume that the macrotransition exit state itself

contains sufficient information to characterize the future evolution of the system. Secondly, be-

cause macrotransitions play out over much longer timescales than the resolution of the data (i.e.,

several seconds, as opposed to 1/25th of a second), it is reasonable to assume that fine-scale spa-

tial detail before the start of the macrotransition has been “mixed out” by the time the macro-

transition ends.

An additional, reasonable conditional independence assumption is that the coarsened state

sequence Ct, t > 0 is marginally a semi-Markov process; that is, denoting F (C)
t = σ({C−1

s , 0 ≤

s ≤ t}) as the history of the coarsened process, for all t′ > t and c ∈ C, we assume P(Ct′ =
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c|F (C)
t ) = P(Ct′ = c|Ct). A semi-Markov process generalizes a continuous time Markov Chain

in that sojourn times need not be exponentially distributed. We associate with this semi-Markov

process an embedded discrete, homogeneous Markov Chain: denote C(0), C(1), . . . , C(K) as the

sequence of consecutive states c ∈ C visited by Ct during the possession 0 < t ≤ T . Thus, C(K) =

CT , and K records the length of the possession in terms of the number of transitions between

states in C, which like T is random.

Combining these assumptions, the first term in (2.4), E[h(CT )|Cδ,F
(Z)
t ], can be computed eas-

ily from the transition probability matrix of the homogeneous Markov chain embedded in Ct. As

C(K) is an absorbing state, ending the possession, we can rewrite (2.5) as E[h(C(K))|Cδ]. This is

easily obtained by solving a linear system of equations deriving from the transition probability

matrix of C(0), C(1), . . . , C(K). Estimating this transition probability matrix is also discussed in

Section 2.4, where we show that it actually derives from the macrotransition model.

Compared to using discrete, homogeneous Markov Chains alone to calculate EPV, the mul-

tiresolution approach we take ultimately leverages much of the same computational advantages

while remaining attenuated to the full-resolution data, responding smoothly as the possession

evolves over space and time.

2.4 Macrotransition model

Macrotransitions play a fundamental role in our EPV framework. Intuitively, they represent the

strategies, schemes, and decision-making that characterize basketball offense. Mathematically,

macrotransitions are part of our multiresolution conditioning scheme used to evaluate EPV at

any time during a possession given its history. Introduced in the previous section, the macrotran-

sition model is P(M(t)|F (Z)
t ). More generally, we consider a family of macrotransition models

P(Mj(t)|F (Z)
t ), where j indexes the type of macrotransition corresponding to M(t). At any given

moment when a player possesses the ball, there are six possible categories of macrotransition,

corresponding to 4 pass options, a shot attempt, or a turnover, which we index by j ∈ {1, . . . , 6}.

Without loss of generality, assume j ≤ 4 correspond to pass events, j = 5 is a shot attempt and

j = 6 a turnover. Thus, Mj(t) is the event that a macrotransition of type j begins in the time

window (t, t+ ϵ], and M(t) =
∪6

j=1Mj(t).
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We now introduce the parameterization of the macrotransition models P(Mj(t)|F (Z)
t ), and also

discusses how other components of our EPV equation (2.4) derive from these models.

2.4.1 Macrotransition Entry Model

As Mj(t) denotes the start of a macrotransition in (t, t+ϵ], we refer to P(Mj(t)|F (Z)
t ), for all j, as

the macrotransition entry model. This is specified using competing risks [Prentice et al. (1978)]:

assuming player ℓ possesses the ball at time t > 0 during a possession, then denote

λℓj(t) = lim
ϵ→0

P(Mj(t)|F (Z)
t )

ϵ
(2.6)

as the hazard for macrotransition j at time t, or the cause-specific hazard. As events M1(t), . . . ,M6(t)

are disjoint, it follows that the total macrotransition hazard is the sum of the cause-specific haz-

ards,

lim
ϵ→0

P(M(t)|F (Z)
t )

ϵ
=
∑
j

λj(t)

We assume the cause-specific hazards are log-linear,

log(λℓj(t)) = [Wℓ
j(t)]

′βℓ
j + ξℓj (zℓ(t)) +

(
ξ̃ℓj (zj(t))1[j ≤ 4]

)
, (2.7)

where Wℓ
j(t) is a pj × 1 vector of time-varying covariates, βℓ

j a pj × 1 vector of coefficients, zℓ(t)

is the ballcarrier’s 2D location on the court (denote the court space S) at time t, and ξℓj : S →

R is a mapping of the player’s court location to an additive effect on the log-hazard, providing

spatial variation. The last term in (2.7) only appears for pass events (j ≤ 4) to incorporate the

location of the receiving player for the corresponding pass: zj(t) (which slightly abuses notation)

provides his location on the court at time t, and ξ̃ℓj , analogously to ξℓj , maps this location to an

additive effect on the log-hazard. All spatial effects ξ are assumed to be realizations of Gaussian

processes; a detailed discussion of the structure and estimation of these spatial effects is included

in Appendix A.

The macrotransition model (2.6)–(2.7) represents the ballcarrier’s decision-making process as

an interpretable function of the unique basketball predicaments he faces. For example, in consid-
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ering the hazard of a shot attempt, the time-varying covariates (Wℓ
j(t)) we use are the distance

between the ballcarrier and his nearest defender (transformed as log(1 + d) to moderate the in-

fluence of extremely large or small observed distances), an indicator for whether the ballcarrier

has dribbled since gaining possession, and a constant representing a baseline shooting rate (this

is not time-varying)†. The spatial effects ξℓj reveal locations where player ℓ is more/less likely to

attempt a shot in a small time window, holding fixed the time-varying covariates Wℓ
j(t). Such

spatial effects (illustrated in Figure 2.4) are well-known to be nonlinear in distance from the bas-

ket and asymmetric about the angle to the basket [Miller et al. (2013)].

Figure 2.4: Estimated ξℓj for LeBron James’ shot-taking hazard (j = 5). For each location on the
court, the color and height of the surface are proportional to the additive effect on the log hazard
of attempting a shot at that location.

For pass events, the time-varying covariates, their coefficients, and the spatial effect ξℓj vary

for the same ballcarrier (ℓ) across his different passing options j = 1, . . . , 4. This reflects the

fact that pass events between two players depend on those two players’ positions and roles on

the team. For instance, a point guard will pass to a center in different situations than those in

which he passes to a shooting guard. Thus in some sense, we are modeling the pass events inde-

pendently for every passer-receiver pair; main effects from the passer’s and receiver’s identities

are not explicitly modelled, though hierarchical models allow information sharing among the dif-

ferent pass models associated with player ℓ (Appendix A introduces such hierarchical structure,

which we use in our parameter estimation). It is conceptually useful to think of (ξℓj , ξ̃ℓj) : R4 → R

as jointly providing a single spatial effect for the 4D location of the passer/receiver pair, and of
†Full details on all covariates used for all macrotransition types are included in Appendix A.2
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the factorization

(ξℓj , ξ̃
ℓ
j)(zℓ(t), zj(t)) = ξℓj (zℓ(t)) + ξ̃ℓj (zj(t))

as an assumption designed to reduce the computational complexity of fitting such a model.

2.4.2 Macrotransition Exit Model

In Section 2.3, we noted that the model for the macrotransition exit state conditional on a macro-

transition occurring, P(Cδ|M(τ), Zτ , τ,F (Z)
t ), derives from the macrotransition model. We show

this by noting that

P(Cδ|M(τ), Zτ , τ,F (Z)
t ) =

∑
j

P(Cδ|Mj(τ), Zτ , τ,F (Z)
t )P(Mj(τ)|M(τ), Zτ , τ,F (Z)

t ). (2.8)

Probabilities constituting the second term in (2.8) are proportional to λj(t), thus they derive

from our family of competing risks macrotransition models. For j ̸= 5 (not a shot attempt), the

first term in (2.8) is actually degenerate. For each pass (corresponding to j ≤ 4), the location and

position relative to the defense of the pass recipient are given by Zτ , thus yielding only one possi-

ble macrotransition exit state Cδ for each pass option. Note that while players’ positions change

in the time window (τ, δ), while a pass is airborn, we do not expect the pass recipient’s location

in the coarsened space C to change (though our model could be augmented to incorporate this).

Similarly, if j = 6 and a turnover occurs at τ , then Cδ is the turnover state in Cend with probabil-

ity 1.

However, if j = 5 and a shot is attempted in (τ, τ + ϵ], then Cδ has two possible values de-

pending on the shooter’s location in Zτ : a made or missed 2 point shot, or made or missed 3

point shot. This motivates a shot probability model, predicting the probability of success given

a shot attempt at time t and the associated full resolution data. The parametric form of our shot

probability model is exactly the same as our macrotransition model, though we use a logit link

function as we are modeling a probability instead of a hazard. Specifically, for player ℓ possessing

attempting a shot at time t, let pℓ(t) represent the probability of the shot attempt being success-
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ful (resulting in a basket). We assume

logit(pℓ(t)) = [Wℓ(t)]′βℓ + ξℓ(zℓ(t)) (2.9)

with components in (2.9) having the same interpretation as their j-indexed counterparts in the

competing risks model (2.7); that is, Wℓ is a vector of time-varying covariates (we use distance

to the nearest defender—transformed as log(1 + d)—an indicator for whether the player has drib-

bled, and a constant to capture baseline shooting efficiency) with βℓ a corresponding vector of

coefficients, and ξℓ is a smooth spatial effect, assumed to be a realization of a Gaussian process.

2.4.3 Transition Probability Matrix for Coarsened Process

The last component of the EPV calculation supplied by the macrotransition model is the transi-

tion probability matrix for the embedded Markov chain corresponding to the coarsened process

C(0), C(2), . . . , C(K). This transition probability matrix is used to compute terms E[h(CT )|Cδ]

that appear in EPV equations (2.4)–(2.5). We shall denote the transition probability matrix as

P, where Pqr = P(C(i+1) = cr|C(i) = cq) for any cq, cr ∈ C.

Without any other probabilistic structure assumed for C(i) other than Markov, for all i, j,

the maximum likelihood estimator of Pqr is the observed transition frequency #{cq→cr}
#{visits to cq} . Of

course, this estimator has undesirable performance if the number of visits to any particular state

cq is small, as the estimated transition probabilities from that state may be degenerate. One

common approach is to model transition probability matrices hierarchically, possibly in a Bayesian

fashion [Lee et al. (1968); Meshkani & Billard (1992)].

Under our multiresolution model for basketball possessions, however, transition probabili-

ties between many coarsened states C(i) can be computed as summaries of the macrotransition

model. To show this, for any arbitrary t > 0 let M r
j (t) be the indicator

M r
j (t) = 1[P(Mj(t) and Ct+ϵ = cr|F (Z)

t ) > 0].

Thus M r
j (t) = 1 if it is possible for a macrotransition of type j into state cq to occur in (t+ t+ ϵ].

Now, for any cq such that cq → cr is a macrotransition, we can write
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Pqr = P(Ct+ϵ = cr|Ct = cq)

= P(Mj(t)|Ct = cq,M
r
j (t) = 1)

= ϵE[λj(t)|Ct = cq,M
r
j (t) = 1], (2.10)

where the last equality follows simply from iterated expectation, noting that Ct and M r
j (t) are

both F (Z)
t -measureable. Since we assume Ct is semi-Markov, (2.10) holds for any t.

The integrating measure in (2.10), which conditions on Ct and M r
j (t), is not immediately

available from the multiresolution models without an onerous set of assumptions, so we sub-

stitute the empirical distribution of possession paths that occupy cq at some time point. This

yields a simple (unnormalized) estimator P̃qr =
∑

t∈T q ϵλj(t) for each r such that cq → cr is a

macrotransition for some j, where T q is the set of (discretized at resolution ϵ) times for which

Ct = cq. Thus, we estimate the transition probability by accumulating the appropriate transi-

tion hazard λj(t). This method leverages the parametric structure of our macrotransition model,

and by propagating the shrinkage and temporal smoothing in the macrotransition model to the

estimates of Pqr, we achieve greater precision than with the naïve MLE.

Transition probabilities corresponding to macrotransition exits are often degenerate (either 0

or 1); this is because for passes and turnovers, the exit state is encoded in the definition of the

transition state—for instance, each pass state in Ctrans transitions to a single possession state

in Cposs with probability 1. The exception to this is the exit state of a shot attempt. Recall-

ing that shot attempt states cq are indexed by the state from which the shot originated, de-

noted cq′ , then the next state cr is either a made or missed 2 point shot, or a made or missed

3 point shot, depending on whether the location corresponding to cq′ is behind the three point

line. Given the potential point value of the shot, we determine its success probability following

a similar line of reasoning: P̃qr =
∑

t∈T q′ ϵλ5(t)p(t) when r represents a successful shot, and

P̃qr =
∑

t∈T q′ ϵλ5(t)(1− p(t)) when r represents a missed shot.

For all other transitions, where cq → cr is not a macrotransition entry or exit, we simply use

observed transitions P̃qr =
∑

t∈T q 1[Ct+ϵ = cr]. Then the unnormalized transition rates yield
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estimated transition probabilities for all q, r:

P̂qr =
P̃qr∑
r′ P̃qr′

. (2.11)

For transitions from a state not associated with a particular player, we group observed transi-

tions separately by team. The only example of this is the rebound state in Ctrans, which with

some probability transitions to a defensive rebound (thus ending the possession) and in the case

of an offensive rebound transitions into one of the possession states.

2.5 Microtransition model

While the macrotransition model in Section 2.4 models ball movements, the microtransition

model describes player movement with the ballcarrier held constant. In the periods between

transfers of ball possession (including shots), all players on the court move in order to influence

the character of the next ball movement (macrotransition). For instance, the ballcarrier might

drive toward the basket to attempt a shot, or move laterally to gain separation from a defender,

while his teammates move to position themselves for passes or rebounds, or to set screens and

picks. The defense moves correspondingly, attempting to deter easy shot attempts or passes to

certain players while simultaneously anticipating a possible turnover.

As defined in Section 2.3, the microtransition model supplies P(Zt+ϵ|M(t)c,F (Z)
t ), giving the

small-scale evolution of the current possession conditional on the ballcarrier staying the same

in the next ϵ time. Separate models are assumed for offensive and defensive players, as we shall

describe.

2.5.1 Offensive Movement

Predicting the motion of offensive players over a relatively short time window is driven by the

players’ dynamics (velocity, acceleration, etc.). Let the location of an offensive player (the ball-

carrier, for instance) at time t be z(t) = (x(t), y(t)). Assuming the player’s position is differen-

tiable, a Taylor series expansion shows x(t + ϵ) = x(t) + ẋ(t)ϵ + ex(t) where the innovations

ex(t) depend on higher derivatives of position (acceleration, jerk, etc.) and possibly involve white
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noise, as there is small measurement error associated with the position tracking in our data. The

velocity ẋ(t) is unobserved, yet it is natural to replace this with (x(t)−x(t− ϵ))/ϵ, acknowledging

that doing so adds additional structure to the residual ex(t) term. We are now left with

x(t+ ϵ) = x(t) + ax[x(t)− x(t− ϵ)] + ex(t), (2.12)

where ax = 1 in theory, but this is relaxed because ax < 1 in practice provides some predictive

stability, as the sequence of differences x(t) − x(t + ϵ) becomes a stationary AR(1) process if

ex(t) is white noise. Note that (2.12) defines x(t) as an ARI(1,1) process (or equivalently, as an

ARIMA(1,1,0) process).

We also assume spatial structure for the innovations, ex(t) ∼ N (µx(z(t)), σ
2
x), where µx maps

the player’s two-dimensional location on the court to an additive effect in (2.12), which has the

interpretation of an acceleration effect. Players’ future motion is informed not only by their cur-

rent dynamics, but also their position on the court. Players within the perimeter, for instance,

may be more likely to accelerate towards the basket as they get closer, eventually decelerating to

attempt a shot. Also, players will accelerate away from the edges of the court as they approach

these, in order to stay in bounds (see Figure 2.5 for an illustration). These behaviors motivate

the inclusion of µx in the model (2.12). For the y(t), we construct (2.12) analogously in terms of

ay and ey(t) ∼ N (µy(z(t)), σ
2
y).

2.5.2 Defensive Movement

The defensive components of P (Zt+ϵ|M(t)c,F (Z)
t ), corresponding to the positions of the five de-

fenders, are easier to model conditional on the evolution of the offense’s positions. Following

Franks et al. (2014), we assume each defender’s position is centered on a linear combination of

the basket’s location, the ball’s location, and the location of the offensive player he is guarding.

Franks et al. (2014) use a hidden Markov model (HMM), based on this assumption, to learn

which offensive players each defender is guarding, as well as the coefficients of this linear com-

bination. The location coefficients they estimate are 0.62 for the offensive player being guarded,

0.11 for the ball ball, and 0.27 for the basket; that is, conditional on defender i guarding offender
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TONY PARKER WITH BALL

(a)

TONY PARKER WITHOUT BALL

(b)

DWIGHT HOWARD WITH BALL

(c)

DWIGHT HOWARD WITHOUT BALL

(d)

Figure 2.5: Acceleration fields (µx(z(t)), µy(z(t))) for Tony Paker (a)–(b) and Dwight Howard
(c)–(d) with and without ball possession. The arrows point in the direction of the acceleration
at each point on the court’s surface, and the size and color of the arrows are proportional to the
magnitude of the acceleration. Comparing (a) and (c) for instance, we see that when both players
possess the ball, Parker more frequently attacks the basket from outside the perimeter. Howard
does not accelerate to the basket from beyond the perimeter, and only tends to attack the basket
inside the paint.

j his location zi(t) should be normally distributed with mean mopt
j (t) = 0.62zj(t) + 0.11zbask +

0.27zball(t).

Of course, the dynamics (velocity, etc.) of defensive players’ are still hugely informative for

predicting their locations within a small time window. Thus our microtransition model for de-

fenders balances these dynamics with the mean path induced by the player each is guarding:

x(t+ ϵ)|mopt
j,x (t) = x(t) + ax[x(t)− x(t− ϵ)] + bx[m

opt
j,x (t+ ϵ)−mopt

j,x (t)] +N (0, τ2x). (2.13)

Rather than implement the HMM procedure used in Franks et al. (2014), we simply assume each

defender is guarding at time t whichever offensive player j yields the smallest residual ||z(t) −

mopt
j (t)||. Note that more than one defender may be guarding the same offender (as in a “double

team”). Thus, conditional on the locations of the offense at time t+ ϵ, (2.13) provides a distribu-

tion over the locations of the defense at time t + ϵ. As in estimating the microtransition compo-

nents for the offense, we fit (2.13) separately for all defenders, for both the x and y component of

the position.
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2.6 Inference

To this point, we have expressed EPV using multiresolution conditioning, introduced parameter-

izations for our macro- and microtransition models, and derived all necessary probability com-

ponents for evaluating EPV (such as the shot probability model and the transition probability

matrix for Ct) from parameters of these models. This section outlines the pipeline for estimating

these model parameters and computing the derived EPV estimates that yield actual results, such

as those highlighted in Section 2.2.1. Our estimates are based on all games from the 2013-14 sea-

son up until February 7, 2014, though only 90% of these games were used in model fitting (the

remaining 10% were used to assess out of sample predictive performance or our model compo-

nents).

2.6.1 Likelihood Inference

We estimate multiresolution transition models by Bayesian inference. Note that the multires-

olution transition framework helps us rewrite the data generating process by conditioning on

macrotransition events. The likelihood of a possession {Zt, 0 ≤ t ≤ T} observed at a temporal

resolution of ϵ can be written

T−ϵ∏
t=0

P(Zt+ϵ|F (Z)
t ) =

T−ϵ∏
t=0

P(Zt+ϵ|M(t)c,F (Z)
t )1[M(t)c]

6∏
j=1

P(Zt+ϵ|Mj(t),F (Z)
t )1[Mj(t)]


×

T−ϵ∏
t=0

P(M(t)c|F (Z)
t )1[M(t)c]

6∏
j=1

P(Mj(t)|F (Z)
t )1[Mj(t)]

 , (2.14)

where the first term models Zt+ϵ conditional on a macrotransition (or lack thereof) in the win-

dow (t, t + ϵ], and the second term models such macrotransition events. Following this factoriza-

tion, we consider two separate models for macrotransitions and microtransitions, decomposiing

(2.14) into partial likelihoods [Cox (1975b)] that inform the parameters of the macro- and micro-

transitions independently. The macrotransition model is estimated using the second term in the

likelihood (2.14), whereas the microtransition model is fit using the term
(∏T−ϵ

t=0 P(Zt+ϵ|M(t)c,F (Z)
t )1[M(t)c]

)
.

Under mild conditions, this inferential procedure leads to consistent and asymptotically well-
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behaved estimators [Wong (1986)].

The reader is referred to Appendix A for explicit expressions of the partial likelihood terms

for the macro and microtransition model in terms of the corresponding model parameters. Prior

distributions are also given for these parameters, such that the inference is partially Bayesian

[Cox (1975a)]. All spatial effects in our models (ξ in the macrotransition model and µ in the mi-

crotransition model) are represented using functional bases whose loadings are given a unique

prior structure that shares information across space and across players. This not only provides

more precise inference with better out-of-sample predictive performance (see Table 2.1), but it

also offers substantial computational advantages. Appendix A also outlines the computational

requirements for parameter inference using (2.14).

2.6.2 EPV Algorithm

Given all parameter values for our multiresolution transition models, denoted Θ, then EPV at

any time during a possession νt can be evaluated deterministically—though this may require

Monte Carlo integration depending on the current state of the possession. Algorithm 1 illustrates

this process explicitly. EPVdraw obtains a draw from the distribution of X = h(CT ) given

F (Z)
t , and repeated draws yield an arbitrarily accurate estimate of νt.

Inside the function EPVdraw, we repeatedly iterate draws from the macro- and microtran-

sition models in order to simulate a future possession path up until a macrotransition occurs.

From this sample path, we then draw the macrotransition exit state Cδ, and compute its value

E[h(CT )|Cδ] using the transition probability matrix P. This procedure mirrors the multiresolu-

tion conditioning equations (2.4) given in Section 2.3. Note that it is computationally necessary

to work with a compressed version of P corresponding to only the states accessible from Ct. This

dramatically reduces the dimension of P, as most states in C are possession or transition states

belonging to players not on the same team as the ballcarrier, meaning they are not accessible

from Ct.
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Algorithm 1 Calculating EPV (νt).
Require: Player ℓ possess the ball at time t

function macro(F (Z)
s ,Θ) ▷ Simulates a possible macrotransition in (s, s+ ϵ]

for j in 1, . . . , 6 do
Set Mj(s) = 1 with probability min{1, λℓ

j(s)}
end for
if
∑

j Mj(s) > 1 then
Keep only one j such that Mj(s) = 1, choosing it proportional to λℓ

j(s)
end if
return {Mj(s), j = 1, . . . , 6}

end function

function EPVdraw(F (Z)
t ,Θ) ▷ Gets EPV from single simulation of next macro

Initialize s← t
Initialize Mj(s)← macro(F (Z)

s ,Θ)
while Mj(s) = 0 for all j do

Draw Zs+ϵ ∼ P(Zs+ϵ|M(s)c,F (Z)
s )

F (Z)
s+ϵ ← {F

(Z)
t , Zs+ϵ}

s← s+ ϵ
Mj(s)← macro(F (Z)

s ,Θ)
end while
Draw Cδ ∼ P(Cδ|Mj(s),F (Z)

s )
νt ← E[h(CT )|Cδ]
return νt

end function

function EPV(N,F (Z)
t ,Θ) ▷ Averages over simulations of next macrotransition

Initialize νt ← 0
for i in 1, . . . , N do

νt ← νt + EPVdraw(F (Z)
t ,Θ)

end for
return νt/N

end function

2.7 Results

Applying Algorithm 1 using our parameter estimates for the multresolution transition model, we

can plot EPV (νt) throughout the course of any possession in our data. We view EPV curves as

the main contribution of our work, and their behavior and potential inferential value has been

introduced in Section 2.2.1. Analysts may also find meaningful aggregations of EPV curves that
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summarize players’ behavior over a possession, game, or season in terms of EPV—we offer two

such aggregations in Appendix B.

2.7.1 Possession Inference from Multiresolution Transitions

Understanding the calculation of EPV in terms of multiresolution transitions is also a valuable

exercise for a basketball analyst, as these model components reveal precisely how the EPV es-

timate derives from the spatiotemporal circumstances of the time point considered. Figure 2.6

diagrams four moments during our example possession (introduced originally in Figures 2.1 and

2.2) in terms of multiresolution transition probabilities. These diagrams illustrate equation (2.4)

by showing EPV as a weighted average of the value of the next macrotransition. Potential ball

movements representing macrotransitions are shown as arrows, with their respective values and

probabilities graphically illustrated by color and line thickness (this information is also anno-

tated explicitly). Microtransition distributions are also shown, indicating distributions of players’

movement over the next two seconds. Note that the possession diagrammed here was not used in

our model fitting.

Analyzing Figure 2.6, we see that our model estimates largely agree with basketball intuition.

For example, players are quite likely to take a shot when they are near to and/or moving towards

the basket, as shown in panels A and D. Additionally, because LeBron James is a better shooter

than Norris Cole, the value of his shot attempt is higher, even though in the snapshot in panel

D he is much farther from the basket than Cole is in panel A. While the value of the shot at-

tempt averages over future microtransitions, which may move the player closer to the basket,

when macrotransition hazards are high this average is dominated by microtransitions on very

short time scales.

We also see Ray Allen, in the right corner 3, as consistently one of the most valuable pass op-

tions during this possession, particularly when he is being less closely defended as in panels A

and D. In these panels, though, we never see an estimated probability of him receiving a pass

above 0.05, most likely because he is being fairly closely defended for someone so far from the

ball, and because there are always closer passing options for the ballcarrier. Similarly, while

Chris Bosh does not move much during this possession, he is most valuable as a passing option
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Figure 2.6: Detailed diagram of EPV as a function of multiresolution transition probabilities
for four time points (labeled A,B,C,D) of the possession featured in Figures 2.1–2.2. Two sec-
onds of microtransitions are shaded (with forecasted positions for short time horizons darker)
while macrotransitions are represented by arrows, using color and line thickness to encode the
value and probability of such macrotransitions. The value and probability of the “other” category
represents the case that no macrotransition occurs during the next two seconds.

in panel C where he is closest to the basket and without any defenders in his lane. Lastly, while

we estimated the probability of Lewis passing to James in panel C at 0.61 (by far Rashard Lewis’

most likely passing option), we only estimated the probability of the pass from Cole to Lewis

(panel B) at 0.04 (the pass actually happens a fraction of a second after the situation in panel

B). More generally, our model anticipated a layup from Cole, instead of his path underneath the

basket and eventual pass to Lewis. These issues aside, the estimated probabilities and values of

the macrotransitions highlighted in Figure 2.6 match well with basketball intuition.

The analysis presented here could be repeated on any of tens (hundreds) of thousands of pos-
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sessions available in a season of optical tracking data. EPV plots as in Figure 2.2 and diagrams

as in Figure 2.6 provide powerful insight as to how players’ movements and decisions contribute

value to their team’s offense. With this insight, coaches and analysts can formulate strategies

and offensive schemes that make optimal use of their players’ ability—or, defensive strategies

that best suppress the motifs and situations that generate value for the opposing offense.

2.7.2 Predictive Performance of EPV

Our paper introduces EPV, and as such there are no existing results to benchmark the predictive

performance of our estimates. We can, however, compare the proposed implementation for esti-

mating EPV with simpler models, based on lower resolution information, to verify whether our

model captures meaningful features of our data. Assessing the predictive performance of an EPV

estimator is difficult because the estimand is a curve whose length varies by possession. More-

over, we never observe any portion of this curve; we only know its endpoint. Therefore, rather

than comparing estimated EPV curves between our method and alternative methods, we com-

pare estimated transition probabilities. For any EPV estimator method that is stochastically

consistent, if the predicted transitions are properly calibrated, then the derived EPV estimates

should be as well.

As mentioned in Section 2.6, we use only 90% of our data set for parameter inference, with the

remaining 10% used to evaluate the out-of-sample performance of our model. We also evaluated

out-of-sample performance of alternative macrotransition models, which use varying amounts of

information from the data. Table 2.1 provides the out-of-sample log-likelihood for the macro-

transition model applied to the 10% of the data not used in model fitting for various hazard pa-

rameterizations. The most basic parameterization assumes constant hazards for each ballcar-

rier/macrotransition type. We also consider a hazard mode that is unique for each ballcarrier

and macrotransition, yet includes only the time-referenced covariates (situational effects) used in

our full model (and no spatial effect). Finally, we consider our full model, with unique situational

and spatial effects for each ballcarrier/macrotransition, both with and without the hierarchical

model we use for information sharing across players. This hierarchical model is discussed in Ap-

pendix A.4. Without any shrinkage, our full model performs in some cases worse than a model
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with no spatial effects included, but with shrinkage, it consistently performs the best of the con-

figurations compared—this behavior motivates the novel hierarchical structure we discuss in Ap-

pendix A, which incorporates both spatial and between-player structure in a computationally

efficient manner.

Macrotransition Model
Macrotransition Player Covariates Covariates + Spatial Full
Pass1 -29399.68 -27659.72 -27251.40 -26433.76
Pass2 -24884.99 -23691.81 -23294.98 -22226.61
Pass3 -26326.99 -25199.52 -25335.92 -23909.71
Pass4 -20426.53 -20266.06 -24487.17 -18879.47
Shot Attempt -48885.21 -46471.49 -40914.66 -40711.55
Made Basket -6579.31 -6626.55 -5601.75 -5284.31
Turnover -9311.80 -9075.60 -8990.61 -8390.85

Table 2.1: Out of sample log-likelihood for macrotransition models (and shot probability model)
under various model specifications. “Player” assumes constant hazards for each player/event type
combination. “Covariates” augments this model with situational covariates, W(t) as given in
(2.7). “Covariates + Spatial” adds a spatial effect, yielding (2.7) in its entirety. Lastly, “Full”
implements this model with the hierchical model discussed in Appendix A.

Our comparison of the predictive performance of the competing risks macrotransition model

under several different parameterizations includes a notable case. Assuming constant hazards for

each player/macrotransition type is equivalent to using only the discrete, homogeneous Markov

chain C(0), C(1), . . . , C(K) to compute EPV, using empirical transition frequencies to estimate the

transition probability matrix. The superior predictive performance of our EPV model illustrates

the value in modeling the full resolution data instead of simply relying on discrete summaries.

2.8 Discussion

This paper introduces a new quantity, EPV, which represents a paradigm shift in the possibili-

ties for statistical inferences about basketball. Using high resolution, optical tracking data, EPV

reveals the value in many of the schemes and motifs that characterize basketball offenses but are

omitted in the box score. For instance, as diagrammed in Figures 2.2 and 2.6, we see that EPV

may rise as a player attacks the basket (more so for a strong scorer like LeBron James than for a

bench player like Norris Cole), passes to a well-positioned teammate, or gains separation from

the defense. Aside from simply tracking changes in EPV, analysts can understand why EPV
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changes by expressing its value as a weighted average of transition values (as done in Figure 2.6).

Doing so reveals that the source of a high (or low) EPV estimate may come from alternate paths

of the possession that were never realized, but were probable enough to have influenced the EPV

estimate—an open teammate in a good shooting location, for instance. These insights, which can

be reproduced for any valid NBA possession in our data set, have the potential to reshape the

way we quantify players’ actions and decisions.

We make a number of assumptions—mostly to streamline and simplify our modeling and anal-

ysis pipeline—that could be relaxed and yield a more precise model. The largest assumption is

that the particular coarsened view of a basketball possession that we propose here is marginally

semi-Markov. While this serves as a workable first-order approximation, there are cases that

clearly violate this assumption, for example, pre-set plays that string together sequences of runs

and passes. Future refinements of the model could define a wider set of macrotransitions that en-

capsulate these motifs, effectively encoding this additional possession structure from the coach’s

playbook. A number of smaller details could also be addressed. For instance, it seems desirable

to model rebound outcomes conditional on high resolution information, such as the identities

and motion dynamics of potential rebounders; we do not do this, however, and use a constant

probability for each team of a rebound going to either the offense or defense. We also do not dis-

tinguish between different types of turnovers (steals, bad passes, ball out of bounds, etc.), though

this is due to a technical feature of our data set. Indeed, regardless of the complexity and refine-

ment of an EPV model, we stress that the full resolution data still omits key information, such as

the positioning of players’ hands and feet, their heights when jumping, and other variables which

impact basketball outcomes. As such, analyses based on EPV are best accompanied by actual

game film and the insight of a basketball expert.

The computational requirements of estimating EPV curves (and the parameters that gener-

ate them) likely limit EPV discussions to academic circles and professional basketball teams with

access to the appropriate resources. Our model nevertheless offers a case study whose influence

extends beyond basketball. High resolution spatiotemporal data sets are an emerging inferential

topic in a number of scientific or business areas, such as climate, security and surveillance, ad-

vertising, and gesture recognition. Many of the core methodological approaches in our work, such
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as using multiresolution transitions and hierarchical spatial models, provide insight beyond the

scope of basketball to other spatiotemporal domains.
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3
Gaussian Process Regression with Location

Errors

3.1 Introduction

Gaussian process models assume an output variable of interest varies smoothly over an input

space (e.g., percipitation totals across geographical coordinates, crop yield across factor levels of

an experimental design). Such models appear frequently in areas as diverse as climate science

[Mardia & Goodall (1993)], epidemiology [Lawson (1994)], and black-box problems such as com-

puter experiments, and Bayesian optimization [Sacks et al. (1989); Srinivas et al. (2009)].

Noisy spatial input data are common in many applications; for example, geostatistical data
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is often imprecisely spatially referenced, “binned” to the nearest latitude/longitude grid point,

or referenced to maps with distorted coordinates [Veregin (1999); Barber et al. (2006)]. Previ-

ous research on such error sources has focused on demonstrating their existence and quantifying

their magnitude [Bonner et al. (2003); Ward et al. (2005)]. Location (geocoding) errors have also

been studied in the context of point process data [Zimmerman & Sun (2006); Zimmerman et al.

(2010)].

Relatively little work has been done on interpolation or Gaussian process regression problems

in the presence of location measurement error. Gaussian process models do not straightforwardly

extend to incorporate input measurement error, and simply ignoring noise in the input space can

lead to poor performance. Gabrosek & Cressie (2002) (and later Cressie & Kornak (2003)) adjust

Kriging equations for the presence of location errors, and Fanshawe & Diggle (2011) further de-

velop research for this regime to include problems where predictive locations are subject to error.

Through theory and simulation study, our paper provides guidelines on situations when loca-

tion errors are most impactful for data analysis, and suggestions for incorporating this source of

error into inference and prediction. We expand the research in Cressie & Kornak (2003) on best

linear unbiased prediction (Kriging) to include methods for obtaining interval forecasts and for

quantifying the cost of ignoring location errors. We also discuss MCMC methods for obtaining

optimal (minimum mean squared error) predictions, which are averaged over the conditional dis-

tribution of (latent) location errors given the observed data.

To establish terminology, let s1, s2, . . . , sn be locations (inputs) for which we observe the value

of a smooth process x(si) ∈ R. Locations are assumed to be p-dimensional, so that si ∈ S ⊂ Rp

for all i. The process x : S → R is called a Gaussian process if, for any s1, . . . sn ∈ S, xn =

(x(s1) x(s2) . . . x(sn))
′ is jointly Normally distributed. Typically, the form of this joint distri-

bution is specified by a deterministic or parametric mean function (for now, taken without loss of

generality to be 0) and a covariance function c : S2 → R, so that


x(s1)

...

x(sn)

 ∼ N
0,


c(s1, s1) · · · c(s1, sn)

... . . .

c(sn, s1) c(sn, sn)


 . (3.1)
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For c to be a valid covariance function, the covariance matrix in (A.3) must be positive semi-

definite for all input vectors sn = (s1 s2 . . . sn)
′.

Gaussian process regression is primarily used as a method for interpolating (predicting) values

x∗
k at unobserved points s∗k = (s∗1 . . . s

∗
k)

′ in the input space, given all available observations. Such

conditional distributions are easily obtained by exploiting the joint normality of the response x at

observed and unobserved locations:

x∗
k|xn ∼ N

(
C(s∗k, sn)C(sn, sn)

−1xn,

C(s∗k, s
∗
k)−C(s∗k, sn)C(sn, sn)

−1C(sn, s
∗
k)
)
. (3.2)

For notation in this paper, we will use sn = (s1 s2 . . . sn)
′ to denote a n-vector of locations in

the input space S, and xn = (x(s1) x(s2) . . . x(sn))
′ as the associated vector of observations at sn,

and similarly denoting x∗
k = (x(s∗1) . . . x(s

∗
k))

′, or x∗ = x(s∗). Furthermore, C(sn, sn) will be the

covariance matrix of xn, C(s∗k, sn) the k × n covariance matrix between x∗
k and xn, and so forth.

This paper focuses on regimes where locations in the input space S are affected by error. We

can describe this in terms of a surrogate process y(si) = x(si + ui) where si is a known location

in S and ui ∈ S is unobserved location error. Because of location errors, the analyst observes

samples from y, yn, but is interested in predicting x at unobserved (exact) locations x(s∗).

When x is assumed to be a Gaussian process, there is no nontrivial structure for u that results

in y being a Gaussian process. Additionally, it is not possible to write y as a convolution of x

and a white noise process as differences between the surfaces y and x will generally be correlated

across space: C[y(s1)− x(s1), y(s2)− x(s2)] ̸= 0. Gaussian process regression with location errors

therefore cannot be thought of as a classical or Berkson errors-in-variables problem [Carroll et al.

(2006)].

Properly accounting for location errors is essential for optimal interpolation and uncertainty

quantification, as well precise and efficient parameter estimation when parameters of the covari-

ance function are unknown. Interestingly, in some cases, the process y may be more informa-

tive for prediction at a new location x(s∗) than the process x is. Thus, appropriate methods can

deliver lower MSE interpoloations in a location-error regime than can the usual methods in an
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error-free regime.

In Section 3.2, we discuss Kriging using the covariance structure of the error-induced process

y. Section 3.3 considers Markov Chain Monte Carlo methods that sample exactly from s∗k|yn and

obtain optimal forecasts. We compare these methods through simulation study in Section 3.4,

and explore an application to interpolating northern hemisphere temperature anomolies in Sec-

tion 3.5.

3.2 Kriging the Location Error Induced Process y

As Cressie & Kornak (2003) show, we can use second moment properties of y to perform Kriging

(they term this “Kriging adjusting for location error” or KALE), noting that measurement errors

u induce a new covariance function

k(s1, s2) = C[y(s1), y(s2)] = E[c(s1 + u1, s2 + u2)] for s1 ̸= s2

k(s, s) = C[y(s), y(s)] = E[c(s+ u, s+ u)]

k∗(s, s∗) = C[y(s), x(s∗)] = E[c(s+ u, s∗)]. (3.3)

The expectation here is taken over the input errors u, which may be (but not need be) assumed

i.i.d. from some distribution g(u). It is important to note that if c is a valid covariance function,

then so is k, regardless of the error structure g(u).

Proposition 3.2.1 Assume for all n and sn ∈ S, (u1, u2, . . . , un) ∼ gsn ∈ G, where G is any

family of probability measures on S. Then k is a valid covariance function if and only if c is.

Note that regardless of the form of c, k will always exhibit the “nugget” effect, or discontinuities

in the covariance function lims2→s1 k(s2, s1) ̸= k(s1, s1) [Matheron (1962)]. In fact, several au-

thors cite location/positional error as a justification for including a nugget term in an arbitrary

covariance function c [Cressie & Cassie (1993); Stein (1999)], alongside independent measure-

ment error in observing the resonse, x(s) + ϵ. Location errors, however, cause k to differ from c

throughout the spatial domain S2 (this is pictured in Figure 3.1), meaning that while they induce

a nugget, a nugget term alone cannot capture the effect of location errors.
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Figure 3.1: Comparison of c and k for S = R2 and c(s1, s2) = exp(−β||s1 − s2||2), with ui
iid∼

N (0, σ2uI2). Location errors σ2u > 0 cause c and k to differ as a function of distance, and induce
a nugget discontinuity at 0.

Using k, we get the Kriging estimator (adjusting for location error) for x(s∗), an unobserved

location of x:

x̂KALE(s
∗) = K∗(s∗, sn)K(sn, sn)

−1yn. (3.4)

x̂KALE(x
∗) is the best linear unbiased predictor (in terms of MSE) and has all the usual Kriging

properties. When there are no location errors, the Kriging estimator is equivalent to the condi-

tional expectation of x(s∗) given xn (3.2).

In general, the covariance functions k and k∗ can be evaluated using Monte Carlo integration,

sampling independently from g(u). For several common combinations of covariance function and

location error models, however, it is possible to arrive at expressions for (3.3) in closed form. In

particular, if c(s1, s2) has the form τ2 exp(−βg(s1, s2)), then we can define a random variable

Z = g(s1 + u1, s2 + u2) and find its moment generating function MZ(t). If we can evaluate MZ(t)

at t = −β, then this yields k(s1, s2). For instance, for the squared exponential covariance func-

tion g(s1, s2) = ||s1 − s2||2 and Normal location errors u ∼ N (0, σ2uIp), Z has a scaled noncentral

χ2
p distribution and

k(s1, s2) =
τ2

(1 + 4βσ2u)
p/2

exp

(
− β

1 + 4βσ2u
||s1 − s2||2

)
for s1 ̸= s2

k(s, s) = τ2 (3.5)
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with a similar expression for k∗(s, s∗). Thus the covariance function for y is also squared expo-

nential (it is not generally true that covariance functions c and k will share the same functional

form). Note, however, that not all parameters are identifiable—we must know at least one of

(τ2, β, σ2u) in order to estimate the other two parameters.

Interestingly, it is possible for the KALE to yield lower MSE predictions than those given from

an error-free regime, where un ≡ 0 and x = y. In other words, yn can be more informative

than xn for predicting x(s∗). Heuristically, this happens when yn is more strongly correlated

with x(s∗) than is xn. Below we characterize the conditions for observing this phenomenon in a

simple model with one observed data point (Figure 3.1 provides an illustration); it is difficult to

generalize to larger observed location samples and covariance/error structures.

Proposition 3.2.2 Assume n = 1, ||s − s∗||2 = ∆2, c(s, s∗) = τ2 exp(−β∆2) for all s, s∗ ∈ S,

and u ∼ N (0, σ2uIp). Without location error (σ2u = 0), the MSE in predicting x(s∗) from x(s) is

c0 = τ2(1 − exp(−2β∆2)). We can find σ2u such that E[(x̂KALE(s
∗) − x(s∗))2] < c0 if and only if

β∆2 > p/2.

3.2.1 Interval predictions

For many applications of Gaussian process regression, particularly in geostastics and environ-

mental modeling, both point and interval predictions are of interest. However, Kriging, being

strictly a moment-based procedure, does not provide uncertainty quantification for predictions

other than variance. In a location-error Gaussian process regime, KALE predictions will always

be non-Gaussian, thus variance alone is not sufficient to provide distributional or interval predic-

tions.

However, it is relatively straightforward to derive confidence intervals for predictions at unob-

served locations x(s∗) given measurements yn at locations sn. The following proposition provides

the exact distribution function (CDF) for prediction errors x(s∗) − x̂KALE(s
∗), which can be in-

verted to obtain a confidence interval for x(s∗) based on x̂KALE(s
∗).
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Proposition 3.2.3 Let

V (un) = σ2 + γ′C(sn + un, sn + un)γ − 2γ′C(sn + un, s
∗)

where γ = K(sn, sn)
−1K∗(sn, s

∗).

Then

P(x(s∗)− x̂KALE(s
∗) < z) = E

[
Φ

(
z√
V (un)

)]
, (3.6)

where Φ is the standard normal distribution function.

The proof of Proposition 3.2.3 is provided in the appendix. It may be necessary to evaluate (3.6)

using Monte Carlo; if so, it is practical to use the same draws of un when evaluating different

quantiles z, as this guarantees a Monte Carlo estimate of the distribution function be non-decreasing.

While intervals based on (3.6) provide exact coverage (modulo Monte Carlo error), such cov-

erage is achieved by averaging over all data, both observed (yn) and unobserved x(s∗) as well as

the location errors un. This is contrast to usual interval estimates from Gaussian process regres-

sion without location error, which are conditional probability statements and have the correct

coverage for any observed data xn. The reason this is an important distinction is because when

the usual Gaussian process conditional probability intervals yield the proper coverage rate across

multiple prediction intervals from the same data set, whereas the confidence intervals correspond-

ing to KALE may not.

3.2.2 Advantages over Kriging while Ignoring Location Errors

Failing to adjust for location errors when Kriging (Cressie & Kornak (2003) call this “Kriging

ignoring location errors” or KILE) can lead to poor performance. If the data analyst ignores lo-

cation errors, he/she will use

x̂KILE(s
∗) = C(s∗, sn)C(sn, sn)

−1yn. (3.7)

Since x̂KALE(s
∗) is the best linear unbiased estimator for x(s∗) and x̂KILE is also an unbiased linear

estimator, KALE dominates KILE and always yields a reduced MSE. Figure 3.2 illustrates the
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disparity in MSE for a simple model; intuitively, the relative cost of ignoring location errors in-

creases as the magnitude of the location errors increases. We also see, following Proposition 3.2.2,

that for small values of σ2u, the MSE associated with both KALE and KILE is decreasing as a

function of σ2u.
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location (s)
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observed location
predictive location
sample GP paths

(a) Locations at which we observe y(s),
as well as the location at which we wish
to predict x(s). Sample paths of Gaussian
processes with this covariance function are
also shown.
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(b) For both KALE and KILE, MSE actu-
ally decreases as the magnitude of location
errors increases when this magnitude is
quite small. Above a certain point, greater
location error yields higher MSE and
greater disparity between KALE and KILE.

Figure 3.2: Here we assume x(s) is a Gaussian process with mean 0 and covariance function
c(s1, s2) = exp(−(s1 − s2)

2), with ui
iid∼ N (0, σ2u). We compare MSE for predicting x(5) using

KALE and KILE.

Besides yielding suboptimal predictions relative to KALE, ignoring location errors also leads

to an estimator for x(s∗) that is not self-efficient [Meng (1994)]; that is, the estimator can be

improved (in terms of MSE) by using only a portion of the observed data. The following theorem

states that the KILE MSE is unbounded as a function of any single spatial location si for i =

1, . . . , n, which is a stronger result than lack of self-consistency.

Theorem 3.2.4 Assume c is continuous in S2 and location errors satisfy P(u1 ̸= u2) < 1 for

all s1, s2 ∈ S. Let x̂KILE(s
∗) be the KILE estimator for x(s∗) given yn. Then for any M > 0 and

s2, . . . , sn ∈ S, there exists s1 such that E[(x(s∗)− x̂KILE(s
∗))2] > M .
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The proof of Theorem 3.2.4 is given in the Appendix. Note that the condition that c is contin-

uous excludes a nugget term from the distribution of x. The mechanism behind Theorem 3.2.4

is that when observed locations are very close together, this creates degeneracy in the covariance

matrix. Without location errors, the usual Kriging error is unaffected by this due to the relation-

ship between the Kriging estimator and the second moment properties of x. However, with the

noise-corrupted process y having a different covariance structure, this is no longer the case and

the MSE can become arbitrarily large.

Simulation results suggest that even when c contains a nugget term σ2x, KILE is still not self-

efficient, and additional observations can increase MSE. Figure 3.3 illustrates the change in MSE

as a function of the location of an additional observation of y. Following Theorem 3.2.4, we see

the MSE is unbounded when σ2x = 0. But even when σ2x = 1, it is possible for an additional

observation to (slightly) increase MSE.
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Figure 3.3: Here we assume x(s) is a Gaussian process with mean 0 and covariance function
c(s, s∗) = exp(−(s − s∗)2) + σ2x1s=s∗. Location errors have the form ui ∼ N (0, 0.04). Despite
the magnitude of the location errors being relatively small, observing another measurement of y
at some locations can increase (possibly dramatically) the MSE when using KILE to predict x(5)
based on {y(0), . . . , y(4), y(6), . . . , y(10)} (the MSE based on these observations is a red line).

3.2.3 Parameter Estimation for Kriging

In typical applied settings, some or all parameters of the covariance function are unknown and

must be estimated by the analyst in order to obtain Kriging equations. For Gaussian process

models without a location error component, parameter estimation can be accomplished using

likelihood methods. This can be computationally challenging for large data sets, as each likeli-
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hood evaluation requires a Cholesky factorization of the covariance matrix (or equivalent oper-

ations), which is O(n3) except in special cases. An alternative is to choose parameters by max-

imizing goodness of fit between the empirical variogram and the theoretical (parametric) vari-

ogram, though this is less efficient for (parametric) Gaussian models.

Location errors present challenges for both such procedures as the covariance function for the

observed provess y (3.3) may not be available in closed form, meaning neither the likelihood

function or variogram can be evaluated exactly. While Monte Carlo methods surely offer effec-

tive approaches in theory [??], they muliply the computational expense of the problem, as each

evaluation of the likelihood requires M matrix factorizations, where M is the number of Monte

Carlo samples used to approximate the likelihood. Cressie & Kornak (2003) advocate a pseudo-

likelihood procedure [Carroll et al. (2006)] that uses a Gaussian likelihood approximation based

on the first two moments of y,

L̃(θ;yn) ∝ |Kθ(sn, sn)|−1/2 exp

(
−1

2
y′
nKθ(sn, sn)

−1yn

)
, (3.8)

where we write Kθ to explicitly mark the dependence of the covariance function k on unknown

parameters θ. This pseudo-likelihood requires inverting K only once per pseudo-likelihood evalu-

ation, even when Kθ is computed by Monte Carlo.

We can work out inferential properties of the maximum pseudo-likelihood estimator ˆ̃
θ = argmaxθL̃(θ;yn).

First, it is straightforward to check that the pseudo-score is an unbiased estimating equation:

E[S̃(θ;yn)] = E[∇ log(L̃(θ;yn))] = 0. (3.9)

Moreover, one can show the covariance matrix of the pseudo-score is given by

G̃(θ) =E[S̃(θ;yn)S̃(θ;yn)
′]

G̃(θ)ij =E
[
1

2
Tr{ΩiCθ(un)ΩjCθ(un)}

]
+

1

4

(
E[Tr{ΩiCθ(un)}Tr{ΩjCθ(un)}]− Tr{ΩiKθ}Tr{ΩjKθ}

)
, (3.10)
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using the notational abbreviations Cθ(un) = Cθ(sn + un, sn + un), Kθ = Kθ(sn, sn) = E[Cθ(un)],

and Ωi = K−1
θ

(
∂
∂θi

Kθ

)
K−1

θ . Lastly, the expected negative Hessian of the log pseudo-likelihood is

H̃(θ)ij = E
[
− ∂2

∂θi∂θj
log(L̃(θ;yn))

]
=

1

2
Tr{ΩiKθΩjKθ}. (3.11)

If there are no location errors (un ≡ 0), L̃ is an exact likelihood and the second term in (3.10)

vanishes so that G̃(θ) = H̃(θ), confirming the second Bartlett identity. For non-zero location er-

rors, however, we construct the Godambe information matrix as an analog to the Fisher informa-

tion matrix [Varin et al. (2011)], Ĩ(θ) = H̃(θ)[G̃(θ)]−1H̃(θ). Evaluating Ĩ(θ) for different location

error models illustrates the information loss in estimating covariance function parameters θ rel-

ative to the error-free case, where Ĩ(θ) = G̃(θ) = H̃(θ) is equivalent to the Fisher information

matrix.

General theory of unbiased estimation equations [Heyde (1997)] suggests the asymptotic be-

havior of the pseudo-likelihood procedure satisfies

Ĩ(θ)1/2(
ˆ̃
θ − θ) D→ N (0, I). (3.12)

However, (3.12) does not hold in general even in an error-free regime un ≡ 0, as asymptotic re-

sults for Gaussian process covariance parameters depend on the spatial sampling scheme used

and the specific form of the covariance function [Stein (1999)]. We nevertheless expect (3.12)

to hold for suitably well-behaved processes under increasing-domain asymptotics (Guyon (1982)

gives an applicable result when locations sn are on a lattice).
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3.3 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo methods offer an alternative to Kriging for prediction in a regime

with noisy inputs. They allow us to compute the optimal prediction

x̂(s∗) = E[x(s∗)|yn]

=

∫ (
C(s∗, sn + un)[C(sn + un, sn + un)]

−1yn

)
π(un|yn)dun, (3.13)

which will dominate the KALE estimator (3.4) in terms of MSE for any model and set of ob-

served and predicted locations. MCMC methods are necessary for evaluating (3.13) as the den-

sity for the conditional distribution π(un|yn) will not be available in closed form (no possible

“conjugate“ form for the distribution of un is known to the authors). When model parameters,

such as in the covariance function c or the distribution of u are unknown, the distribution π(un|yn)

implicitly averages over the posterior distributions of such parameters.

MCMC methods also allow us to compute prediction intervals (zlow, zhigh) such that P(zlow <

x(s∗) < zhigh|yn) = 1 − α, which is a stronger coverage guarantee than achieved with the KALE

procedure in Proposition 3.2.3, where coverage is achieved only by averaging over yn.

3.3.1 Distributional Assumptions

MCMC inference for (3.13) requires the assumption that xn is Gaussian. While this is a common

assumption in practice and has been assumed throughout this paper, it is not necessary to de-

rive the KALE equations and their MSE (but it is necessary to produce coverage intervals as in

Proposition 3.2.3). Thus, Kriging approaches, including KALE, are attractive when we do lack

knowledge of the joint distribution of x beyond its first two moments.

In this scenario, however, we can still advocate—from a decision-theoretic perspective—a

Gaussian assumption when the goal of the analysis minimum MSE prediction. Let π ∈ Π0,C be a

choice of joint distribution for xn with the appropriate first two moments 0 and C. Let Rπ1(π2)

be the risk of the Bayes rule prediction (under squared error loss) at x(s∗) assuming π = π2 when
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in fact π = π1; that is,

Rπ1(π2) = Eπ1 [(Eπ2 [x(s
∗)|xn]− x(s∗))2].

Note that risk under squared error loss is equivalent to MSE. Because all admissible predictors

are Bayes rule predictors for some π, restricting the class of predictors for x(s∗) to be Bayes rule

predictors seems appropriate. We then have the following proposition, based on Morris (1983)

(Theorem 5.5):

Proposition 3.3.1 Let π0 ∈ Π0,C be Gaussian. Then for all π ∈ Π0,C we have

Rπ(π) ≤ Rπ(π0) = Rπ0(π0) ≤ Rπ0(π).

If an analyst has decided to use Kriging for predicting x(s∗), then the risk in making an incorrect

distributional assumption is Rπ0(π0) − Rπ(π0) = 0. However, there is an “opportunity cost” in

making any non-Gaussian assumption Rπ(π0) − Rπ(π) > 0 for π ̸= π0, which represents the

reduction in MSE under π that could be achieved by using a different estimator.

Obviously, if there is a strong reason to believe a non-Gaussian π is true, then analysis should

proceed with this assumption, ideally leveraging an estimator that is optimal under these as-

sumptions (instead of Kriging). However, without strong distributional knowledge, the analyst

can assume Gaussianity without risking increased MSE or paying an opportunity cost for using

an inefficient method.

3.3.2 Hybrid Monte Carlo

Hybrid Monte Carlo is well-suited for the problem of sampling π(un|yn) ∝ π(yn|un)π(un) in

order to evaluate (3.13). This is because while π(yn|un) is computationally expensive (requiring

inversion of the covariance matrix Cθ(un) = Cθ(sn + un, sn + un)), the gradient ∇ log(π(un|yn))

is a relatively cheap byproduct of this calculation. Often the conditional distribution un|yn is

correlated across components, making gradient-based MCMC methods more efficient for gener-

ating samples. Other gradient-based MCMC sampling methods, such as the Metropolis-adjusted
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Langevin algorithm [Roberts et al. (2001)] and variants, may also be well-suited to this problem.

Bayes rule provides π(θ,un|yn) ∝ π(yn|θ,un)π(θ,un), where θ here represents any unknown

parameter(s) of the covariance function c. In most situations it will be reasonable to assume un

and θ are independent a priori—this is trivially true in the case that θ is assumed known. Recog-

nizing that π(yn|θ,un) is Gaussian, we can write the log posterior and its gradient:

log(π(θ,un|yn)) = −
1

2
log(|Cθ(un)|)−

1

2
y′
nCθ(un)

−1yn + const.

∂

∂ui
log(π(θ,un|yn)) =

1

2
Tr
(
Cθ(un)

−1

[
∂

∂ui
Cθ(un)

] (
Cθ(un)

−1yny
′
n − In

))
+

∂

∂ui
log(π(un))

∂

∂θi
log(π(θ,un|yn)) =

1

2
Tr
(
Cθ(un)

−1

[
∂

∂θi
Cθ(un)

] (
Cθ(un)

−1yny
′
n − In

))
+

∂

∂θi
log(π(θ))

The computational cost of both the likelihood and gradient are dominated by solving Cθ(un)

(e.g., Cholesky factorization), which is O(n3). Every likelihood evaluation computes this term,

which can then be re-used in the gradient equations. Thus, the computational cost of computing

both the likelihood and gradient remains O(n3).

3.3.3 Multimodality

The posterior distribution π(θ,un|yn) is often multimodal, more so if the distrubution π(un)

is diffuse. This is because if there is a local mode at (θ̂, ûn), there may be a local mode at any

(θ,un) such that Cθ(un) = Cθ̂(ûn), as the likelihood is constant for such (θ,un). In particular,

for isotropic covariance models, the likelihood is constant for additive shifts in un or rotations of

sn + un, as these operations preserve pairwise distances. Additionally, multimodality can be in-

duced by many-to-one mapping of the set of true locations {si + ui, i = 1, . . . , n} to the set of ob-

served locations {si, = 1, . . . , n}. For instance, with n = 2 and an isotropic covariance function,

for any choice of u1, u2 we get the same likelihood with ũ1 = s2 + u2 − s1 and ũ2 = s1 + u1 − s2.

Moreover, for fixed un, for many common covariance functions it is possible for the posterior of θ

to be multimodal [Warnes & Ripley (1987)].

81



HMC (and other gradient MCMC methods) can efficiently sample from multiple modes, how-

ever this becomes difficult when the modes are isolated by regions of extremely low likelihood

[Neal (2011)]. Isolated modes can occur in the location-error GP regime. For example, assume

one-dimensional locations (p = 1) and an isotroptic covariance model with known parameters θ

and nugget σ2x. Marginally, as ||s1 + u1 − (s2 + u2)|| → 0, y1 − y2
D→ N (0, 2σ2x); that is, the scaled

difference |y1 − y2|/(2σx) must be reasonably small. When this is not the case (e.g. σ2x = 0), then

the log-likelihood asymptotes at s1+u1 = s2+u2 almost surely. Thus, the Markov chain can only

sample un such that the ordering of {si + ui, i = 1, . . . , n} is preserved. Note that when p > 1,

while the log-likelihood may still asymptote at s1 + u1 = s2 + u2, this no longer constrains the

space of un (except on sets with posterior measure 0).
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Figure 3.4: Density of (u1, u2) using covariance function c(s1, s2) = exp(−(s1 − s2)2) + σ2x1s1=s2.
We simulate data (y1, y2) using s1 = 0, s1 = 1, and ui ∼ N (0, σ2u), and different values of σ2x and
σ2u.

Figure 3.4 demonstrates the modal behavior for this simple example with p = 1 and n = 2.

When location errors are large in magnitude and the nugget variance σ2x is small, the posterior

modes of (u1, u2) are separated by a contour of near 0 density (panel A). A higher nugget σ2x in-

creases the density between the modes, making it easier for the same MCMC chain to travel be-

tween them (panel B). Decreasing the magnitude of the (Gaussian) location errors, σ2u, puts more

mass on a single mode, as the unimodal distribution π(un) has a greater influence on π(un|yn)

(panel C).

Thus, as with any MCMC application, for the location-error GP problem it is advisible to run
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separate chains in parallel, with different, diffuse starting points, and monitor mixing diagnostics

[Gelman & Shirley (2011)]. Multiple chains failing to mix is likely a symptom of multiple iso-

lated modes, in which case we should modify the HMC algorithm to include tempering [Salazar

& Toral (1997)] or non-local proposals that allow for mode switching [Qin & Liu (2001); Lan

et al. (2013)]. Another strategy to overcome multiple isolated modes is importance sampling:

as Figure 3.4 shows, increasing the nugget variance σ2x increases the density between modes. If

we generate samples according to π̃(θ,un|yn) ∝ π̃(yn|θ,un)π(θ)π(un) where π̃(yn|θ,un) is the

density corresponding to N (0,Cθ(un) + κIn) for some fixed κ, then it is straightforward to com-

pute importance weights π(θ,un|yn)/π̃(θ,un|yn). This is because Cθ(un)
−1 is easy to compute

from (Cθ(un) + κIn)
−1 (and vice versa) using the Woodbury formula. Either standard impor-

tance sampling, or Hamiltonian importance sampling [Neal (2005)], could be used to generate

parameter estimates, point/interval predictions, and any other posterior estimates of interest.

3.4 Simulation study

We compare Kriging (both KALE and KILE) and HMC methods for point/interval forecasts

for Gaussian process regression in a simulation study. For various combinations of parameter

values for the covariance function c(s1, s2) and location error model g(u) we simulate observa-

tions yn where yi = x(si + ui) and make predictions for values of x at unobserved locations:

x∗
k = (x(s∗1) . . . x(s∗k))

′.

We simulate data using the squared exponential covariance function c(s1, s2) = τ2 exp(−β||s1−

s2||2) + σ2x1s1=s2 and an i.i.d. Gaussian location error model ui
iid∼ N (0, σ2uIp). The squared

exponential covariance function and Gaussian location error model combine to form a convenient

regime, as we can evaluate k in closed form (3.5). Without loss of generality, we can use τ2 = 1

for all simulations as it is simply a scale parameter. We consider a p = 2 dimensional location

space, si ∈ R2. On a 8×8 grid, we randomly select 54 locations at which we observe y, and target

the remaining 10 locations for interpolating x. Figure 3.5 illustrates a range of data samples for

processes used in our simulations on this space, while Table 3.1 provides a full summary of all the

parameter value combinations we consider. Data from each parameter combination is simulated

100 times.
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Parameter Values simulated Prior support
τ2 1 (0, 10)
β 0.001, 0.01, 0.1, 0.5, 1, 2 (0.0005, 3)
σ2x 0.0001, 0.01, 0.1, 0.5, 1 (0, 10)
σ2u 0.0001, 0.01, 0.1, 0.5, 1 (0, 10)

Table 3.1: Parameter values used in simulation study. The range (0.0005, 3) for β guaran-
tees that at least one pair of points among our observed data has a correlation in the range
(0.05, 0.95). This eliminates modes corresponding to white noise processes from the likelihood
surface.
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Figure 3.5: Samples of x(s) for different values of the length-scale parameter β with the squared
exponential covariance function, c(s1, s2) = exp(−β||s1− s2||2)+ σ2x1s1=s2. Black points are where
we have observed y(s) and white points are where we wish to predict x(s). Observed/predicted
locations were randomly sampled from an 8× 8 grid.

We evaluate the three prediction methods—KALE, KILE, and HMC—using both adjusted

root mean squared error (RMSE) and the coverage probability of a 95% interval. “Adjusted”

RMSE is based on the MSE with σ2x subtracted out, as this term appears in the MSE for any

prediction method. For every parameter combination of interest used, these statistics are calcu-

lated first by averaging over each of the k = 10 prediction targets in each simulated draw of new

data, and then over the J = 100 independent data draws.

Both evaluation statistics can be evaluated more precisely during simulation by utilizing a

simple Rao-Blackwellization. For iteration j, instead of drawing x∗
k in addition to yn and cal-

culating rmsej = ||x∗
k − x̂∗

k||/k, we simply condition on the simulated location errors un to get

rmsej = E[||x∗
k − x̂∗

k||/k | yn,un]. Similarly, to calculate coverage of an interval (Ls∗(yn), Us∗(yn))
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for x(s∗), for iteration j we use

covj =
1

k

k∑
i=1

E[1[x(s∗i ) ∈ (Ls∗i
(yn), Us∗i

(yn))] | yn,un].

HMC is done using the software RStan [Stan Development Team (2014)], which implements

the “no-U-turn” HMC sampler [Homan & Gelman (2014)]. 10000 samples were drawn during

each simulation iteration, which (for most parameter values) takes a few minutes on a single

2.50Ghz processor.

3.4.1 Known covariance parameters

We first simulate point and interval prediction for KALE, KILE, and HMC using the same pa-

rameter values that generated the data. By doing so, we leave aside the issue of parameter infer-

ence and simply compare the extent to which different methods leverage the information in the

location-error corrupted data yn to infer x(s∗). Figure 3.6 compares RMSE for the three meth-

ods when there is a very small nugget, σ2x = 0.0001.
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Figure 3.6: Relative RMSE of KALE and KILE (A) and HMC and KALE (B) for each com-
bination of parameters (β, σ2u) indicated, and σ2x = 0.0001. Blue shading represents a relative
decrease in RMSE while red shading represents a relative increase in RMSE.

We can see that there is little difference among the three methods when σ2u is sufficiently small

(0.0001), or when β is sufficiently large (2). This makes sense, as in the former case, with small
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location errors the potential improvement over KILE (which is exact for σ2u = 0) is negligible,

and in the latter case, observations are too weakly correlated for nearby points to be informative.

Larger values of σ2u give KALE a significant reduction in RMSE versus KILE, with the reduction

as large as 79% for the case of large magnitude location errors (σ2u = 1) and a moderately smooth

signal (β = 0.1).

The idea of a moderately smooth signal requires further elaboration: for a given σ2u, when x is

very smooth (β very small), the process is roughly constant within small neighborhoods, meaning

y(s) ≈ x(s) and location errors are less of a concern for accurate inference and prediction. On the

other hand, when β is very large and the process is highly variable in small regions of the input

space, location errors are less of a concern because there is very little information in the data to

begin with. Location errors are most influential when the process x has more moderate variation

across neighborhoods corresponding to the plausible range of the location errors.

HMC offers further reductions in RMSE over KALE in roughly the same regions of the pa-

rameter space in which KALE improves over KILE, although the additional improvement is less

dramatic. The maximum RMSE reduction we observe is about 28%, once again for a moderately

smooth signal with larger magnitude location errors.

Relative RMSE for KALE/KILE

σu
2

1e−04

0.01

0.1

0.5

1

0.001 0.01 0.1 0.5 1 2
β

1.00

1.00

1.00

1.00

1.00

0.95

0.99

1.00

1.00

1.00

0.82

0.91

0.99

1.00

1.00

0.65

0.74

0.91

1.00

1.00

0.81

0.86

0.97

1.00

1.00

0.99

0.99

1.00

1.00

1.00

(a) RMSE ratio of KALE to KILE.

Relative RMSE for HMC/KALE

σu
2

1e−04

0.01

0.1

0.5

1

0.001 0.01 0.1 0.5 1 2
β

0.99

1.00

1.00

1.00

1.00

0.97

0.98

1.00

1.00

1.00

0.85

0.91

0.98

1.00

1.00

0.98

0.96

0.98

1.00

1.00

0.99

0.99

0.99

1.00

1.00

1.00

0.99

1.00

1.00

1.00

(b) RMSE ratio of HMC to KALE.

Figure 3.7: Relative RMSE of KALE to KILE (A) and HMC and KALE (B) for each combina-
tion of parameters (β, σ2u) indicated, and σ2x = 0.1. Blue shading represents a relative decrease in
RMSE while red shading represents a relative increase in RMSE.

When the nugget variance σ2x is increased (Figure 3.7 shows results for σ2x = 0.1), differences
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in RMSE among the three methods become smaller (the differences are wiped out entirely at

σ2x = 1, which is not pictured). This is not due to a shared σ2x term in the RMSE value for all

methods, as this is subtracted out. Rather, the similarity of all three methods reflects the fact

that a larger nugget leaves less information in the data that can be effectively used for predic-

tion. However, the differences that we do observe (both comparing KALE to KILE and HMC to

KALE) occur primarily when the magnitude of location errors σ2u is large.

In the case where all parameters are fixed and known, both KALE and HMC produce inter-

vals with exact coverage (subject to Monte Carlo or numerical approximation errors) in all sim-

ulations. KILE, however, can severely undercover in the presence of location errors. Figure 3.8

shows coverage as low as 4% when the magnitude of the location errors is high (σ2u = 1), β = 0.1,

and the nugget variation is minimal (σ2x = 0.0001). Undercoverage still persists in this region of

the parameter space for σ2x = 1, the largest nugget variance used in our simulations.
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Figure 3.8: 95% interval coverage for KILE for σ2x = 0.0001 (A) and σ2x = 1 (B). With mod-
erately smooth signals and large location errors, we see severe undercoverage that does not
disappear even for σ2x = 1.

3.4.2 Unknown covariance parameters

In typical applied settings, the analyst will not know model parameters such as those of the co-

variance function (τ2, β), the nugget variance σ2x, or even the variance of the location errors σ2u.

Due to identifiability issues with our choice of covariance function in this simulation (3.5), we
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assume σ2u is known but estimate all other parameters before making predictions at unobserved

locations.

For KILE and KALE, parameter estimation is accomplished through maximum (pseudo-) like-

lihood, as in (3.8). Parameter estimates are then plugged into Kriging equations (3.4)–(3.7) to

obtain corresponding point and interval estimates. Because c and k are both squared exponential

(3.5), the pseudolikelihood estimation procedure estimates the same covariance function for y,

however the estimated parameters (and therefore Kriging equations, based on k∗) will differ. The

plug-in approach ignores uncertainty in parameter estimates, so plug-in MSE estimates will be

too optimistic. Various techniques exist for adjusting MSE from estimated parameters [Smith

(2004); Zhu & Stein (2006)], though there is no need to incorporate such techniques into our

analysis since exact (up to Monte Carlo error) MSEs are provided by simulation.

For HMC, we supply unknown parameters with prior distributions and sample parameters and

predictions jointly from the posterior distribution π(θ,x∗
k|yn). The priors we use are flat over a

reasonable range (see Table 3.1), which guarantees both a proper posterior and a posterior mode

that agrees with the maximum likelihood estimate of θ. This second condition supports fair com-

parisons between predictions derived from HMC parameter estimates versus those based on the

maximum (psueolikelihood) parameter values.
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Figure 3.9: Relative RMSE of KALE and KILE (A) and HMC and KALE (B) for each combi-
nation of parameters (β, σ2u) indicated, and σ2x = 0.0001. Parameters are assumed unknown and
first estimated to obtain point predictions.
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Figure 3.9 provides the relative RMSE of KALE vs KILE, and HMC vs KALE, for predictions

when parameters must first be estimated (using σ2x = 0.0001). We notice that there does not

appear to be a great advantage in KALE over KILE when parameters are first estimated. This is

because, as mentioned earlier, the marginal process y still has a squared exponential covariance

function 3.5, so Kriging equations for KALE and KILE will be very similar. On the other hand,

we notice a modest improvement when using HMC over Kriging, except in a small region of the

parameter space (σ2u ≤ .01 and β ∈ [0.5, 1]).
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Figure 3.10: Relative RMSE of KALE and KILE (A) and HMC and KALE (B) for each combi-
nation of parameters (β, σ2u) indicated, and σ2x = 0.1. Parameters are assumed unknown and first
estimated to obtain point predictions.

When the nugget variance is increased to σ2x = 0.1, we see the results in Figure 3.10. We still

see relatively similar performances from KALE and KILE. HMC offers a small improvement over

KALE when β ≥ 0.01, though for β = 0.001 we actually see significantly higher MSEs with

HMC. At β = 0.001 the process is extremely smooth, as the most distant pairs of observations

still have a correlation of 0.88. We are thus more concerned with overestimating β than under-

estimating it; as the former shrinks predictions towards 0 while the latter shrinks towards (ap-

proximately) the mean of all observations. As we use a flat prior for β, where almost all mass is

located β > .001, the posterior tends to overestimate β, leading to draws with relatively high

MSE.

Neither Kriging or HMC guarantees prediction intervals with the correct coverage in the regime
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Figure 3.11: 95% interval coverage for KILE for σ2x = 0.0001 (A) and σ2x = 1 (B).
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Figure 3.12: 95% interval coverage for KALE for σ2x = 0.0001 (A) and σ2x = 1 (B).

where parameters must first be estimated*. We nevertheless present coverage results in Figures

3.11–3.13. While we don’t expect any method used to provide exact coverage, Kriging (both

KALE and KILE) suffer from significant undercoverage for some regions of the parameter space,

while HMC is consistent in offering at least 85% coverage throughout our simulations. In a regime

without location errors, Zimmerman & Cressie (1992) advocate Bayesian procedures under non-

informative priors over frequentist procedures in order to obtain interval estimates with good

coverage; our simulation results, albeit in the context of location errors, agree with this finding.
*Though HMC would give proper “Bayes coverage” when simulating θ according to the prior used.
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95% interval coverage for HMC
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Figure 3.13: 95% interval coverage for HMC for σ2x = 0.0001 (A) and σ2x = 1 (B).

3.4.3 Summary

Our simulation results confirm the theoretical guarantee of KALE dominating KILE in predic-

tion MSE when the covariance function is known, and furthermore HMC dominating KALE. The

magnitude of differences in MSE between these methods is greatest when the process is mod-

erately smooth relative to the spatial sampling (e.g. 0.01 ≤ β ≤ 0.5), when the magnitude of

location errors σ2u is largest, and when nugget variation σ2x is smallest. For such regions of the

parameter space, KILE fails to deliver prediction intervals with proper coverage, whereas KALE

and HMC can give valid prediction intervals for any parameter values.

An important consequence in adjusting for location errors with a known covariance function

is the corresponding adjustment to the nugget. The discussion in Stein (1999) (Sections 3.6 and

3.7) emphasizes the importance of correctly specifying the high-frequency behavior of the process

when interpolating (correctly specifying the low-frequency behavior is less crucial), including the

nugget term. Estimating parameters, including the nugget term σ2x, implicitly corrects for model

misspecification when ignoring location errors. Thus we see little difference in predictive perfor-

mance between KALE and KILE when parameters are first estimated. Depending on the choice

of prior, KALE/KILE may give lower MSE predictions than HMC, which averages over posterior

parameter uncertainty; however, interval coverage is better for HMC (using weak prior informa-

tion) than for KALE/KILE.
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3.5 Interpolating Northern Hemisphere Temperature Anomolies

To illustrate the methods discussed in this paper, we consider interpolating northern hemisphere

temperature anomolies during the summer of 2011 using the publicly available CRUTEM3v data

set† [Brohan et al. (2006)]. Figure 3.14 shows our data. These data are used in geostatistical re-

constructions of the Earth’s temperature field, which interpolate temperatures at unobserved

points in space-time in order to better understand the historical behavior of climate change (see,

for example, Tingley & Huybers (2010) and Richard et al. (2012)). Each observation is a spa-

tiotemporal average: temperature readings are averaged over the April–September period and

each 5◦ × 5◦ longitude-latitude grid cell. These values are then expressed as anomolies relative

to the global average during the period 1850–2009, which is calculated using an ANOVA model

[Tingley (2012)]. Apart from this spatiotemporal averaging, numerous other preprocessing steps

adjust this data for differences in altitude, timing, equipment, and measurement practices be-

tween sites, along with other potential sources of error; please see Morice et al. (2012) and Jones

et al. (2012) for more details.

Our analysis, restricted to interpolating a single year of data, and without using external data

such as temperature proxies [Mann et al. (2008)], is intended as a proof of concept rather than as

a refinement or improvement to existing analyses of these data. We wish to illustrate the poten-

tial impact of location errors on conclusions drawn from these data.
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Figure 3.14: CRUTEM3v data for summer 2011, with 2011 mean subtracted so that measure-
ments represent spatial anomolies. Generally speaking, we see lower (cooler) anomolies in North
America and positive (warmer) anomolies in Europe. Higher latitudes also tend to have positive
anomolies.

†http://www.cru.uea.ac.uk/cru/data/temperature/
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The “gridding”, or spatial averaging across 5◦ × 5◦ cells, complicates analyses using Gaussian

process models [Director & Bornn (2015)]. However, assuming a smooth temperature field, we

know that the recorded spatial average must be realized exactly at some location in each grid

box (closer to the center if a lot of points have been averaged together). This frames the spatial

averaging problem as a location measurement error problem: instead of observing the temper-

ature x(s) at each grid center s, we observe the temperature at an unknown location displaced

from the grid center: y(s) = x(s+ u).

Following Tingley & Huybers (2010), we assume an exponential covariance function for x(s),

where distance is calculated along the Earth’s surface. As s is given in terms of longitude/latitude

(s = (ψ, ϕ)), this has the form

c(s1, s2) = τ2 exp(−β∆) + σ2x1s1=s2

∆ = 2r arcsin

√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
ψ2 − ψ1

2

)
, (3.14)

where r = 6371 is the radius of the earth (in km). At higher latitudes (ϕ), the centers of each

grid cell are closer together, so nearby observations are more strongly correlated. The nugget

term σ2x represents some combination of measurement error in temperature readings and high-

frequency spatial variation that is inestimable using the gridded observation samples.

We assume the following model for location errors ui, which are additive displacements of

long/lat coordinates si = (ψi, ϕi):

ui ∼ N

0, σ2u

(
180

πr

)2

 1
cos2(ϕi)

0

0 1


 . (3.15)

This prior is equivalent to assuming that distance along the Earth’s surface (great-circle dis-

tance) between each grid center and the corresponding observation location is chi distributed,

d(si, si + ui) ∼ σuχ2. Combining (3.15) and (3.14), we use Monte Carlo to compute k.

We treat parameters τ2, β, σ2x as unknown, but fix σ2u = 7500. At this value, the median mag-

nitude of the location errors in great-circle distance is 102km, which consistent with analyzing
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the coordinates of the temperature recording sites used to compile the CRUTEM3v data‡.

3.5.1 Kriging

We first apply Kriging approaches to interpolate the CRUTEM3v data, both adjusting for and

ignoring location errors (3.15). Because parameters τ2, β, σ2x are unknown, we first need to es-

timate them using maximum likelihood (when ignoring location errors) or maximum pseudo-

likelihood (3.8) (when adjusting for location errors). These can then be plugged in to covariance

functions c and k to obtain “empirical” Kriging equations we can use for interpolation [Zimmer-

man & Cressie (1992)].

We small differences in parameter estimates when ignoring location errors (assuming σ2u = 0)

and adjusting for them (assuming σ2u = 7500), summarized in Table 3.2. Consequently, when

σ2u τ̂2 β̂ σ̂2x

0 1.1671 1.4275× 10−4 0.0747
7500 1.1649 1.4677× 10−4 0.0699

Table 3.2: Covariance function parameter estimates when ignoring location errors (assuming
σ2u = 0) and adjusting for location errors (assuming σ2u = 7500).

we interpolate data at the centers of grid cells for which no data was observed, we see differences

between the KALE and KILE approaches. Figure 3.15 shows the differences between KALE and

KILE interpolations (both point and interval estimates). Relative to the range of the data (most

anomolies are in the interval (−1, 1)), the discrepency between KALE and KILE does not seem

very significant.

3.5.2 HMC

Using HMC, parameter inference and interpolations are made simultaneously. The resulting

point and interval predictions differ substantially from the Kriging results. However, because

HMC incorporates parameter uncertainty in predictions, this comparison is not sufficient to illus-

trate the impact of location errors on conclusions from this data. A more appropriate comparison
‡Station locations are vieweable at https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
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Figure 3.15: Kriging results for interpolating temperature anomolies from summer 2011. The top
plot shows interpolations at unobserved grid centers given by KALE. The bottom left plot shows
the difference in estimates between KALE and KILE (KALE – KILE), and the bottom right plot
shows difference in 95% interval widths between KALE and KILE.

is between HMC with a location error model (σ2u = 7500), and HMC assuming with no location

errors (σ2u = 0). These results are plotted in Figure 3.16.

Using HMC, accounting for location errors produces more significant differences in inference/prediction

than was observed for Kriging. This is particularly true for interval predictions, where adjusting

for location errors yields intervals as much as 0.1 wider, which is a significant discrepency when

most observations lie in (−1, 1).

Figure 3.17 shows posterior densities for unknown parameters of the covariance function based

on HMC draws from the σ2u = 7500 and σ2u = 0 models (the Kriging estimates of these param-

eters are vertical lines). HMC under location error model (σ2u = 7500) gives slightly larger β

estimates than when using σ2u = 0, meaning observations are inferred to be less strongly corre-

lated. This yields prediction intervals that tend to be wider (see Figure 3.16). The most extreme

descrepencies occur in the arctic, where distances between grid points are closest. The fact that

modeling location errors adds additional uncertainty to arctic predictions is of particular inter-
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Figure 3.16: Results for interpolating temperature anomolies from summer 2011 using HMC. The
top plot shows interpolations at unobserved grid centers, assuming location errors σ2u = 7500. The
bottom left plot shows the difference in estimates between the location error model and the model
with σ2u = 0. The bottom right plot shows difference in 95% interval widths.

est to climate scientists, as accurate climate reconstruction for the arctic region is essential for

understanding recent climate change patterns [Cowtan & Way (2014)].
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Figure 3.17: Density of posterior draws from HMC using σ2u = 7500 (blue) and σ2u = 0 (red).
Point estimates of these parameters from Kriging (Table 3.2) are shown as vertical lines.

The difference between predictions obtained under the σ2 = 0 and σ2u = 7500 models using

HMC suggests that modeling location errors, even when they are small in magnitude, meaning-

fully impacts parameter estimates and predictions at unobserved locations. The fact that results

for HMC (assuming σ2u = 7500) also differ from the results using KALE, while the KILE results

do so less, demonstrates that moment procedures such as Kriging may be ineffective in adjusting
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for these errors.

3.6 Conclusion

In this paper, we have explored the issue of Gaussian process regression when locations in the

input space S are subject to error. Even when location errors are quite small in magnitude, it is

essential to adjust Kriging equations in order to obtain good point and interval estimates; fur-

ther improvements can be made by using MCMC to sample directly from the distribution of the

measurement of interest given the sampled data.

Both MCMC and Kriging will be infeasible for large data sets, due to the cost of the covari-

ance matrix inversion. A useful future study would be to adapt the procedures discussed in this

paper to methods for inference and prediction for large spatial data sets, such as the predic-

tive process approach [Banerjee et al. (2008)], low rank representations [Cressie & Johannesson

(2008)], likelihood approximations [Stein et al. (2004)], and Markov random field approxima-

tions [Lindgren et al. (2011)]. It will also be useful to extend the analysis of this paper to regimes

where location errors may be correlated with the process of interest x. For example, in climate

data, regions with extreme climates will be harder to sample, thus there may be greater error in

the spatial refencing of such sampling than for regions that are easier to sample.
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A
Full Specification of Multiresolution Transition

Models

In this appendix we provide full details on parametrizing and fitting the hierarchical models

for the multiresolution models introduced in Sections 2.4 and 2.5. Our intent is to present our

methodology with enough specificity that it could be implented and reproduced by readers with

access to the data (the data is not publicly available) and appropriate computational resources.

EPV represents a unique inferential challenge, as our data is high dimensional and the parame-

ter space of our multiresolution transtion models—including spatial random effect surfaces for all

ballcarrier and macrotransition type combinations—is extremely rich. Thus, even for readers not

wishing to reproduce our results, this appendix may provide a valuable example of hierarchical
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spatiotemporal modeling.

A.1 Macrotransition partial likelihood

As discussed in Section 2.6, parameters for macro and microtransition models are estimated sep-

arately using partial likelihoods (2.14). We now focus on inference for the macrotransition model,

beginning with the partial likelihood. Following (2.14), the competing risks model (2.6)–(2.7)

specifies a partial likelihood function for all unknown model components—βℓ
j and ξℓj for all play-

ers ℓ and macrotransitions j, as well as ξ̃ℓj for j ≤ 4. Let T ℓ comprise the time intervals for which

player ℓ possesses the ball, with T ℓ
j ⊂ T ℓ the time points at which a macrotransition of type j

occurs. Then the (partial) likehood can be written

L(β, ξ, ξ̃) =
∏

possessions

T−ϵ∏
t=0

P(M(t)c|F (Z)
t )1[M(t)c]

6∏
j=1

P(Mj(t)|F (Z)
t )1[Mj(t)]


=
∏
ℓ

6∏
j=1

∏
t∈T ℓ

j

λℓj(t)

 exp

(
−
∫
T ℓ

λℓj(s)ds

)
, (A.1)

with (βℓ
j , ξ

ℓ
j , ξ̃

ℓ
j) parameterizing λℓj(t) as in (2.7). This likelihood is identical to that of a model

that assumes macrotransition events occur according to an inhomogeneous Poisson Process with

intensity λℓj(t) [Laird & Olivier (1981)]. Notice that (A.1) factors across player-macrotransition

pairs, however exact likelihood inference is impossible for this model due to the infinite-dimensional

spatial effect parameters ξ and ξ̃ contained in λ, over which we need to integrate in the second

term of (A.1).

Since the observed data is discretized to every 1/25th of a second, we do not observe players’

locations (and consequently, do not observe some of the time-referenced covariates) continuously,

making it appropriate to replace the integral in the rightmost term in (A.1) with a sum over the

finite collection of times at which data is observed. Let T ℓ
0 index times at which data is observed

but a macrotransition does not occur (in reality, macrotransitions occur almost surely between

points at which data is observed, yet our data references them to the nearest time at which loca-
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tions are recorded). Then the likelihood (A.1) is approximated by

L(β, ξ, ξ̃) =
∏
ℓ

6∏
j=1

∏
t∈T ℓ

j

λℓj(t) exp(−λℓj(t))

 exp

−∑
t∈T ℓ

0

λℓj(t)

 , (A.2)

which yields (A.1) in the limit as the temporal resolution of the data increases. While the in-

tractable integral in (A.1) has been replaced by a sum in (A.2), evaluation of the likelihood may

be extremely computationally expensive if |T ℓ
0 | is large (depending on the functional form as-

sumed for the spatial random effect surface). In our data set, for some players ℓ, |T ℓ
0 | is as large

as 300000, which makes evaluating (A.2) impossible when assuming a Gaussian process prior for

ξ, as discussed in Appendix A.3.

A.2 Covariates

As revealed in (2.7), the hazards λℓj(t) are parameterized by spatial effects (ξℓj and ξ̃ℓj for pass

events), as well as coefficients for situation covariates, βℓ
j . The covariates used may be different

for each macrotransition j, but we assume for each macrotransition type the same covariates are

used across players ℓ.

Among the covariates we consider, dribble is an indicator of whether the ballcarrier has started

dribbling after receiving possession. ndef is the distance between the ballcarrier and his nearest

defender (transformed to log(1 + d)). ball_lastsec records the distance traveled by the ball in

the previous one second. closeness is a categorical variable giving the rank of the ballcarrier’s

teammates’ distance to the ballcarrier. Lastly, open is a measure of how open a potential pass

receiver is using a simple formula relating the positions of the defensive players to the vector con-

necting the ballcarrier with the potential pass recipient.

For j ≤ 4, the pass event macrotransitions, we use dribble, ndef, closeness, and open. For

shot-taking and turnover events, dribble, ndef, and ball_lastsec are included. Lastly, the

shot probability model (which, from (2.9) has the same parameterization as the macrotransition

model) uses dribble and ndef only. All models also include an intercept term.

A prior distribution is assumed for each coefficient for each macrotransition model jointly
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across players; we provide this in A.4.

A.3 Spatial effects

The parameters ξℓj for all players ℓ and macrotransitions j ∈ {1, . . . , 6}, as well as ξ̃ℓj for j ≤ 4,

are infinite-dimensional as they are functions from the court space S to R. We assume each is a

realization of a Gaussian process (sometimes called a Gaussian random field in the 2-dimensional

case). Generally speaking, if ξ is a 0 mean Gaussian process with covariance function C(z, z∗),

then for locations z, z∗ ∈ S,

 ξ(z)

ξ(z∗)

 ∼ N
0,

 C(z, z) C(z, z∗)

C(z∗, z) C(z∗, z∗)


 . (A.3)

The form of the joint distribution (A.3) extends to arbitrarily many z ∈ S, and naturally pro-

vides interpolation and uncertainty quantification for values of the spatial field at unobserved

locations (see, e.g., Rasmussen (2006)). The covariance function, C(z, z∗), is called isotropic if

it is a function only of ∆ = ||z − z∗||. A common choice of isotropic covariance function is the

Matérn, where

C(∆) =
σ2

Γ(ν)2ν−1
(κ∆)νKν(κ∆), (A.4)

with Kν being the modified Bessel function of the second kind and order ν > 0, κ > 0 being

a scaling parameter for the distance ∆, and σ2 giving the marginal variance of any point ξ(z).

Typically, ν is fixed by the analyst, and κ and σ2 are estimated from the data, perhaps in a

Bayesian fashion [Neal (1997)]. Likelihood evaluations for parameters of the covariance function

are O(n3) where n is the number of spatially referenced observations associated with a particu-

lar field (assuming different parameter values for each field), which is prohibitively expensive for

large data sets such as that for our macrotransition model (A.2).

An alternative to specifying a form of covariance function is to represent Gaussian processes

using functional bases; that is, for ϕ1, . . . , ϕd : S→ R and any z ∈ S,

ξ(z) =

d∑
i=1

wiϕi(z), (A.5)
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with w = (w1 w2 . . . wd)
′ and w ∼ N (0,Σ). Because the {ϕi} are fixed, this yields a finite rep-

resentation of the process because the map ξ is completely determined by w, which offers many

computational advantages [Higdon (2002); Quiñonero-Candela & Rasmussen (2005)], notably

that the O(n3) cost of evaluating the likelihood of the covariance parameters reduces to at worst

O(n2d + d3), depending on the structure of Σ. Denoting ϕ(z) = (ϕ1(z) ϕ2(z) . . . ϕd(z))
′, the

representation (A.5) yields the covariance function C(z, z∗) = ϕ(z)′Σϕ(z∗). In general, for fixed

d, it is not possible to find bases ϕ1, . . . , ϕd and covariance matrix Σ such that the representa-

tion (A.5) is equivalent to a process specified using a Matérn covariance function, however it is

possible to obtain very accurate approximations.

Following Lindgren et al. (2011), we assume a functional basis {ϕi, i = 1, . . . , d} induced by

a triangular mesh of d vertices on the court space S (in practice, the triangulation is defined on

a larger region that includes S, due to boundary effects). The mesh is formed by partitioning S

into triangles, where any two triangles share at most one edge or corner (see figure A.1 for an

illustration). With some arbitrary ordering of the vertices of this mesh, ϕi : S → R is the unique

function taking value 0 at all vertices j ̸= i, 1 at vertex i, and linearly interpolating between any

two points within the same triangle used in the mesh construction. Thus, with this basis, fields ξ

are piecewise linear on the triangles of the mesh.

As Lindgren et al. (2011) show, there are a couple advantages to using this particular func-

tional basis for the spatial field representation (A.5) in addition to the generic computational

advantages of having a discrete representation of an infinite-dimensional parameter. The first is

that it is possible to find Σ = Σ(ν, κ, σ2) (for closed-form expression, see Lindgren et al. (2011))

with w ∼ N (0,Σ) such that ξ(z) =
∑d

i=1wiϕi(z) closely approximates a Gaussian random field

with Matérn covariance (A.4). The second advantage is that the precision Σ−1 is sparse, equiva-

lent to a conditional independence structure for w.

For the spatial fields in the macrotransition model, ξℓj for all players ℓ and j ∈ {1, . . . , 6}, as

well as ξ̃ℓj for j ≤ 4, we assume the representation (A.5) and the functional basis illustrated in

Figure A.1. Reducing the spatial effects for each log-hazard model (2.7) to unknown d-vectors

offers many computational benefits, and eases the implementation of hierarchical models that

exploit the structural variation of our model parameters across players. To introduce the appro-

102



Figure A.1: Triangulation of S used to build the functional basis {ϕi, i = 1, . . . , d}. Here, d = 383.

priate notation, let ξℓj(z) = ϕ(z)′wℓ
j , where wℓ

j ∈ Rd and ϕ(z) = (ϕ1(z) ϕ2(z) . . . ϕd(z))
′ with

ϕi : S→ R for i = 1, . . . , d. Similiarly define w̃ℓ
j (loading the same basis functions {ϕi}). Note

that the basis functions ϕi are the same for each macrotransition j across all players, so that

between-player variation in the spatial effects for each macrotransition components is provided

by the weight vectors, wℓ
j .

This discrete representation of the spatial fields reduces the likelihood (A.2) to that of a Pois-

son regression, as

log(λℓj(t)) = [Wℓ
j(t)]

′βℓ
j + ϕ(zℓ(t))

′wℓ
j +

(
ϕ̃(zj(t))

′w̃ℓ
j1[j ≤ 4]

)
(A.6)

is now linear in all unknown parameters.
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A.4 Between-player structure

Beyond the information in the data for estimating the unknown components of (A.6) (which are,

for j ∈ {1, . . . , 6}, βℓ
j , wℓ

j , and for j ≤ 4, w̃ℓ
j), we have prior knowledge on their structure due

to spatial smoothness and the natural clustering of players by team and by position. Our data

includes position labels (e.g. center, point guard, power forward) for each player in the NBA. A

player’s position on a basketball team usually depends on his size and other physical attributes,

as well as on his skill set and intended role in the team’s strategic scheme. We therefore assume

that parameters of players’ macrotransition model cluster by position.

Rather than use the labeled positions in our data, we define position as a distribution of a

player’s location during his time on the court. Specifically, we divide the offensive half of the

court into 4-square-foot bins (575 total) and count, for each player, the number of data points for

which he appears in each bin. Then we stack these counts together into a L × 575 matrix (there

are L = 461 players in our data), denoted G, and take the square root of all entries in G for

normalization. We then perform non-negative matrix factorization on G in order to obtain a low-

dimensional representation of players’ court occupancy that still reflects variation across players

[Miller et al. (2013)]. Specifically, this involves solving:

Ĝ = argmin
G∗

{D(G,G∗)}, subject to G∗ =

(
U
L×r

)(
V

r×575

)
and Uij , Vij ≥ 0 for all i, j, (A.7)

where r is the rank of the approximation Ĝ to G (we use r = 5), and D is some distance func-

tion, such as a Kullback-Liebler type

D(G,G∗) =
∑
i,j

Gij log
(
Gij/G

∗
ij

)
−Gij +G∗

ij .

The rows of V are non-negative basis vectors for players’ court occupancy distributions and the

rows of U give the loadings for each player. With this factorization, Ui (the ith row of U) pro-

vides player i’s “position”—a r-dimensional summary of where he spends his time on the court.

Moreover, the smaller the difference between two players’ positions, ||Ui − Uj ||, the more alike

are their roles on their respective teams, and the more similar we expect the parameters of their
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macrotransition models to be a priori.

Formalizing this, let H be a L × L matrix consisting of 0s, then set Hij = 1 if player j is one

of the eight closest players in our data to player i using the distance ||Ui − Uj || (the cutoff of

choosing the closest eight players is arbitrary). This construction of H does not guarantee sym-

metry, which is required for the expressions that follow, thus we set Hji = 1 if Hij = 1. Let

ni =
∑L

j=1Hij count the number of neighbors for player i. For any parameter θ, with θi being

the value for player i, we assume a conditional autogressive model (CAR) [Besag (1974)]:

θi|θ(−i), τ ∼ N

 1

ni

∑
j:Hij=1

θj ,
τ2

ni

 . (A.8)

This can be expressed as a joint distribution for θ,

P (θ|τ) ∝ τ−L exp

− 1

2τ2

∑
i,j:Hij=1

(θi − θj)2
 , (A.9)

which is improper ((A.9) is constant for constant location shifts of θ), though as a prior distri-

bution will yield a proper posterior in typical applied settings [Besag et al. (1991)]. While H de-

rives from the data and may therefore seem problematic as a component of a prior distribution,

H is ancillary for the macrotransition parameters. As seen in (A.1), the macrotransition likeli-

hood conditions on players’ locations, modeling only their decisions at the locations they occupy.

The CAR prior thus plays a key role in our estimation of the parameters of the macrotransition

model, allowing for information sharing between players and easing inference for situations in

which player-specific data is sparse.

A.5 Parameter estimation for the macrotransitions

With the likelihood (A.2), finite representation for the Gaussian random fields (A.5), and prior

form (A.9) introduced, we now connect these components together and discuss inference.

Each unknown coefficient β of the macrotransition model is assumed the CAR prior structure.

Specifically, we assume the vector βj,i = (β1j,i β
2
j,i . . . β

L
j,i)

′ has the distribution given in (A.9)

for the generic parameter θ, and that {βj,i, i = 1, . . . , pj and j = 1, . . . , 6} are independent a
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priori. We may analogously define wj,i = (w1
j,i w

2
j,i . . . w

L
j,i)

′, the vector of the loadings across

players for the ith basis function for the jth macrotransition model’s spatial field. While we may

expect, a priori, components of this vector to covary according to a CAR structure, we also as-

sume spatial covariance among the loadings for any particular player-macrotransition model, i.e.,

wℓ
j ∼ N (0,Σj = Σ(1, κj , σ

2
j )) as discussed in Appendix A.3. This suggests a Kronecker structure

for the prior covariance of the basis loadings across players and space.

The computation demands of fitting such a model are prohibitive. Even assuming prior inde-

pendence of all parameters across macrotransition types, wj =

(
w1

j . . . wL
j

)′
would enter

the model as a Ld-dimensional random effect (Ld = 176563 in our current specification), with

an unknown covariance matrix itself parameterized by τ2j , κj , σ2j . The conditional independence

structure implied by the CAR model (A.8) does not hold when spatial structure is included, as

all components of wℓ
j for all ℓ depend on κj and σ2j . Coarsening the mesh that induces the func-

tional basis ϕ reduces d, relieving some computational burden, but also impacting our ability to

detect small-scale spatial variation.

Our approach is to consider h-vectors vℓ
j ∈ Rh where the ith component is a linear com-

bination of the d components of wℓ
j : vℓj,i =

∑k
m=1 a

j
i,mw

ℓ
j,m. The idea here is that vℓ

j is an h-

dimensional representation of the d-dimensional vector of loadings wℓ
j . With a rough estimate of

the matrix wj , the weights aji,m can be estimated by matrix factorization, such as SVD or NMF.

This is exactly the route we take. For each macrotransition j, we estimate wℓ
j independently for

each player ℓ by fitting the jth macrotransition model (A.2) and (A.6) using the spatial prior

wℓ
j ∼ N (0,Σ(ν = 1, κ, σ2)) and vague priors on βℓ

j , κ, σ
2. This was done using the software

R-INLA (www.r-inla.org), which uses integrated nested Laplace approximations [Rue et al.

(2009)] for approximate Bayesian inference for generalized linear models with latent Gaussian

Markov parameters, along with possibly non-Gaussian hyperparameters. Estimates w1
j ,w

2
j , . . . ,w

L
j

were stacked on top of each other as row vectors to form wj , which was then exponentiated and

factored using NMF with KL loss for h = 10 (r = 10 in the notation of (A.7)). Using NMF in-

stead of SVD gives slightly better out-of-sample predictive results for the final estimated macro-

transition model; note also that components of wj enter the likelihood (and log-likelihood) expo-

nentiated.
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Figure A.2: The functional bases ψj,i for i = 1, . . . , 10 and j corresponding to the shot-taking
macrotransition. Unlike SVD, there is no interpretation of the ordering of the bases. These bases
correspond to well-known basketball motifs, such as layups (2), three point shots (3 and 5), and
perimeter shots (6, 7, and 10).

Our construction of vℓ
j implies a new functional basis representation for ξℓj . Since vℓj,i =

∑d
m=1 a

j
i,mw

ℓ
j,m,

for any z ∈ S and i ∈ {1, . . . , h} we may write ψj,i(z) =
∑d

m=1 a
j
i,mϕm(z). ψj = (ψj,1 ψj,2 . . . ψj,h)

′

now provides a new functional basis corresponding to the loadings vℓ
j for each player ℓ—note

that after incorporating the weights aji,m into the basis functions, we no longer tether the defini-

tion of vℓ
j to these weights. Correspondingly, the basis functions ψj depend on j—meaning they

differ by macrotransition type—unlike the basis functions ϕ. Similar to Miller et al. (2013), these

functional bases allow for spatial fields that are not simply locally smooth, but smooth across re-

gions where players employ similar strategies—for an illustration of this, see Figure A.2. Thus,

they represent information sharing across players and across space. Note that for pass events, we

analogously construct ψ̃j and ṽℓ
j for all ℓ and j ≤ 4.

Besides dimension reduction, another advantage to the new functional basis ψj is that, due

to obtaining weights aji,m by NMF, the components of vℓ
j may be assumed to be uncorrelated

a priori*, both within and across players ℓ. The linear combinations that comprise ψj already

provide spatial covariation. This allows us to model vj,i = (v1j,i v
2
j,i . . . v

L
j,i)

′ identically to other

model parameters βj,i; namely, we assume vj,i have prior structure given by (A.9), and that vj,i

*This is not a theoretical property of NMF, but approximately holds due to the similarity in results
from NMF and SVD.
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are a priori independent across j and i (as are ṽj,i).

To summarize, we rewrite the model components introduced in this section and concisely re-

veal the form of the posterior:

(likelihood) L(β,v, ṽ) =
∏
ℓ

6∏
j=1

∏
t∈T ℓ

j

λℓj(t)

 exp

(
−
∫
T ℓ

λℓj(s)ds

)

where log(λℓj(t)) = [Wℓ
j(t)]

′βℓ
j +ψj(zℓ(t))

′vℓ
j +

(
ψ̃j(zj(t))

′ṽℓ
j1[j ≤ 4]

)
,

(β prior) P (βj,i|τ
β
j,i) ∝

(
τβj,i

)−L
exp

− 1

2(τβj,i)
2

∑
q,r:Hqr=1

(βqj,i − β
r
j,i)

2


for i = 1, . . . , pj and j = 1, . . . , 6,

(v prior) P (vj,i|τvj,i) ∝
(
τ vj,i
)−L

exp

− 1

2(τvj,i)
2

∑
q,r:Hqr=1

(vqj,i − v
r
j,i)

2


for i = 1, . . . , h and j = 1, . . . , 6,

(ṽ prior) P (ṽj,i|τ ṽj,i) ∝
(
τ ṽj,i
)−L

exp

− 1

2(τ ṽj,i)
2

∑
q,r:Hqr=1

(ṽqj,i − ṽ
r
j,i)

2


for i = 1, . . . , h and j = 1, . . . , 4,

and (τ prior) P (τ∗j,i) ∝
(
τ∗j,i
)−2

exp

(
−1
τ∗j,i

)
for all j, i, and ∗ = β, v, ṽ. (A.10)

This looks daunting, but it is just a mixed-effects Poisson regression, with a very particular struc-

ture for the random effects. However, due to the scale of the data, considerable computational

resources are needed for inference. The posterior factors across macrotransition models j, thus

we can estimate components corresponding to each macrotransition model separately. Each

macrotransition model has over 10 million data points entering the likelihood (this is the size

of
∑

ℓ(|T ℓ
j | + |T ℓ

0 |)), and at least 6006 parameters, corresponding to (L + 1)(pj + h) for L = 461,

pj = 3 (all macrotransitions have pj ≥ 3), and h = 10 (the L + 1 term accounts for τ as well).

Approximate Bayesian inference was performed using R-INLA.
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A.6 Parameter estimation for microtransitions

Both µx and µy are assumed to be realizations of Gaussian processes with Matérn covariance

(A.4) with ν = 1, though approximated with the functional basis (A.5) used in the macrotransi-

tion model and illustrated in Figure A.1. Like the spatial fields in the macrotransition model, we

use R-INLA to fit the microtransition model (2.12) independently for x(t) and y(t). Note that for

each player, separate models are fit to predict his motion during times he is the ballcarrier and

times he is not the ballcarrier but still on offense. There are thus L × 2 × 2 microtransition mod-

els of the form (2.12)—one for each of L players, two situations (carrying ball and not carrying

ball) and two dimensions (x and y). There is no information sharing between models; in principle

we can imagine different components are connected a priori, yet the data is so informative that

any appropriate prior would not be influential. Unlike the macrotransition model, where we may

only observe a handfull of macrotransitions depending on the player and macrotransition type

(e.g. turnovers are fairly rare for all players), all players are constantly moving, so the data alone

are sufficient for precise inference.
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B
EPV-Derived Quantities

While detailed studies of EPV curves and multiresolution transitions, as in Section2.7, are the

most immediate and impactful application of EPV, we may also consider metrics that aggregate

a season’s worth of EPV curves.

B.1 EPV-Added

EPV-Added (EPVA) quantifies a player’s overall offensive value of all of his movements and de-

cisions while handling the ball, relative to the estimated value contributed by a league-average

player receiving ball possession in the same situations. The notion of relative value is important

because the martingale structure of EPV (νt) prevents any meaningful aggregation of EPV across

a specific player’s possessions; for instance, E[νt − νt+ϵ] = 0 for all t, meaning that on average
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EPV does not change during any specific player’s ball handling. For instance, while we see the

EPV skyrocket after LeBron James receives the ball and eventually attack the basket in Figure

2.2, the definition of EPV prevents such increases being observed on average. James does not al-

ways attack the basket given the spatial situation he encountered when receiving the ball, and

even when he does, he does not always beat the defense and gain a clear lane to the basket.

To calculate the baseline EPV at any time point for a league average player, we start by con-

sidering an alternate version of the transtion probability matrix between coarsened states P. For

each player ℓ1, . . . , ℓ5 on offense, there is a disjoint subset of rows of P, denoted Pℓi , that corre-

spond to possession states for player ℓi. Each row of Pℓi is a probability distribution over tran-

sitions in C given possession in a particular state. Technically, since states in Cposs encode player

identities, players on different teams do not share all states which they have a nonzero proba-

bility of transitioning to individually. To get around this, we remove the columns from each Pℓi

corresponding to passes to players not on player ℓi’s team, and reorder the remaining columns

according to the position (guard, center, etc.) of the associated pass recipient. Thus, the inter-

pretation of transition distributions Pℓi across players ℓi is as consistent as possible. We create

a baseline transition profile of a hypothetical league-average player by averaging these across all

players: (with slight abuse of notation) let Pr =
∑L

ℓ=1Pℓ/L. Using this, we create a new transi-

tion probability matrix Pr(ℓ) by replacing player ℓ’s transition probabilities (Pℓ) with the league-

average player’s (Pr). The baseline (league-average) EPV at time t is then found by evaluating

EPr(ℓ)[h(CT )|Ct], which contrasts with the coarsened approximation, EP[h(CT )|Ct], to νt. Denote

this baseline (coarsened) EPV ν
r(ℓ)
t = EPr(ℓ)[h(CT )|Ct].

If player ℓ has possession of the ball at time t1 until time t2, the quantity νt2 − ν
r(ℓ)
t1

esti-

mates the value contributed player by ℓ relative to a league-average player during his ball posses-

sion. We calculate EPVA for player ℓ (EPVA(ℓ)) by summing such differences over all a player’s

touches (and dividing by the number of games played by player ℓ to provide standardization):

EPVA(ℓ) =
1

# games for ℓ
∑

{ts,te}∈T ℓ

νte − ν
r(ℓ)
ts (B.1)

where T ℓ contains all intervals of form [ts, te] that span player ℓ’s ball possession.
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It must first be noted that for any [ts, te] ∈ T ℓ, E[νte − ν
r(ℓ)
ts ] = E[νts − ν

r(ℓ)
ts ] due to νt be-

ing a martingale. However, as defined, EPVA(ℓ) sums over terms with more variation, since νt

is more variable later in the possession. This is helpful for identifying particular plays in which

players accrue very high (low) EPVA. Secondly, the choice to average over games implicitly re-

wards players who have high usage, even if their value added per touch might be low. Often,

one-dimensional offensive players accrue the most EPVA per touch since they only handle the

ball when they are uniquely suited to scoring; for instance, some centers (such as Miami’s Chris

Andersen) only receive the ball right next to the basket, where their height offers a considerable

advantage for scoring over other players in the league. Thus, averaging by game—not touch—

balances players’ efficiency per touch with their usage and importance in the offense. Lastly,

using coarsened EPV as a baseline νr(ℓ)t exploits the fact that, when averaging possessions over

the entire season, the results are (in expectation) identical to using full-resolution EPV, assuming

corresponding multiresolution transition probability models for this hypothetical league-average

player—a consequence of (2.10).

Table B.1 provides a list of the top and bottom 10 ranked players by EPVA using our 2013-14

data, which is complete until February 7, 2014. Generally, players with high EPVA effectively

adapt their decision-making process to the spatiotemporal circumstances they inherit when gain-

ing possession. They receive the ball in situations that are uniquely suited to their abilities, so

that on average the rest of the league is less successful in these circumstances. Players with lower

EPVA are not necessarily “bad” players in any conventional sense; their actions simply tend to

lead to fewer points than other players given the same options. Of course, EPVA provides a lim-

ited view of a player’s overall contributions since it does not quantify players’ actions on defense,

or other ways that a player may impact EPV while not possessing the ball (though EPVA could

be extended to include these aspects).

As such, we stress the idea that EPVA is not a best/worst players in the NBA ranking. Ana-

lysts should also be aware that the “league-average player” being used as a baseline is completely

hypothetical, and we heavily extrapolate our model output by considering value calculations as-

suming this nonexistant player possessing the ball in all the situations encountered by an actual

NBA player. The extent to which such an extrapolation is valid is a judgment a basketball ex-
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Player EPVA
Dirk Nowitzki 6.08
Kevin Durant 6.08
Jose Calderon 5.33
Damian Lillard 5.28
Kevin Love 5.13
Stephen Curry 4.63
Channing Frye 4.58
Kyle Lowry 4.50
Paul George 4.40
LeBron James 4.38

Player EPVA
Ricky Rubio -0.07
Luke Ridnour 0.18
Tayshaun Prince 0.26
Shaun Livingston 0.38
Beno Udrih 0.47
P.J. Tucker 0.55
Al-Farouq Aminu 0.59
Andre Miller 0.68
Gerald Henderson 0.71
Cody Zeller 0.71

Table B.1: Top 10 and bottom 10 players by EPV-added (EPVA) in 2013-14 (per game, mini-
mum 500 touches during season).

pert can make. Alternatively, one can consider EPV-added over specific players (assuming player

ℓ2 receives the ball in the same situations as player ℓ1), using the same framework developed for

EPVA. Such a quantity may actually be more useful, particularly if the players being compared

play similar roles on their teams and face similar situations (and the degree of extrapolation is

minimized).

B.2 Shot Satisfaction

Another EPV-derived player metric we consider is called shot satisfaction. For each shot attempt

a payer takes, we wonder how satisfied the player is with his decision to shoot—what was the

expected point value of his most reasonable passing option at the time of the shot? If for a par-

ticular player, the EPV measured at his shot attempts is higher than the EPV conditioned on

his possible passes at the same time points, then by shooting the player is consistently making

the best decision for his team. On the other hand, players with pass options at least as valuable

as shots should regret their shot attempts (we term “satisfaction” as the opposite of regret) as

passes in these situations have higher expected value.

Specifically, we calculate

SATIS(ℓ) = 1

|T ℓ
shot|

∑
t∈T ℓ

shot

νt − E

h(CT ) |
4∪

j=1

Mj(t)

 (B.2)

where T ℓ
shot indexes times a shot attempt occurs, {t : M5(t)}, for player ℓ. Recalling that macro-
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Player Shot Satisfaction
Jose Calderon 0.34
Martell Webster 0.34
Spencer Hawes 0.33
Andre Iguodala 0.33
Channing Frye 0.32
Kyle Lowry 0.32
Mike Miller 0.31
Marvin Williams 0.31
Kyle Korver 0.30
Jodie Meeks 0.29

Player EPVA
Ricky Rubio -0.01
Tayshaun Prince 0.00
DeMar DeRozan 0.03
LaMarcus Aldridge 0.04
Tyreke Evans 0.05
Shaun Livingston 0.05
Gerald Henderson 0.05
Kevin Garnett 0.06
Jarrett Jack 0.06
Anthony Davis 0.07

Table B.2: Top 10 and bottom 10 players by shot satisfaction in 2013-14 (per game, minimum
500 touches during season).

transitions j = 1, . . . , 4 correspond to pass events (and j = 5 a shot attempt),
∪4

j=1Mj(t) is

equivalent to a pass happening in (ϵ, t+ ϵ]. Unlike EPVA, pass satisfaction SATIS(ℓ) is expressed

as an average per shot (not per game), which favors player such as three point specialists, who

often take fewer shots than their teammates, but do so in situations where their shot attempt

is extremely valuable. Table B.2 provides the top/bottom 10 players in shot satisfaction for our

2013-14 data. While players who attempt many three-pointers (e.g. Calderon, Miller, Korver)

and/or players shots near the basket (e.g. Iguodala) have the most shot satisfaction, players who

primarily take mid-range or long-range two pointers (e.g. Aldridge, Garnett) or poor shooters

(e.g. Rubio, Prince) have the least. However, because almost all shot satisfaction numbers are

positive, players still shoot relatively efficiently—almost every player generally helps his team by

shooting rather than passing in the same situations, though some players do so more than others.

114



C
Some Proofs

This Appendix provides additional proof details for results derived in this dissertation.

C.0.1 Proof of Proposition 3.2.1

k is a valid covariance function if and only if for all n, sn, and {ai ∈ R, i = 1, . . . , n}, we have

n∑
i=1

n∑
j=1

aiajk(si, sj) ≥ 0.
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From (3.3), this condition can be rewritten:

n∑
i=1

n∑
j=1

aiajk(si, sj) =

n∑
i=1

n∑
j=1

aiaj

∫
S
c(si + ui, sj + uj)dgsn(un)

=

∫
S

n∑
i=1

n∑
j=1

aiajc(si + ui, sj + uj)dgsn(un)

As c is a valid covariance function, the integrand in this expression is always non-negative, so the

integral is also non-negative. Thus k is a valid covariance function.

Note that for the common scenario where location errors are independent, so that gsn is a

product measure gs1 × . . .× gsn , then Proposition 3.2.1 is a special case of kernel convolution

[Rasmussen (2006)].

C.0.2 Proof of Proposition 3.2.2

Without loss of generality, we can assume τ2 = 1 and fix β,∆ arbitrarily. Using the fact that

k∗(s, s∗) = E[exp(−β||s+ u− s∗||2)] evaluates the moment generating function of a noncentral χ2
p

random variable ||s+ u− s∗||2, we get that

E[(x̂KALE(s
∗)− x(s∗))2] = 1−

(
1

1 + 2βσ2u

)p

exp

(
−2β∆2

1 + 2βσ2u

)
.

Call this quantity c(σ2u). Differentiating, we get

c′(σ2u) =
2β[2β(pσ2u −∆2) + p]

(1 + 2βσ2u)
p+2

exp

(
−2β∆2

1 + 2βσ2u

)
.

If β∆2 ≤ p/2, then c′(σ2u) > 0 for all σ2u > 0. Since c(σ2u) is left continuous at 0, continuous on

R+, and c(0) = c0, this means β∆2 ≤ p/2 implies c(σ2u) ≥ c0 for all σ2u.

Otherwise, if β∆2 ≤ p/2, then for all 0 < σ2u < ∆2

k −
1
2β , c′(σ2u) < 0. Once again, because

c(σ2u) is left continuous at 0, continuous on R+, and c(0) = c0, this means c(σ2u) < c0 for σ2u in

this interval.
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C.0.3 Proof of Proposition 3.2.3

Let W = x(s∗)− x̂KALE(s
∗). We can explicitly write the dependence of W on un:

W |un ∼ N (0, V (un))

where

V (un) = σ2 + γ′C(sn + un, sn + un)γ − 2γ′C(sn + un, s
∗),

γ = K(sn, sn)
−1K∗(sn, s

∗),

and σ2 = V[x(s∗)]. Thus

P(W < z) = E[P(W < z|un)]

= E

[
Φ

(
z√
V (un)

)]
.

C.0.4 Proof of Theorem 3.2.4

For any n, the KILE MSE in predicting x(s∗) given yn is

E[(x(s∗)− x̂KILE(x
∗))2] = v(s∗)− 2C(s∗, sn)C(sn, sn)

−1K∗(sn, s
∗)

+C(s∗, sn)C(sn, sn)
−1K(sn, sn)C(sn, sn)

−1C(sn, s
∗). (C.1)

C(sn, sn) is symmetric and positive definite, so assume the eigendecomposition C(sn, sn) =

QΛQ′ and similarly K(sn, sn) = RΩR′. Further letting a = C(s∗, sn)Q, b = Q′K(sn, s
∗),

and D = Q′RΩ
1
2 , we can write (C.1) as

E[(x(s∗)− x̂KILE(x
∗))2] = v(s∗)− 2a′Λ−1b+ a′Λ−1DD′Λ−1a

= v(s∗)− 2

n∑
i=1

aibi
λi

+

n∑
j=1

(
n∑

i=1

aiDij

λi

)2

. (C.2)
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Now let ξ = λ−1
(1) be the reciprocal of the smallest eigenvalue in Λ. We can then write (C.2) as

E[(x(s∗)− x̂KILE(x
∗))2] = ξ2

 n∑
j=1

a2(1)D
2
(1),j

+ h(ξ), (C.3)

where h is linear in ξ.

Without loss of generality, assume s1 → s2. Thus C(sn, sn) becomes rank n− 1, with λ(1) → 0

and for all i > 1, λ(i) → λ∗(i) > 0. Thus ξ →∞.

For the vast majority of distributions un ∼ gsn(un), we can use Dominated Convergence to

show that c continuous on S2 implies k continuous. However, K(sn, sn) does not become singular,

since P(u1 ̸= u2) < 1 implies lims2→s1 k(s1, s2) ̸= V[y(s1)]. Assuming continuity and the fact that

K(sn, sn) is nonsingular in the limit, all terms besides ξ in (C.2) converge; that is a → a∗, b →

b∗, and D → D∗ as s1 → s2. Moreover, we cannot have D∗
(1),j = 0 for all j, as this contradicts

K(sn, sn) remaining full-rank. Lastly, since C(s∗, sn) ̸= 0 and Q is orthogonal, ai ̸= 0 and a∗i ̸= 0

for all i = 1, . . . , n.

Thus the quadratic coefficient in (C.3),
∑n

j=1 a
2
(1)D

2
(1),j is strictly positive, and h(ξ) = O(ξ).

Because ξ →∞, we get

lim
s1→s2

E[(x(s∗)− x̂KILE(x
∗))2] =∞.

For pathological choices of gsn where k is not continuous everywhere and limits for b and D

may not exist, all components of these terms can be still be bounded, which is sufficient for The-

orem 3.2.4 to hold.

C.0.5 Proof of Proposition 3.3.1

Bayes rule predictors by definition satisfy Rπ(π) ≤ Rπ(π̃), which confirms the two inequalities

in the statement of Proposition 3.3.1. The equality Rπ(π0) = Rπ0(π0) holds since the risk of the
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Bayes estimator under π0 is a quadratic form, and therefore constant for all π ∈ Π0,C:

Rπ0(π0) = Eπ[(Eπ0 [x(s
∗)|xn]− x(s∗))2]

= Eπ[(C(s∗, sn)C(sn, sn)
−1xn − x(s∗))2]

= c(s∗, s∗)−C(s∗, sn)C(sn, sn)
−1C(sn, s

∗)

= Rπ(π0).
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