A Poisson-process AutoDecoder for X-ray Sources

Yanke Song with Ashley Villar and Rafael Martínez-Galarza

Stats 300 Seminar

October 22, 2024

1 [Motivation and Previous Works](#page-2-0)

X-ray Sources

- X-ray surveys [\[1,](#page-42-0) [4,](#page-42-1) [2\]](#page-42-2) produce massive X-ray data.
- The data contain event files of photon arrivals:

 $\{(t_i, e_i)\}_{i=1}^n$

X-ray Sources

- X-ray surveys [\[1,](#page-42-0) [4,](#page-42-1) [2\]](#page-42-2) produce massive X-ray data.
- The data contain event files of photon arrivals:

$$
\{(t_i,e_i)\}_{i=1}^n
$$

- Want to learn these sources automatically.
	- Source type classification
	- Anomaly detection

Both supervised and unsupervised.

- Both supervised and unsupervised.
- One line of work: manual feature selection
	- Requires domain knowledge.
	- May require time-consuming pipelines.

Figure 1: Features selected in [\[3\]](#page-42-3).

- Another line of work: deep learning
	- CNN, RNN, etc.
	- Requires reconstructed rate function: $\{r(\tau_i)\}_{i=1}^N$ where $\{\tau_i\}_{i=1}^N$ is a uniform grid.

- Another line of work: deep learning
	- CNN, RNN, etc.
	- Requires reconstructed rate function: $\{r(\tau_i)\}_{i=1}^N$ where $\{\tau_i\}_{i=1}^N$ is a uniform grid.
- Rate function reconstruction:
	- Naively bins the event file: artifacts due to Poisson arrival.

- Another line of work: deep learning
	- CNN, RNN, etc.
	- Requires reconstructed rate function: $\{r(\tau_i)\}_{i=1}^N$ where $\{\tau_i\}_{i=1}^N$ is a uniform grid.
- Rate function reconstruction:
	- Naively bins the event file: artifacts due to Poisson arrival.
	- Gregory Loredo algorithm: a full Bayesian approach
		- Consider all stepwise light curves up to a certain frequency.
		- \bullet Uniform Prior $+$ Poisson likelihood.
		- Superimpose all proposals weighted by posterior.

- Another line of work: deep learning
	- CNN, RNN, etc.
	- Requires reconstructed rate function: $\{r(\tau_i)\}_{i=1}^N$ where $\{\tau_i\}_{i=1}^N$ is a uniform grid.
- Rate function reconstruction:
	- Naively bins the event file: artifacts due to Poisson arrival.
	- Gregory Loredo algorithm: a full Bayesian approach
		- Consider all stepwise light curves up to a certain frequency.
		- \bullet Uniform Prior $+$ Poisson likelihood.
		- Superimpose all proposals weighted by posterior.
	- **o** Drawbacks of GL:
		- Resolution limited due to computational complexity.
		- Only reconstructs rate function. Need separate pipeline for learning.

A learning pipeline that

o Is fully unsupervised

- o Is fully unsupervised
- Respects the Poisson nature

- o Is fully unsupervised
- Respects the Poisson nature
- Has adaptive resolution

- Is fully unsupervised
- Respects the Poisson nature
- **•** Has adaptive resolution
- \bullet Is end-to-end: rate function reconstruction $+$ representation learning

Assume no energy marking for now: $\{t_i\}_{i=1}^n$

- Assume no energy marking for now: $\{t_i\}_{i=1}^n$
- Likelihood for a candidate rate function *r*:

likelihood
$$
(t_1, ..., t_n; r)
$$
 = $\left(\prod_{i=1}^n r(t_i)\right) \exp\left(-\int_0^T r(t)dt\right)$.

- Assume no energy marking for now: $\{t_i\}_{i=1}^n$
- Likelihood for a candidate rate function *r*:

likelihood
$$
(t_1, ..., t_n; r)
$$
 = $\left(\prod_{i=1}^n r(t_i)\right) \exp\left(-\int_0^T r(t)dt\right)$.

Use negative log likelihood as the loss function.

Regularization

What's the problem with likelihood only?

Regularization

What's the problem with likelihood only?

Need to add "smoothness" regularization

Regularization

What's the problem with likelihood only?

- Need to add "smoothness" regularization
- **•** Total variation penalty:

$$
TV(r; \tau_1, ..., \tau_N) = \frac{1}{N-1} \sum_{i=1}^{N-1} |r(\tau_i) - r(\tau_{i+1})|
$$

Regularization

• What's the problem with likelihood only?

- Need to add "smoothness" regularization
- **•** Total variation penalty:

$$
TV(r; \tau_1, ..., \tau_N) = \frac{1}{N-1} \sum_{i=1}^{N-1} |r(\tau_i) - r(\tau_{i+1})|
$$

• Two TV to guarantee enough coverage.

Neural representation

- Naive idea: parametrized basis function
	- Limited resolution
	- Need domain knowledge
	- **•** Optimization

Neural representation

- Naive idea: parametrized basis function
	- **.** Limited resolution
	- Need domain knowledge
	- Optimization
- Neural representation: approximate *r* with neural network *rϕ*.
- Infinite resolution: any input *t*, $r_{\phi}(t)$ yields the rate.

Neural representation

- Naive idea: parametrized basis function
	- **.** Limited resolution
	- Need domain knowledge
	- Optimization
- Neural representation: approximate *r* with neural network *rϕ*.
- Infinite resolution: any input *t*, $r_{\phi}(t)$ yields the rate.
- Use a ResNet with ReLU activation
	- Not efficient in learning high frequencies.

Neural representation

- Naive idea: parametrized basis function
	- Limited resolution
	- Need domain knowledge
	- Optimization
- Neural representation: approximate *r* with neural network *rϕ*.
- Infinite resolution: any input t , $r_{\phi}(t)$ yields the rate.
- Use a ResNet with ReLU activation
	- Not efficient in learning high frequencies.
- Positional encoding:

$$
\gamma(t) = [\bar{t}, \sin(2^0 \pi \bar{t}), \cos(2^0 \pi \bar{t}), ..., \sin(2^{L-1} \pi \bar{t}), \cos(2^{L-1} \pi \bar{t})]. \tag{1}
$$

where $\bar{t} = t/T$.

• Input $\gamma(t)$ to the network: $r_{\phi}(\gamma(t))$.

Representation learning

• Rate function reconstruction is complete. Where is the representation?

Representation learning

- Rate function reconstruction is complete. Where is the representation?
- (Unsupervised) representation learning for images: AutoEncoders

Representation learning

- Rate function reconstruction is complete. Where is the representation?
- (Unsupervised) representation learning for images: AutoEncoders

- What's the problem on event files?
	- Input has variable length.
	- **•** Extremely low SNR
	- High variance in information throughput

Autodecoders

Autodecoder: no encoder!

- **•** Directly "prepare" latent representations.
- Learn them together with the neural net.
- At test time: optimize the new latent.

PPAD

PPAD

• $j = 1, ..., M$ event files, $k = 1, ..., K$ energy bins, $i = 1, ..., n_{i,k}$ events. $\mathcal{L}_{\mathsf{total}}(\pmb{\phi}; \{\pmb{z}_j\}_{j=1}^M) =$ *M* ∑ *j*=1 $\left(\frac{K}{\epsilon}\right)$ ∑ *k*=1 $\left(\mathcal{L}_{\mathsf{neg-loglikelihood}}^{(j,k)} + \lambda_{\mathsf{TV}} \mathcal{L}_{\mathsf{TV}}^{(j,k)} \right) + \lambda_{\mathsf{latent}} \mathcal{L}_{\mathsf{latent}}^{(j)} \right)$

$$
\mathcal{L}_{\text{neg-loglikelihood}}^{(j,k)} = -\sum_{i=1}^{n_{j,k}} \log r_{\phi}^{(k)}(\gamma(t_{i,k}); z^{(j)}) + \int_0^T r_{\phi}^{(k)}(\gamma(t); z^{(j)}) dt,
$$

$$
\mathcal{L}_{\mathsf{TV}}^{(j,k)} = \left[\frac{1}{N-1} \sum_{i=1}^{N-1} |r_{\phi}^{(k)}(\gamma(\tau_i); z^{(j)}) - r_{\phi}^{(k)}(\gamma(\tau_{i+1}); z^{(j)})| \right]
$$

$$
+\frac{1}{n-1}\sum_{i=1}^{n-1}|r_{\phi}^{(k)}(\gamma(t_i);z^{(j)})-r_{\phi}^{(k)}(\gamma(t_i);z^{(j)})|\bigg],
$$

 $\mathcal{L}_{\mathsf{latent}}^{(j,k)} = \|z^{(j)}\|_2^2,$

,

Training :
$$
\hat{\phi}
$$
, $\{\hat{z}^{(j)}\}_{j=1}^M := \underset{\phi:\{z_j\}_{j=1}^M}{\arg \min} \mathcal{L}_{\text{total}}(\phi; \{z^{(j)}\}_{j=1}^M).$ (2)
\nInference : $\hat{z} := \underset{z}{\arg \min} \mathcal{L}_{\text{total}}(\hat{\phi}; z).$ (3)

- $\sim 10^5$ event files from the Chandra Source Catalog [\[1\]](#page-42-0)
- Truncated to 8 hours
- **Energy bins:**
	- Soft: 0.5-1.2kV
	- Medium: 1.2-2kV
	- Hard: 2-7kV

[Experiments](#page-35-0)

Rate function reconstruction

[Experiments](#page-35-0)

Latent space

Table 1: Regression/classification performance using learned latent features. All models use a random forest with 100 trees and default hyperparameters Train-test split is $0.8 - 0.2$ without validation set. SMOTE is applied in classification case to resolve class imbalance.

[Experiments](#page-35-0)

Anomaly detection

Future Works

- Trade-off between reconstruction and representation.
- Allows sampling and UQ: variational autodecoders.
- **Autoencoders.**
- Invariance w.r.t. phase, total rate, etc.

Thank you!

References I

- [1] Ian N. Evans et al. "The Chandra Source Catalog Release 2 Series". In: arXiv e-prints, arXiv:2407.10799 (July 2024), arXiv:2407.10799. DOI: [10.48550/arXiv.2407.10799](https://doi.org/10.48550/arXiv.2407.10799). arXiv: [2407.10799 \[astro-ph.HE\]](https://arxiv.org/abs/2407.10799).
- [2] A. Merloni et al. "The SRG/eROSITA all-sky survey. First X-ray catalogues and data release of the western Galactic hemisphere". In: 682, A34 (Feb. 2024), A34. DOI: [10.1051/0004-6361/202347165](https://doi.org/10.1051/0004-6361/202347165). arXiv: [2401.17274 \[astro-ph.HE\]](https://arxiv.org/abs/2401.17274).
- [3] Víctor Samuel Pérez-Díaz et al. "Unsupervised machine learning for the classification of astrophysical X-ray sources". In: Monthly Notices of the Royal Astronomical Society 528.3 (2024), pp. 4852–4871.
- [4] N. A. Webb et al. "The XMM-Newton serendipitous survey. IX. The fourth XMM-Newton serendipitous source catalogue". In: 641, A136 (Sept. 2020), A136. DOI: [10.1051/0004-6361/201937353](https://doi.org/10.1051/0004-6361/201937353). arXiv: [2007.02899 \[astro-ph.HE\]](https://arxiv.org/abs/2007.02899).