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Observation model
At pixel i , time t, we have signal

di ,t = Ai cos(ωi t) + Bi sin(ωi t)

and observation
yi ,t = di ,t + ni ,t︸︷︷︸

noise

(This model doesn’t account for multiple wavebands.)
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Current approach

Very broadly speaking, the current approach has these steps:

1. for each pixel i
I compute Fourier transform of yi = [yi,1, . . . , yi,t , . . . , yi,T ]T

I calculate probability

pi , P (ωi 6= 0)

2. form probability map p = [pi ]

3. perform spatial smoothing (boxcar, median, wavelet, curvelet,
etc) on p.
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Key assumptions

The success of this approach depends on two key assumptions:

1. each pixel has only a small number of dominant frequencies
(ideally one)

2. the probability map p varies smoothly across space

Chief difficulty

Accurately estimating p is a hard, especially because spatial
information isn’t used until final step.
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Proposed new assumptions
Can we do better if we make slightly different assumptions? And
are these assumptions consistent with the physical reality?

New assumptions

1. each pixel has only a small number of dominant frequencies
(ideally one)

2. Ai , Bi and ωi all vary piecewise-smoothly across space

3. oscillations lie in a low-dimensional subspace (i.e., there are a
few representative oscillations, and all true oscillations are a
weighted combination of those few)

A B ω
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Toolbox

Here are some tools designed to exploit these data satisfying these
assumptions:

1. Sparse estimation via coefficient thresholding

2. Yaroslavsky’s filter for spatial smoothing

3. Principle components analysis for low-rank video
approximation
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Sparse estimation

We observe the time series

yi = di + ni

and assume di is sparse in a Fourier basis. We can use the sparsity
assumption to estimate di from yi :

θ̂i = argminθ ‖θ − DFT(yi )‖22 + τ‖θ‖1
= SoftThresholdτ (DFT(yi ))

d̂FT
i = IDFT(θ̂i )

This approach finds the estimate d̂FT
i which is

I close to the data yi
I sparse in the Fourier domain
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Example
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Kernel-based image denoising: d̂i ,t =
∑

j wi ,jyj ,t

Usual kernel method a

wi ,j = Kh(xi , xj)

I w has no dependency on y

I K : kernel and h: bandwidth (smoothing parameter)

I Gaussian kernel example : Kh(xi , xj) = e−‖xi−xj‖
2
2/2h

2

a
Nadaraya ’64, Watson ’64

Image Search
Zone

Spatial

Yaroslavsky /
Bilateral
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Kernel-based image denoising: d̂i ,t =
∑

j wi ,jyj ,t

Yaroslavsky/Bilateral Filter a

wi ,j = Kh(xi , xj)Lhy (yi ,t , yj ,t)

I Use spatial and photometric proximity

I K , L: kernels; h, hy : bandwidths (smoothing parameters)

a
Yaroslavsky ’85, Lee ’83, Tomasi and Manduchi ’98

Image Search
Zone

Spatial Yaroslavsky /
Bilateral
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Yaroslavsky’s filter for video data

In our setup, we don’t have a single image, but rather a time-series
of images. Thus, instead of having our filter depend on individual
pixel similarities, we will have it depend on time-series
similarities:

d̂YF
i ,t =

∑
j

dFT
j ,t Kh(xi , xj)Lhy (yi , yj)︸ ︷︷ ︸

weight independent of
time, based on entire time

series
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Example
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PCA

Finally, we want to use the fact that there are a few representative
oscillations in the data, and all observed oscillations are a weighted
combination of these representatives. To do this, form the matrix

D̂YF = [dYF
1 dYF

2 · · · ,dYF
N ]

so each column corresponds to a time series in a different pixel.
Next compute the SVD of D̂YF :

D̂YF = USV T

and only keep the largest elements of the diagonal matrix S to
form Ŝ . Next let

D̂LR = UŜV T .
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Example (cont.)

Oscillating pixel Non-oscillating pixel

14 / 16



Discussion

I These tools can be used to pre-process data and improve the
robustness and accuracy of oscillation detection

I Patch-based versions of these methods exist
I can be used to reduce computational complexity or relax

assumptions
I can be used to better exploit underlying physical structure

I Performance will ultimately depend on how realistic the
underlying assumptions are for real data

I I applied these tools sequentially; the optimal order or joint
spatio-temporal reconstruction is an open problem

I All techniques described here can be applied to multiple
wavebands simultaneously.

I At their heart, all these methods exploit low-dimensional
structure (sparsity, low rank, piecewise smoothness) in the
underlying high-dimensional observation space
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Thank you.
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