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Gaussian Processes

Gaussian process as prior over functions

Samples from the prior
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Source: packages.python.org/infpy/gps.html
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Gaussian Processes

Gaussian process as prior over functions

Samples from the posterior
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Source: packages.python.org/infpy/gps.html
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Gaussian Processes

Covariance and Prediction: An Example

» Suppose at each location s;, Z(s;) is Gaussian with mean y; and
variance cr,-2, and that the between-site covariance matrix is X.
{Z(si),i =1,...,n} is then multivariate normal with mean vector
e and covariance matrix X
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Gaussian Processes

Covariance and Prediction: An Example

» Suppose at each location s;, Z(s;) is Gaussian with mean y; and
variance 02, and that the between-site covariance matrix is T.
{Z(si),i =1,...,n} is then multivariate normal with mean vector
e and covariance matrix X

» Now suppose we observe sites 2, ..., n, i.e. we have observations
Zy.p = 2(2), ..., z(sn).

» Can we work out the distribution of Z(s;), given the observations?
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Gaussian Processes

Covariance and Prediction: An Example

» Suppose at each location s;, Z(s;) is Gaussian with mean y; and
variance cr,-2, and that the between-site covariance matrix is X.
{Z(si),i =1,...,n} is then multivariate normal with mean vector
e and covariance matrix X

» Now suppose we observe sites 2, ..., n, i.e. we have observations
Zy.p = 2(2), ..., z(sn).
» Can we work out the distribution of Z(s;), given the observations?

v

Yes! As the process is multivariate normal, we know that

Z(s1)|z2:n ~ N (p1 + Y10Y o5 (220 — p2:n), 0% — Z1222_21221)
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Gaussian Processes

Covariance and Prediction: An Example

» Suppose at each location s;, Z(s;) is Gaussian with mean y; and
variance cr,-2, and that the between-site covariance matrix is X.
{Z(si),i =1,...,n} is then multivariate normal with mean vector
e and covariance matrix X

» Now suppose we observe sites 2, ..., n, i.e. we have observations
Zy.p = 2(2), ..., z(sn).
» Can we work out the distribution of Z(s;), given the observations?

> Yes! As the process is multivariate normal, we know that
Z(s1)|z2:n ~ N (p1 + Y 10X 55 (zon — H2:n), 0F — Z1222_21221)

» What happens when we add a new location?
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Gaussian Processes

Covariance functions

» Prediction requires estimating the mean 4 (n parameters) and
covariance X (n(n+ 1)/2 parameters). What to do for unobserved
locations?
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Gaussian Processes

Covariance functions

» Prediction requires estimating the mean 4 (n parameters) and
covariance X (n(n+ 1)/2 parameters). What to do for unobserved
locations?

» We need to simplify things via some assumptions, the most
common of which is to assume second-order (or weak) stationarity:

E[Z(s)] =
Cov[Z(s),Z(s")] = ov[Z(s+5) Z(s'+9)] V.
Specifically, the covariance only depends on the spatial lag

h = s — s’ between locations. We call C(h) = Cov[Z(0), Z(h)] the
covariance function
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Hierarchical Bayes

Bayes Theorem

» Assume we have some parameters 8 = (61, ... ,60,) which come
from the prior distribution 7(6|n) and we observe some data
z = (z1,...,2zp) which has the distribution 7(z|6)

_ w(z|6)(8]n)
m(8|z,m) = [ 7(2|6)7(6]n)d6
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Hierarchical Bayes

Bayes Theorem

» Assume we have some parameters 8 = (61, ... ,60,) which come
from the prior distribution 7(6|n) and we observe some data
z = (z1,...,2zp) which has the distribution 7(z|6)

m(2|0)7(6]n)
[ 7(2|0)7(6]n)d6

» Sometimes we put a hyperprior on n, w(n), and the posterior then
becomes

m(0|z,n) =

HOP) = AN (g
[ [ 7(2|0)x(6]n)r(n)dndé
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Hierarchical Bayes

Bayes Theorem

» Assume we have some parameters 8 = (61, ... ,60,) which come
from the prior distribution 7(6|n) and we observe some data
z = (z1,...,2zp) which has the distribution 7(z|6)

m(2|0)7(6]n)
[ 7(2|0)7(6]n)d6

» Sometimes we put a hyperprior on n, w(n), and the posterior then
becomes

m(0|z,n) =

[ 7(2|0)7(8|n)m(n)dn
[ [ ©(2|6)7(6|n)m(n)dnd6

» Alternatively, we can take an empirical Bayes approach and find a
value of 1 to maximize w(z|n).

m(6|z) =
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Hierarchical Bayes

Point Estimation

» Assuming we have the posterior distribution 7(0|z), we can find
point estimates of 6
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Hierarchical Bayes

Point Estimation

» Assuming we have the posterior distribution 7(0|z), we can find
point estimates of 6

» The mean:

A

6 = E(0)z)

» The median:

6
0 / 7(0|z)d0 = 0.5
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Hierarchical Bayes

Point Estimation

» Assuming we have the posterior distribution 7(0|z), we can find
point estimates of 6

» The mean:

A

0 =E(0|z)
» The median:
R 0
0: / 7(0|z)d0 = 0.5

» The mode (aka the MAP):

6 : sup7(8|z)
0
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Hierarchical Bayes

Interval Estimation

» We can create a 95% credible interval by finding the values

Ol =02 and [ w(012) = a2
/ I

—00
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Hierarchical Bayes

Interval Estimation

» We can create a 95% credible interval by finding the values

Ol =02 and [ w(012) = a2
/ I

—00

» A shorter 95% interval is the set

0 : 1(0]|z) > ¢ where we maximize ¢ such that

/ (6]2) = 0.95
w(0|z)>c
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Hierarchical Bayes

Gibbs Sampler

> Recall that we can use samples 8, ..., 8(T) from 7(6]|z) to
estimate expectations E(g(0)|z) via

T

£(g(0)]z) = = > 8(69)

1

One way to generate these samples is to iteratively sample from
the full conditionals 7(60;|0_;, z)
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Hierarchical Bayes

Gibbs Sampler

> Recall that we can use samples 8, ..., 8(T) from 7(6]|z) to
estimate expectations E(g(0)|z) via

T

£(g(0)]z) = = > 8(69)

1

One way to generate these samples is to iteratively sample from
the full conditionals 7(60;|0_;, z)
» The Gibbs sampler first finds starting values 0&0), . ,9,(30) , then
iterates, for tin1,..., T
1. Sample 01 from 7(01)60 ", ..., 0%V, 2)
2. Sample 65 from 7(6,16%7, 6871 . 0%V 2)

3. Sample 65 from 7(6,]6%",...,6%, 2)

1 p—1»
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Hierarchical Bayes

Metropolis-Hastings

» What if you can’t sample from 7(0|60_;, z)?

» You can instead propose 8* from some (symmetric) proposal
distribution q(0)
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Hierarchical Bayes

Metropolis-Hastings

» What if you can’t sample from 7(0|60_;, z)?

» You can instead propose 8* from some (symmetric) proposal
distribution q(0)

» Calculate
__n(02)
-~ w(6(-1)2)
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Hierarchical Bayes

Metropolis-Hastings

\4

What if you can't sample from 7(0|6_;, z)?

v

You can instead propose 8* from some (symmetric) proposal
distribution q(0)

Calculate

v

_ w(612)
m(0(t-1)|z)

If r > 1, set 8(t) = g~

If r <1, set 8() = 6* with probability r, and 8(t) = 8(t=1) with
probability 1 — r.

v

v
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Hierarchical Bayes

The hierarchical Bayes framework

» In the hierarchical process framework, we want to learn about an
underlying process Y through some (noisy, polluted, transformed)
data Z.

» Z comes from Y through 7(Z|Y, ) where 6 are some parameters.

» The process Y also often depends on some such parameters, via
m(Y10)
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Hierarchical Bayes

The hierarchical Bayes framework

» In the hierarchical process framework, we want to learn about an
underlying process Y through some (noisy, polluted, transformed)
data Z.

» Z comes from Y through 7(Z|Y, ) where 6 are some parameters.

» The process Y also often depends on some such parameters, via

m(Y16) o @
OO

(a) (b)

S
Y
N
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Hierarchical Bayes

Extending the hierarchical process model

> Z(s) = u(s) + Y(s) + €(s) with some parameters @ where

u(s) = x7(s)8 and
Y (s)|6 ~ N(0, ¥)

where ¥ = C,2 4(si — 5j) = 02py(si — sj). Here e(s) is a
white-noise process with parameter o2
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Hierarchical Bayes

Extending the hierarchical process model

> Z(s) = u(s) + Y(s) + €(s) with some parameters @ where

u(s) = x7(s)8 and
Y (s)|6 ~ N(0, ¥)

where ¥ = C,2 4(si — 5j) = 02py(si — sj). Here e(s) is a
white-noise process with parameter o2

» We would also assign a prior distribution to 8, 7(8)

» To approximate the posterior, iteratively sample Y as well as the

parameters 8 = 3, ¢, 02,02 .
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Hierarchical Bayes

Marginalizing out the latent process
» We can alternatively write
Z(s) ~ N(xT(s)3,Z + o2I)
and avoid the sampling of Y. DEMO
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Hierarchical Bayes

Marginalizing out the latent process
» We can alternatively write
Z(s) ~ N(x"(s)8, T+ o?l)

and avoid the sampling of Y. DEMO
» However, we're often interested in

(Y|z) = /W(Y,Bz)de

- /7r(Y|0,z)7r(0|z)d0
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Hierarchical Bayes

Marginalizing out the latent process

» We can alternatively write
Z(s) ~ N(x"(s)8, T+ o?l)

and avoid the sampling of Y. DEMO
» However, we're often interested in

(Y|z) = /W(Y,Bz)de
:/W(Y|0,z)7r(0|z)d0
> If we have samples 8',...,87 from 7(6|z), then samples Y Ofrom

YO ~ 2(Y[0®), 2)

will be distributed as m(Y|z), as desired.
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Hierarchical Bayes

What about predicting at an unknown location s,?

» We need to find the predictive distribution
m(Z(s0)|z.6) = [ 7(Z(50),6]2.x, x(s0))d
= [ (2(s0)]2.0.x(50))x(0]2.)d0

where m(Z(sg)|z, 0, x(so)) is a conditional normal, given the joint
multivariate normal structure of Z(sp) and the data z.
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Hierarchical Bayes

What about predicting at an unknown location s,?

» We need to find the predictive distribution
w(Z(s0)|2,0) = / 7(Z(s0), 012, x, x(50))dO
_ / 7(Z(s0)|2, 8, x(s0))7(0]z, x)dB
where m(Z(sg)|z, 0, x(so)) is a conditional normal, given the joint

multivariate normal structure of Z(sp) and the data z.

> If we have samples 0',...,07 from 7(8|z, x), then the predictive
integral is computed via a Monte Carlo mixture,

#(Z(so0)|z, x,x(s0)) TZ Z(s0)|z, 0, x(s0))
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Hierarchical Bayes

Sampling to the rescue, again

» Again, we have samples 8,... 87 from 7(0|z, x). Next simulate
2D ~ m(Z(s0)|2,00), x(s0))

which creates a set of samples from the posterior predictive density.
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Hierarchical Bayes

Sampling to the rescue, again

» Again, we have samples 8,... 87 from 7(0|z, x). Next simulate
2D ~ m(Z(s0)|2,00), x(s0))

which creates a set of samples from the posterior predictive density.

» We can use these samples to find a point estimate (mean, median,
etc.) as well as prediction variance.
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Spatial GLMs

From continuous to binary data

» |n the hierarchical framework, we modeled Gaussian data as

Z(s) ~ N(XB + Y(s),72)
Y(s) ~ N(0,Z,2 4)

plus potentially further prior information on 72,02, 3, ¢, etc.
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Spatial GLMs

From continuous to binary data

» |n the hierarchical framework, we modeled Gaussian data as

Z(s) ~ N(XB + Y(s),72)
Y(s) ~ N(0,Z,2 4)

plus potentially further prior information on 72,02, 3, ¢, etc.

» We could instead write, for example that Z|Y is Poisson or
Binomial
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Spatial GLMs

Connection to Generalized Linear Mixed Models

» Assume our data comes from an exponential family,

m(Z(s)IB, Y(s), k) = h(Z(s), ) exp{r(Z(s)n(s) — (n(s)))}

where g(n(s)) = x(s)S + Y(s) for some link function g, where x
is a dispersion parameter. This family of distributions includes the
Gaussian, Poisson, Binomial, and many others.
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Spatial GLMs

Connection to Generalized Linear Mixed Models

» Assume our data comes from an exponential family,

m(Z(s)IB, Y(s), k) = h(Z(s), ) exp{r(Z(s)n(s) — (n(s)))}

where g(n(s)) = x(s)S + Y(s) for some link function g, where x
is a dispersion parameter. This family of distributions includes the
Gaussian, Poisson, Binomial, and many others.

» As before, we assume
Y(s) ~ N(0, X2 4)

If, on the contrary, Y was iid, then this would be the usual
generalized linear mixed model (GLMM). Hence, what we have is
still a GLMM, but with spatial correlation in the random effects.
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Spatial GLMs

Notes on the GLMM framework

» Firstly, we have not created a “spatial process” for Z. Rather, we
have defined a joint distribution 7(Z(s)|3, o2, ¢, k), namely

/ (Hw 8,0 ,¢,m)>w(v(s)|a2,¢)dv
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Spatial GLMs

Notes on the GLMM framework

» Firstly, we have not created a “spatial process” for Z. Rather, we
have defined a joint distribution 7(Z(s)|3, o2, ¢, k), namely

/ <Hw 8,0 ,¢,m)>w(v(s)|a2,¢)dv

» Secondly, there's no need to include random (white) noise €
because stochastic variability is already included in the specification

of m(Z(s)|s, Y(s), k)
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