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Observation model
At pixel /, time t, we have signal
d,',t = A COS(w,'t) + B; sin(w,-t)
and observation
Yie =dit+ ni
~
noise

(This model doesn't account for multiple wavebands.)
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Current approach

Very broadly speaking, the current approach has these steps:
1. for each pixel i

» compute Fourier transform of y; = [yi1, ..., Yies-- -, ¥iT]"
» calculate probability

pi £ P (w; #0)

2. form probability map p = [pi]

3. perform spatial smoothing (boxcar, median, wavelet, curvelet,
etc) on p.
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Key assumptions

The success of this approach depends on two key assumptions:

1. each pixel has only a small number of dominant frequencies
(ideally one)

2. the probability map p varies smoothly across space

Accurately estimating p is a hard, especially because spatial
information isn't used until final step.
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Proposed new assumptions
Can we do better if we make slightly different assumptions? And
are these assumptions consistent with the physical reality?

New assumptions

1. each pixel has only a small number of dominant frequencies
(ideally one)

2. A;, B; and w; all vary piecewise-smoothly across space

3. oscillations lie in a low-dimensional subspace (i.e., there are a

few representative oscillations, and all true oscillations are a
weighted combination of those few)
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Toolbox

Here are some tools designed to exploit these data satisfying these
assumptions:

1. Sparse estimation via coefficient thresholding
2. Yaroslavsky's filter for spatial smoothing

3. Principle components analysis for low-rank video
approximation

6

16



Sparse estimation

We observe the time series
y; =d;+n;

and assume d; is sparse in a Fourier basis. We can use the sparsity
assumption to estimate d; from y;:

0, = argming [|6 — DFT(y;)[15 + (/6|1
= SoftThreshold(DFT(y;))
dT =IDFT(6;)

This approach finds the estimate HfT which is
> close to the data y;

» sparse in the Fourier domain
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Example




Kernel-based image denoising: 9,-7,5 = Zj Wiyt

Usual kernel method ¢

wij = Kn(xi, Xj)

> w has no dependency on y

» K: kernel and h: bandwidth (smoothing parameter)

. e —se: 112 2
» Gaussian kernel example : Kj(x;, x;) = e~ Ixi=xll2/2h

aNadaraya '64, Watson '64

Image Search Spatial
Zone
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Kernel-based image denoising: 8,-,t = Zj Wi Yt

Yaroslavsky /Bilateral Filter @

Wf,j = Kh(X,',Xj)Lhy(yl',t’.yj,t)

» Use spatial and photometric proximity

» K, L: kernels; h, h,: bandwidths (smoothing parameters)

aYaroslavsky '85, Lee '83, Tomasi and Manduchi '98

Image Search Spatial Yaroslavsky /
Zone Bilateral



Yaroslavsky’s filter for video data

In our setup, we don’t have a single image, but rather a time-series
of images. Thus, instead of having our filter depend on individual
pixel similarities, we will have it depend on time-series
similarities:

/

drf = Z dfil  Kn(xi,x)Ln, (¥:,Y;)
J

weight independent of
time, based on entire time
series
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Example




PCA

Finally, we want to use the fact that there are a few representative
oscillations in the data, and all observed oscillations are a weighted
combination of these representatives. To do this, form the matrix

BYF — [d}/F d%’F L 7dEF

so each column corresponds to a time series in a different pixel.
Next compute the SVD of DYF:

DYF = uysvT

and only keep the largest elements of the diagonal matrix S to
form S. Next let R R
DR = ysvT.
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Example (cont.)
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Discussion

» These tools can be used to pre-process data and improve the
robustness and accuracy of oscillation detection
» Patch-based versions of these methods exist
» can be used to reduce computational complexity or relax
assumptions
> can be used to better exploit underlying physical structure
» Performance will ultimately depend on how realistic the
underlying assumptions are for real data

» | applied these tools sequentially; the optimal order or joint
spatio-temporal reconstruction is an open problem

» All techniques described here can be applied to multiple
wavebands simultaneously.

» At their heart, all these methods exploit low-dimensional
structure (sparsity, low rank, piecewise smoothness) in the
underlying high-dimensional observation space
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Thank you.
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