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Summary ]

[ New Bayesian Method ]

® Hardness ratios are commonly used to characterize the spectrum of
an X-ray source when spectral fitting is not possible.

o The classical method is based on the net number of counts and fails
to account for the asymmetric nature of the Poisson counts. This is
a problem with low counts, especially when the counts are zero or
cannot statistically be distinguished from zero.

o The errors bars associated with the classical method are based on
Gaussian assumptions and do not provide realistic confidence limits.

e In this poster, we present a statistically coherent scheme for com-
puting hardness ratios and their associated errors.

e In this scheme, we model the detected photons as independent
Poisson variables and calculate hardness ratios using a sophisticated
Bayesian approach.

o Finally, we present a simulation study comparing a new Bayesian
method with the classical method, which demonstrates the new

method provide more reliable results especially for low count data.

e BEHR (Bayesian Estimation of Hardness Ratios) that
uses the new Bayesian method is free statistical software and will
soon be available on the CIAO contributed software page.

( The Classical Method )

A Hardness Ratio:
® Given observed counts in the soft band (S) and the hard band (H),
a hardness ratio can be computed as a summary of a spectrum:
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o In the presence of background where Bg and By are collected in an

area of ¢ times the source region, the above is generalized to
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and their errors are computed under Gaussian assumptions:
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where each o is approximated, e.g., 05 & /S + 0.75 + 1.
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[ Modeling the Hardness Ratios ]

® The typical Gaussian assumptions are inappropriate for low counts.
o Instead, we directly model photons from a source (7) and photons
from background (8) as independent Poisson variables:
— S =ns+Ps ~ Poisson(As+&s), H = nu+Pu ~ Poisson( Ay +&x),
— Bg ~ Poisson(c&g), and Bp ~ Poisson(c&y).
where A and € denote the expected source and background counts
in the source region.

o Given the expected source counts, the hardness ratio is rewritten as:

1. Simple counts ratio, R = —5,

An
As

2. X-ray color, C = log;g — , and
Am

3. Fractional difference hardness ratio, HR = A — )‘S.
g+ Ag

Bayesian Approach:

o Bayesian inferences for a parameter are based on a posterior distri-

bution [e.g., p(As,€s|S, Bs)| which combines a prior distri
le.g., p(Xs, €s)] with the likelihood [e.g., p(S, Bs|As, £s)] via Bayes®
theorem,

A\ _ P(As, €5)p(S, Bs|As, €s) )
Psr sl B5) = 7 e n(S, Bolhs, €s) dhs dés

Computing Posterior Distributions of Hardness Ratios:
® The posterior distribution of a hardness ratio is computed from the
joint posterior distributions of Ag and Ag:

1. the posterior distribution of R is computed from
p(R, Au|S, H, Bs, B) dRdAx

(s, M)
AR, Ag)

= p(RAg, AulS, H, Bs, By) Ay dRdAy,

= p(As, Am|S, H, Bs, Br) dAs dAg

where we integrate out Ag;

2. the posterior distribution of C is computed from
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= p(As, AulS, H, Bs, By) BACon) dAsdAy

= p(10°Ag, Ax|S, H, Bs, By)10° In(10)Ag dC d) g,
where we integrate out Ag; and
3. the posterior distribution of HR is computed from

p(HR, w|S, H, Bs, By) dHR dw

A(As, Am)
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where we integrate out w = Ag + Ag.

e The Bayes’ theorem analytically computes a high dimensional joint
posterior distribution of all unknown quantities.

o To integrate out everything but Ag and Ay of the joint posterior dis-
tribution, we use either Monte Carlo integration or efficient
numerical integration.

e We use both methods of integration because neither has the advan-

tage over the other in our case.

[ Simulation Study J

Simulated Data Sets:

e To compare our Bayesian method with the classical method, we
simulate 100 data sets of S, H, Bs, and By for each of 100 different
magnitudes of the expected source counts, Ag and Ay, but with
the same expected background counts g = &g = 10, the constant
background area ratio ¢ = 100, and the constant effective area of 1.

o We let Ag range from 1 to 100 and Ay = Ag/R is determined by the
fixed value of R.

Simulation Results:

o Figure 1 presents the estimates of hardness ratios according to
total expected source counts (Ag + Ag): the blue dots represent
the posterior modes of hardness ratios; the red dots represent
estimates of hardness ratios based on the classical method; and the
green dotted lines represent fixed values of hardness ratios based
on which we simulate the data sets.

® The purple dots in the classical method indicate estimates of R
that result in negative values: In the case of R and C, these estimates
are reflected at zero; in the case of HR, the estimates below —1 are
reflected at —1 and the estimates above 1 are reflected at 1.

o The classical method provides unreliable estimates especially for low

count data, as compared to the Bayesian method.
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Figure 1: Simulation Study. We notice that the classical method does
not provide reliable estimates for low count data, while it agrees with
the Bayesian method for large count data.

[ A Prior Distribution J

An Informative Prior Distribution:

o If there is a strong belief as to the hardness ratio (location or spread),
we can incorporate the information as a prior distribution, which is
called an informative prior distribution.

o The Bayesian method produces the posterior distribution, which can
be used as an informative prior distribution for future observation of
the same source.

A Flat Prior Distribution:
e With no prior information available, we normally use a so-called flat
prior distribution. Since the Poisson intensity takes positive real
values, two sorts of a flat prior are considered:
p(A) o< 1 that corresponds to ¢ = 1 when A¥~! o 1;
p(logg A) o 1 that corresponds to ¢ = 0 when A¥ oc 1.
o With large count data, which flat prior distribution to use does not
make much difference in the posterior distribution.
e When the expected counts are low, we choose the value of ¥ using a
simulation study. We aim to ensure that the resulting 95% intervals

contain the true value at least 95% of the time.
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