BEHR (Bayesian Estimation of Hardness Ratios): Computing Hardness Ratios with Poissonian Errors

David A. van Dyk (dvd@ics.uci.edu, Department of Statistics, University of California at Irvine), Taeyoung Park (tpark@stat.harvard.edu, Department of Statistics, Harvard University), Vinay L. Kashyap, and Andreas Zezas (Harvard-Smithsonian Center for Astrophysics).

CHASC (California-Harvard AstroStatistics Collaboration)

www.ics.uci.edu/~dvd/astrostat.html

Summary

- Hardness ratios are commonly used to characterize the spectrum of an X-ray source when spectral fitting is not possible.
- The classical method is based on the net number of counts and fails
 to account for the asymmetric nature of the Poisson counts. This is
 a problem with low counts, especially when the counts are zero or
 cannot statistically be distinguished from zero.
- The errors bars associated with the classical method are based on Gaussian assumptions and do not provide realistic confidence limits.
- In this poster, we present a statistically coherent scheme for computing hardness ratios and their associated errors.
- In this scheme, we model the detected photons as independent Poisson variables and calculate hardness ratios using a sophisticated Bayesian approach.
- Finally, we present a simulation study comparing a new Bayesian method with the classical method, which demonstrates the new method provide more reliable results especially for low count data.
- BEHR (Bayesian Estimation of Hardness Ratios) that
 uses the new Bayesian method is free statistical software and will
 soon be available on the CIAO contributed software page.

The Classical Method

A Hardness Ratio

- Given observed counts in the soft band (S) and the hard band (H),
 a hardness ratio can be computed as a summary of a spectrum:
 - 1. Simple counts ratio, $R = \frac{S}{H}$
 - 2. X-ray color, $C = \log_{10} \frac{S}{H}$, and
 - 3. Fractional difference hardness ratio, HR = $\frac{H-S}{H+S}$
- In the presence of background where B_S and B_H are collected in an area of c times the source region, the above is generalized to

1. R =
$$\frac{S - B_S/c}{H - B_H/c}$$

2. C =
$$\log_{10} \left(\frac{S - B_S/c}{H - B_H/c} \right)$$
, and

3. HR =
$$\frac{(H - B_H/c) - (S - B_S/c)}{(H - B_H/c) + (S - B_S/c)}$$

and their errors are computed under Gaussian assumptions:

1.
$$\sigma_{\rm R} = \frac{S}{H} \sqrt{\frac{\sigma_S^2 + \sigma_{BS}^2/c^2}{(S - B_S/c)^2} + \frac{\sigma_H^2 + \sigma_{BH}^2/c^2}{(H - B_H/c)^2}}$$

2.
$$\sigma_{\rm C} = \frac{1}{\ln(10)} \ \sqrt{\frac{\sigma_{\rm S}^2 + \sigma_{BS}^2/c^2}{(S - B_S/c)^2} + \frac{\sigma_H^2 + \sigma_{BH}^2/c^2}{(H - B_H/c)^2}},$$
 and

$$3. \ \, \sigma_{\rm HR} = \frac{{2\sqrt {(H - B_H/c)^2 {\left({\sigma _S^2 + \sigma _{B_S}^2/c^2} \right)} + (S - B_S/c)^2 \left({\sigma _H^2 + \sigma _{B_H}^2/c^2} \right)} }}{{{\left[{(H - B_H/c) + (S - B_S/c)} \right]^2}}}$$

where each σ is approximated, e.g., $\sigma_S \approx \sqrt{S+0.75}+1.$

Modeling the Hardness Ratios

- The typical Gaussian assumptions are inappropriate for low counts.
- Instead, we directly model photons from a source (η) and photons from background (β) as independent Poisson variables:
- $-S = \eta_S + \beta_S \sim \text{Poisson}(\lambda_S + \xi_S), \ H = \eta_H + \beta_H \sim \text{Poisson}(\lambda_H + \xi_H),$
- $-B_S \sim \text{Poisson}(c \xi_S)$, and $B_H \sim \text{Poisson}(c \xi_H)$.

where λ and ξ denote the expected source and background counts in the source region.

- \bullet Given the expected source counts, the hardness ratio is rewritten as:
 - 1. Simple counts ratio, $R = \frac{\lambda_S}{\lambda_H}$
- 2. X-ray color, $C = \log_{10} \frac{\lambda_S}{\lambda_H}$, and
- 3. Fractional difference hardness ratio, HR = $\frac{\lambda_H \lambda_S}{\lambda_H + \lambda_S}$

New Bayesian Method

Bayesian Approach

• Bayesian inferences for a parameter are based on a posterior distribution [e.g., $p(\lambda_S, \xi_S|S, B_S)$] which combines a prior distribution [e.g., $p(\lambda_S, \xi_S)$] with the likelihood [e.g., $p(S, B_S|\lambda_S, \xi_S)$] via **Bayes'** theorem.

$$p(\lambda_S, \xi_S | S, B_S) \ = \ \frac{p(\lambda_S, \xi_S) p(S, B_S | \lambda_S, \xi_S)}{\iint p(\lambda_S, \xi_S) p(S, B_S | \lambda_S, \xi_S) \, d\lambda_S \, d\xi_S}$$

Computing Posterior Distributions of Hardness Ratios:

- The posterior distribution of a hardness ratio is computed from the joint posterior distributions of λ_S and λ_H :
 - 1. the posterior distribution of R is computed from

$$p(R, \lambda_H | S, H, B_S, B_H) dR d\lambda_H$$

$$= p(\lambda_S, \lambda_H | S, H, B_S, B_H) \left| \frac{\partial(\lambda_S, \lambda_H)}{\partial(\mathbf{R}, \lambda_H)} \right| d\lambda_S d\lambda_H$$

$$= p(R\lambda_H, \lambda_H | S, H, B_S, B_H) \lambda_H dR d\lambda_H,$$

where we integrate out λ_H

2. the posterior distribution of C is computed from

$$p(C, \lambda_H | S, H, B_S, B_H) dC d\lambda_H$$

$$= p(\lambda_S, \lambda_H | S, H, B_S, B_H) \left| \frac{\partial (\lambda_S, \lambda_H)}{\partial (C, \lambda_H)} \right| d\lambda_S d\lambda_H$$

$$= p(10^{\mathrm{C}}\lambda_H, \lambda_H|S, H, B_S, B_H)10^{\mathrm{C}}\ln(10)\lambda_H d\mathrm{C} d\lambda_H,$$

where we integrate out λ_H ; and

3. the posterior distribution of HR is computed from

$$p({\rm HR},\omega\,|S,H,B_S,B_H)\,d\!{\rm HR}\,d\omega$$

$$= p(\lambda_S, \lambda_H | S, H, B_S, B_H) \left| \frac{\partial(\lambda_S, \lambda_H)}{\partial(\operatorname{HR}, \omega)} \right| d\lambda_S d\lambda_H$$

$$= p\left(\frac{(1 - HR)\omega}{2}, \frac{(1 + HR)\omega}{2} \middle| S, H, B_S, B_H\right) \frac{\omega}{2} dHR d\omega,$$
we we integrate out $\omega = \lambda_0 + \lambda_0$:

- The Bayes' theorem analytically computes a high dimensional joint posterior distribution of all unknown quantities.
- To integrate out everything but \(\lambda_S \) and \(\lambda_H \) of the joint posterior distribution, we use either Monte Carlo integration or efficient numerical integration.
- We use both methods of integration because neither has the advantage over the other in our case.

Simulation Study

Simulated Data Sets:

- To compare our Bayesian method with the classical method, we simulate 100 data sets of S, H, B_S, and B_H for each of 100 different magnitudes of the expected source counts, λ_S and λ_H, but with the same expected background counts ξ_S = ξ_H = 10, the constant background area ratio c = 100, and the constant effective area of 1.
- We let λ_S range from 1 to 100 and $\lambda_H = \lambda_S/R$ is determined by the fixed value of R.

Simulation Results:

- Figure 1 presents the estimates of hardness ratios according to total expected source counts (λ_S + λ_H): the blue dots represent the posterior modes of hardness ratios; the red dots represent estimates of hardness ratios based on the classical method; and the green dotted lines represent fixed values of hardness ratios based on which we simulate the data sets.
- The purple dots in the classical method indicate estimates of R that result in negative values: In the case of R and C, these estimates are reflected at zero; in the case of HR, the estimates below -1 are reflected at -1 and the estimates above 1 are reflected at 1.
- The classical method provides unreliable estimates especially for low count data, as compared to the Bayesian method.

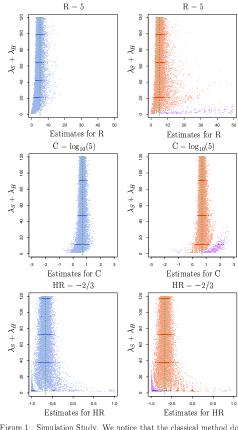


Figure 1: Simulation Study. We notice that the classical method does not provide reliable estimates for low count data, while it agrees with the Bayesian method for large count data.

A Prior Distribution

An Informative Prior Distribution:

- If there is a strong belief as to the hardness ratio (location or spread), we can incorporate the information as a prior distribution, which is called an informative prior distribution.
- The Bayesian method produces the posterior distribution, which can be used as an informative prior distribution for future observation of the same source.

A Flat Prior Distribution:

- With no prior information available, we normally use a so-called flat prior distribution. Since the Poisson intensity takes positive real values, two sorts of a flat prior are considered:
 - $p(\lambda) \propto 1$ that corresponds to $\psi = 1$ when $\lambda^{\psi-1} \propto 1$;
 - $p(\log_{10}\lambda) \propto 1$ that corresponds to $\psi=0$ when $\lambda^{\psi-1} \propto 1$.
- With large count data, which flat prior distribution to use does not make much difference in the posterior distribution.
- When the expected counts are low, we choose the value of ψ using a simulation study. We aim to ensure that the resulting 95% intervals contain the true value at least 95% of the time.

Acknowledgments

We gratefully acknowledge funding for this partially provided by NSF Grants DMS-01-04129, DMS-04-38240, and DMS-04-06085 and by NASA Contracts NAS8-39073 and NAS8-03060(CXC). This work is a product of joint work with the California-Harvard astrostatistics collaboration (CHASC) whose members include J. Chiang, A. Connors, D. van Dyk, D. Esch, P. Freeman, H. Kang, V. L. Kashyap, X.-L. Meng, A. Siemiginowska, E. Sourlas, T. Park, Y. Yu, and A. Zezas.