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What is massive data?

In short, it’s data where our favorite methods stop working

Orders of magnitude more observations than we are used to
dealing with, often combined with high dimensionality (e.g.
10 million time series of 1,000 observations each)

Increasingly common in fields such as astronomy,
computational biology, ecology, etc.

Need statistical methods that scale to these quantities of data

Question of statistical rigor vs. computational efficiency
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Machine Learning methods: strengths & weaknesses

Strengths:

Computationally efficient → scale well to large datasets
Relatively generic in their applicability
Often seem to “just work”

Weaknesses:

Typically do not provide assessments of uncertainties
Lack of application-specific modeling → inefficient use of
available data
Often statistically unprincipled
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Statistical methods / Probability models: strengths &
weaknesses

Strengths:

Based on sound principles
Can build complex probability models appropriate to the
particular application
Rigorous assessments of uncertainties

Weaknesses:

Computation often scales very poorly with the size of the
dataset (O(n2) or worse, especially for complex hierarchical
models)
Modeling diverse, complex patterns in the data can require a
very large amount of application- (and data-) specific modeling
Computation often does not parallelize well
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How should we combine?

Principled statistical methods are best for handling messy,
complex data, but scale poorly

Machine learning methods handle cleaner data well, but choke
on issues we often confront (outliers, low counts, nonlinear
trends, irregular sampling, etc.)

Idea: Use probability modeling in the right places
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Putting everything in its place

Understand what your full (computationally infeasible) model
is; this guides the rest of your decisions
Preprocess to remove the “chaff”, when possible

Be careful! Any prescreening must be extremely conservative
to avoid significantly biasing your results

Use approximations for the critical parts of your models (e.g.
empirical Bayes as opposed to full hierarchical modeling) to
maintain computational feasibility

Apply machine learning methods as needed (e.g. for large
scale classification) with the estimates from your probability
model as inputs. This maintains computational efficiency and
provides these method with the cleaner input they need.
Use scale to your advantage when evaluating uncertainty

With prescreening, use known nulls
Without prescreening, use pseudoreplications

How do we apply this?



Outline Challenges of Massive Data Combining Approaches for Better Analysis Event Detection for Astronomical Data Summary

Overview

The Problem

Massive database of time series (approximately 10 million)
from the MACHO project (many more are coming soon from
PanSTARRs)

Our goal is to identify and classify time series containing
events

How do we define an event?

We are not interested in isolated outliers. This differentiates
our problem from traditional “anomaly detection” approaches.
We are looking for groups of observations that differ
significantly from those nearby.
We are also attempting to distinguish periodic and
quasi-periodic time series from isolated events, as they have
very different scientific interpretations.
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Overview

Exemplar time series from the MACHO project:

A null time series:
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Overview

Exemplar time series from the MACHO project:

An isolated events:
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Overview

Exemplar time series from the MACHO project:

A quasi-periodic time series:
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Overview

Notable properties of this data

Fat-tailed measurement errors

Common in astronomical data, especially from ground-based
telescopes
Requires more sophisticated modeling of data than Gaussian
approaches.

Quasi-periodic sources

Changes problem from binary classification to k-class
Requires more complex test statistics

Non-linear, low-frequency trends confound our analysis further
and make less sophisticated approaches far less effective

Irregular sampling, which can create artificial events if handled
incorrectly

Oh my!
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Overview

Previous approaches to event detection

Scan statistics are a common approach (Liang et al, 2004;
Preston & Protopapas, 2009)

However, they often discard data by working with ranks and
do not account for trends

Equivalent width methods are common in astrophysics

However, these rely upon Gaussian assumptions and crude
multiple testing corrections
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Proposed method

Preprocessing: a modified CUSUM

Following the framework given in the previous section, we
begin with a preprocessing step.

A CUSUM test is a simple and appropriate choice.

These have a long history in change-point detection in
industrial statistics and econometrics (e.g. Ploberger, 1992,
Page 1954).

The test statistic is the range of the cumulative sum of
deviations from the mean (or from a fitted linear trend):

St =
1

σ̂
√

T

t∑
j=0

(Yj − Ŷj)

R = max
t

(St)−min
t

(St)
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Proposed method

Preprocessing: a modified CUSUM

For T large, and assuming Gaussian residuals, the distribution
of R can be approximated by the distribution of the range of a
Brownian bridge.

We use the range of our CUSUM series as our statistic (as
opposed to its maximum or minimum) because we are not
making an assumption as to the direction of any event in our
time series.

There is one caveat with the use of the CUSUM. If outliers
are present, standard estimators of σ have a large upward
bias, making the test far too anticonservative for our
purposes. To correct this, we use a robust estimator of σ: the
(rescaled) median absolute deviation.
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Proposed method

How well does our preprocessing work?

On our test sample of 515,136, we eliminate approximately
13.2% of our time series with a cut at α = 0.01 for the
modified CUSUM statistic

We then use these series to build a null distribution for
subsequent testing

Visual inspection of time series near the threshold confirmed
that our preprocessing was conservative
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Proposed method

Probability model

We assume a linear model for our observations:
Y = X`β` + Xmβm + u

We assume that our residuals ut are distributed as iid
tν(0, σ2) random variables to account for extreme residuals
(we set ν = 3).

X` contains the low-frequency components of a wavelet basis,
and Xm contains the mid-frequency components

We use a symmlet 4 (aka Least Asymmetric Daubechies 4)
wavelet basis; it’s profile matches the events of interest quite
well
For a basis of length 2048, we build X` to contain the first 16
coefficients; Xm contains the next 112

Idea: X` will model structure due to trends, Xm will model
structure at the scales of interest for events
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Proposed method

Probability model

Y = X`β` + Xmβm + u

We explicitly account for irregular sampling in our time series
by interpolating our basis to the observation times of our data
We place independent Gaussian priors on all coefficients
except for the intercept to reflect prior knowledge and
regularize estimates in undersampled regions
We use the optimal data augmentation scheme of Meng &
Van Dyk (1997) with the EM algorithm to fit our model
(average time for a full estimation procedure is ≈ 0.2 seconds
including file I/O, using the speedglm package in R)
We use a modified LLR statistic to test for the presence of
variation at the scales of interest (testing βm = 0). Its null
distribution is estimated from the data excluded as nulls in the
preprocessing stage.
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Proposed method

Examples of model fit

The idea is that, if there is an event at the scale of interest, there
will be a large discrepancy between the residuals using Xm and X`:
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Proposed method

Example of model fit

For null time series, the discrepency will be small:
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Proposed method

Example of model fit

And for quasi-periodic time series, the discrepency will be huge:
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Proposed method

Empirical distributions

Fortunately, the empirical distributions of the quasi-LLR have
some separation:
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Proposed method

Testing and classification

Using the Benjamini-Hochberg FDR procedure with an FDR
of 0.1 and the empirical distribution of the null series, we
identify 7542 nonnull time series based on our wavelet model.

We then feed the estimated wavelet coefficients for the scales
of interest (β̂m, normalized and transformed) into a KNN
classifier to separate quasi-periodic and isolated events

Another option that we are currently exploring is to treat null
series as another category in the KNN classifier (using far
more series)
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Proposed method

Classification

The features used by the KNN classifier are not the full
wavelet coefficients. Instead, we use the sorted absolute
values of β̂m.

This helps to reduce issues of dimensionality without losing
too much information

We train the classifier on approximately 2000 exemplar time
series from each category and set k via cross validation (we
obtained k = 10 as optimal with our training data)
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Proposed method

Classification

We obtain the below confusion matrix for our classifier on the
training set:

Predicted
event variable

Actual
event 1123 92

variable 134 1912

The corresponding error rates are:

Predicted
event variable

Actual
event 0.92 0.08

variable 0.07 0.93
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Results

Results

Using this approach we obtain 4,029 time series classified as
isolated events and 3,513 time series classified as variable
sources in our sample of 515,326 time series

We are currently pursuing follow-up on these series

We are also focusing on improving the testing component of
this procedure
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Summary

Massive data presents a new set of challenges to statisticians
that many of our standard tools are not well-suited to address

Machine learning has some valuable ideas and methods to
offer, but we should not discard the power of probability
modeling

It is tremendously important to put each tool in its proper
place for these types of analyses

Our work on event detection for astronomical data shows the
power of this approach by combining both rigorous probability
models and standard machine learning approaches

There is a vast amount of future research to be done in this
area (i.e. I have a lot of work ahead)
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Thanks!

Questions?

Comments?

And, of course, many thanks to both Pavlos Protopapas and
Xiao-Li Meng for their advice and data
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