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Motivation and Previous Works

X-ray Sources

X-ray surveys [1, 4, 2] produce massive X-ray data.

The data contain event files of photon arrivals:

{(ti, ei)}n
i=1

Want to learn these sources automatically.

Source type classification
Anomaly detection
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Motivation and Previous Works

Previous Works

Both supervised and unsupervised.

One line of work: manual feature selection.

Requires domain knowledge.
May require time-consuming pipelines.
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Motivation and Previous Works

Previous works

Figure 1: Features selected in [3].
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Motivation and Previous Works

Previous Works

Another line of work: deep learning

CNN, RNN, etc.
Requires reconstructed rate function: {r(τi)}N

i=1 where {τi}N
i=1 is a

uniform grid.

Rate function reconstruction:

Naively bins the event file: artifacts due to Poisson arrival.
Gregory Loredo algorithm: a full Bayesian approach

Consider all stepwise light curves up to a certain frequency.
Uniform Prior + Poisson likelihood.
Superimpose all proposals weighted by posterior.

Drawbacks of GL:

Resolution limited due to computational complexity.
Only reconstructs rate function. Need separate pipeline for learning.
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Motivation and Previous Works

Previous Works

Figure 2: Reconstruction by GL algorithm.

Song (Harvard) PPAD October 22, 2024 7 / 23



Motivation and Previous Works

Contribution

A learning pipeline that

Is fully unsupervised

Respects the Poisson nature

Has adaptive resolution

Is end-to-end: rate function reconstruction + representation learning
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Method

Loglikelihood

Assume no energy marking for now: {ti}n
i=1

Likelihood for a candidate rate function r:

likelihood(t1, ..., tn; r) =

(
n

∏
i=1

r(ti)

)
exp

(
−
∫ T

0
r(t)dt

)
.

Use negative log likelihood as the loss function.
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Method

Regularization

What’s the problem with likelihood only?

Time (hour)0

20

40

60

80

Ra
te

Need to add ”smoothness” regularization

Total variation penalty:

TV(r; τ1, ..., τN) =
1

N − 1

N−1

∑
i=1

|r(τi)− r(τi+1)|

Two TV to guarantee enough coverage.
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Method

Neural representation

Naive idea: parametrized basis function

Limited resolution
Need domain knowledge
Optimization

Neural representation: approximate r with neural network rϕ.

Infinite resolution: any input t, rϕ(t) yields the rate.

Use a ResNet with ReLU activation

Not efficient in learning high frequencies.

Positional encoding:

γ(t) = [t̄, sin
(
20πt̄

)
, cos

(
20πt̄

)
, ..., sin

(
2L−1πt̄

)
, cos

(
2L−1πt̄

)
]. (1)

where t̄ = t/T.
Input γ(t) to the network: rϕ(γ(t)).

Song (Harvard) PPAD October 22, 2024 11 / 23



Method

Neural representation

Naive idea: parametrized basis function

Limited resolution
Need domain knowledge
Optimization

Neural representation: approximate r with neural network rϕ.

Infinite resolution: any input t, rϕ(t) yields the rate.

Use a ResNet with ReLU activation

Not efficient in learning high frequencies.

Positional encoding:

γ(t) = [t̄, sin
(
20πt̄

)
, cos

(
20πt̄

)
, ..., sin

(
2L−1πt̄

)
, cos

(
2L−1πt̄

)
]. (1)

where t̄ = t/T.
Input γ(t) to the network: rϕ(γ(t)).

Song (Harvard) PPAD October 22, 2024 11 / 23



Method

Neural representation

Naive idea: parametrized basis function

Limited resolution
Need domain knowledge
Optimization

Neural representation: approximate r with neural network rϕ.

Infinite resolution: any input t, rϕ(t) yields the rate.

Use a ResNet with ReLU activation

Not efficient in learning high frequencies.

Positional encoding:

γ(t) = [t̄, sin
(
20πt̄

)
, cos

(
20πt̄

)
, ..., sin

(
2L−1πt̄

)
, cos

(
2L−1πt̄

)
]. (1)

where t̄ = t/T.
Input γ(t) to the network: rϕ(γ(t)).

Song (Harvard) PPAD October 22, 2024 11 / 23



Method

Neural representation

Naive idea: parametrized basis function

Limited resolution
Need domain knowledge
Optimization

Neural representation: approximate r with neural network rϕ.

Infinite resolution: any input t, rϕ(t) yields the rate.

Use a ResNet with ReLU activation

Not efficient in learning high frequencies.

Positional encoding:

γ(t) = [t̄, sin
(
20πt̄

)
, cos

(
20πt̄

)
, ..., sin

(
2L−1πt̄

)
, cos

(
2L−1πt̄

)
]. (1)

where t̄ = t/T.
Input γ(t) to the network: rϕ(γ(t)).

Song (Harvard) PPAD October 22, 2024 11 / 23



Method

Representation learning

Rate function reconstruction is complete. Where is the representation?

(Unsupervised) representation learning for images: AutoEncoders

What’s the problem on event files?

Input has variable length.
Extremely low SNR
High variance in information throughput
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Method

Autodecoders

Autodecoder: no encoder!

Directly ”prepare” latent representations.

Learn them together with the neural net.

At test time: optimize the new latent.
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Method

PPAD
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Method

PPAD

j = 1, ..., M event files, k = 1, ..., K energy bins, i = 1, ..., nj,k events.

Ltotal(ϕ; {zj}M
j=1) =

M

∑
j=1

(
K

∑
k=1

(
L(j,k)
neg-loglikelihood + λTVL(j,k)

TV

)
+ λlatentL(j)

latent

)
,

L(j,k)
neg-loglikelihood = −

nj,k

∑
i=1

log r(k)ϕ (γ(ti,k); z(j)) +
∫ T

0
r(k)ϕ (γ(t); z(j))dt,

L(j,k)
TV =

[
1

N − 1

N−1

∑
i=1

|r(k)ϕ (γ(τi); z(j))− r(k)ϕ (γ(τi+1); z(j))|

+
1

n − 1

n−1

∑
i=1

|r(k)ϕ (γ(ti); z(j))− r(k)ϕ (γ(ti); z(j))|
]

,

L(j,k)
latent = ∥z(j)∥2

2,
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Method

PPAD

Training :ϕ̂, {ẑ(j)}M
j=1 := arg min

ϕ;{zj}M
j=1

Ltotal(ϕ; {z(j)}M
j=1). (2)

Inference :ẑ := arg min
z

Ltotal(ϕ̂; z). (3)
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Experiments

Data

∼ 105 event files from the Chandra Source Catalog [1]

Truncated to 8 hours

Energy bins:

Soft: 0.5-1.2kV
Medium: 1.2-2kV
Hard: 2-7kV
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Experiments

Rate function reconstruction
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Experiments

Latent space
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Experiments

Prediction Results

Regression Traget MSE R2

hard ms 0.02 0.87
hard hm 0.01 0.88
hard hs 0.02 0.93

Classification Target Accuracy F1 Score
var index b > 5? 0.92 0.63

source type 0.62 0.25
YSO vs AGN 0.75 0.70

Table 1: Regression/classification performance using learned latent features. All
models use a random forest with 100 trees and default hyperparameters Train-test
split is 0.8 − 0.2 without validation set. SMOTE is applied in classification case to
resolve class imbalance.
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Experiments

Anomaly detection
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Experiments

Future Works

Trade-off between reconstruction and representation.

Allows sampling and UQ: variational autodecoders.

Autoencoders.

Invariance w.r.t. phase, total rate, etc.
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Experiments

Thank you!
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