Analyzing Redistribution Matrix with Wavelet

O




RMF is redistribution matrix function

It is probability of observing a certain energy give the true
energy;

The dimension is very large(1078*1024)

We take log transformation on RMF matrix, and we set 0
value in RMF as 10"-15

We want to study the uncertainty of RMF matrix, or in the
perfect case, find a way to simulate new RMF matrix!



RMF after log-transformation
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Discrete wavelet decomposition
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Coeftficients vector
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Use wavelet decomposition to get wavelet coefficients for
each line of RMFs;

Construct multi-level model to model coefficients in each
line.

Ideally, we will construct a hierarchical model to reduce
the dimension of RMFs

Then we make Bayesian analysis to the model and get
posterior draw of new RMFs wavelet coefficients

We can use inverse wavelet transformation to get simulated
RMFs(we need to rescale to make sure row summation of
each line is 1)



Wavelet decomposition
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More about coefficients
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More about coefficients
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More about coefficients
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Wavelet coetficient for 900 true energy
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In the right graph, I plot coefficient of
energy 900 among first 10 matrixes;

The shape of coefficients over the first
10 matrixes are almost the same;

Coefficients which are significant
greater than 0 has larger variance;

The uncertainty of RMFs is now the
uncertainty of wavelet coefficients;

The coefficients are closely correlated
to each others;
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We have seen for the same true
energy, shape of wavelet
coefficients are almost the same
among 33 RMFs;

Among different true energies, the
shape of wavelet coefficients are
also similar, even though the
position of the shape is different;

We may define the specific shape
as base functions among all the
true energies and matrixes.
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We may consider the base function a
vector of size 1024

The location where the base function
is not equal to 0 is different for
different true energies;

We may consider the location where
base function is not equal to 0 for a
specific true energy as a constant, not
a parameter;

We won’t have too much base
functions(around 10).
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Example of base function




For different true energy, the size

Of base funC'[iOIl Wlll be diffel‘ent; size of base function
The size of a base function among = Pt

1078 energies can be plotted as c 8

right; .
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After we define the base function, we may write the
coefficients j for true energy i for matrix m as:

Coefficient(i,j,m)=size of base*base+error terms

We will have two kind of uncertainty in my model,
uncertainty of value of base function and a noise on every
coefficient.



For every coefficients, we

have 33 values; imtin il [ (e
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The correlation between wavelet
coefficients are very large;

If we do not consider the correlation
and simulate independent error terms
we will have very bad simulations;

We need to construct a model for the
error terms;
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Correlation between coefficients and the next coefficients on 900 true energy
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Correlation between coefficients and the next coefficients on 600 true energy
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In the graph, blue points are the correlation of coefficients and the next
coefficients;

We can find we have very strong correlation between coefficients, especially
the functional part;

We can also find variance structure between different true energies are very
similar;

In the functional part, we can use a vector to model the correlation:
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The vector  (e,1.¢,,,-¢,;) can model the variance and
correlation structure of coefficient of base function;

For instance, if (e, ,e,,,..e;,)=(L—L....e,,)

It means the first and second element of this base function will be
highly negative correlated;

For every base function, we will have a correlation vector.



For each nonzero part, we can consider it is an error term.

We can see from the previous slides the error terms are highly correlated.
For the error term, I suggest to use the following model to model error terms:
In this way, we can consider a and b as parameters and get the correlation.

— *
for differel‘?ti42)3411‘0@6{1715Ir \Qa%l'etr@%é"fﬁ(ﬂie , We can assume are
constant.
We can also construct hierachical models for a,b among different true energy.
a..b.
02~
st o] },é—g———o—f - s

|
I

| F

[FaT= Pt



We can consider a model in the following way:
Coefficients(i,j,m)= base part + error part

Base part= Zci[ﬁ,j + ef,l., : *Gf,i * Zf,i,m]

J

- — *
Error part: ¢, . =(a,+be, . ,)+0,*Z, +0,Z,+0,72,



G ,,; 1ssd for base function f and ith true energy; It is a function of true energy
i, we can model them according to the variance plot;

G, ; issd for individually error terms. For different part of the coetficients, we
can assume it is locally constant;

O is sd for each line, it can be considered as a function of true energy i

o is uncertainty for matrix.




More about the model
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Is it a good idea to use the base function, or do you have
some suggestion?

Is there some other method to model the error terms in
order to characterize the correlation?

The computation will be very intensive, is there some
method to simply the model?



Computation of log-L with specific priors;

Use Bayesian method to draw posterior draw of new
coefficients;

Use wavelet method to re-decompose new simulated
RMEs;

Model checking and posterior checking;



In the dataset, we have 33 simulated RMFs and a default
RMF

If we consider the default RMF as “true RMF”, we can get

the difference between 33 RMFs and default RMEFE, which
are the error terms

We may do wavelet analysis to the error terms and
construct models to analysis them



Overall wavelet coefficients description




More graph about coefficients
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We can find large variance near
channel 80, we can plot graph of 33
matrixes near channel 80 and energy
900;

However, if we can rescale the mode
near 80, we can get the second graph;

We can still find the base function to
deal with the problem.

For the other part, it is similar to the

wavelet model part for original RMFs;
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Thank You !
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