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Short-Duration Flares

Certain stars produce sporadic short-duration flares which emanate from their
coronae

Interest lies in understanding the proportion of time a star spends in flaring
and quiescent states

The sun is close enough to be directly observable and we have plenty of
“continuous” information to work with (e.g., Stanislavsky et al., 2020)

However, for distant stars that emit X-rays, all we have are light curves
computed from lists of photons recorded by X-ray telescopes (just time and
energy)
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EV Lac

Figure 1: EV Lac unleashing a monster flare (image source: NASA)
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https://www.nasa.gov/image-article/pipsqueak-star-unleashes-monster-flare/


Bivariate EV Lac Light Curves

Figure 2: Bivariate light curves: time series plots of EV Lac count data based on event
lists (September 2001 left; March 2009 right) split into hard (1.5–8.0 keV) and soft
(0.3–1.5) keV passbands

Previous work on flaring state estimation mostly apply ad-hoc rules or
black-box/model-free learning methods (e.g., neural networks)

For the EV Lac data above, the best guesses so far for flaring state
proportions are 39% (September 2001) and 29% (March 2009)
(Huenemoerder et al., 2010)
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The Plan

In this project, we use hidden Markov models (HMMs) to model flaring and
quiescence

We take a two-stage approach in our analysis

In Stage 1, we use HMMs to predict the values of a continuous latent process
that stochastically induces the observations in the data

In Stage 2, we use a finite mixture model (a special case of an HMM) to
approximate the distribution of the predicted states and use it to estimate the
proportion of time EV Lac spends flaring

Robert Zimmerman (UofT + ICL) Hidden Markov Modeling of X-Ray Light Curves 5 / 20



(Discrete-Time) Hidden Markov Models

· · · Xt−2 Xt−1 Xt Xt+1 Xt+2 · · ·

Yt−2 Yt−1 Yt Yt+1 Yt+2

Figure 3: A graphical model representing the standard discrete-time HMM dependence
structure

An HMM consists of an unobserved Markov chain X1:T ⊂ X and an
observed time series Y1:T such that...

▶ Xt determines the distribution of Yt, and
▶ Ys and Yt are conditionally independent given X1:T
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Discrete-Space HMMs...

When the state space X is finite — say X = {1, . . . , K} — the HMM is a
discrete-space HMM

These are characterized by initial probabilities δi, transition probabilities γi,j ,
and state-dependent densities/mass functions hi(· | λi) for i, j ∈ X

The likelihood is given by

L(η | y1:T ) =
K∑

x1=1
· · ·

K∑
xT =1

(
δx1 · hx1(y1 | λx1)

T∏
t=2

(
γxt−1,xt

· hxt
(yt | λxt

)
))

This can be calculated efficiently (“forward algorithm”, etc.)!

So why not assume a 2-state (or maybe 3-state) HMM for our data?
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...Don’t Really Work

Figure 4: Soft-band curves colored with classifications based on 2-state (left) and 3-state
(right) HMMs fit directly to the observed data from September 2001

The conditional independence HMM assumption clearly fails for this data!

There is some kind of continuous temporal trend driving the emissions

So we need something else
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Continuous-Space HMMs and State-Space Models

A continuous-space HMM has the same definition as a discrete-space HMM,
except now the underlying chain X1:T takes values in a continuum (we take
X = Rd)

When the dynamics of X1:T are specified, the resulting continuous-space
HMM is an example of a state-space model

For example, a general Poisson state-space model is given by

Yt | Xt ∼ Poisson(w · β1 · eXt,1) · Poisson(w · β2 · eXt,2),
Xt = ΦXt−1 + εt,

where Φ =
[

ϕ1 ϕ12
ϕ21 ϕ2

]
and εt

iid∼ N2

(
0,

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

])
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Three Nested State-Space Models for Flaring Coronae
Model 1: AR(1) Process

Yt | Xt ∼ Poisson(w · β1 · eXt) · Poisson(w · β2 · eXt),

Xt = ϕXt−1 + εt, where εt
iid∼ N (0, σ2)

Model 2: Uncorrelated VAR(1) Process On a Line

Yt | Xt ∼ Poisson(w · β1 · eXt,1) · Poisson(w · β2 · eXt,2),
Xt = ΦXt−1 + εt,

where Φ =
[
ϕ 0
0 ϕ

]
and εt

iid∼ lim
ρ→1

N2

([
0
0

]
,

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

])

Model 3: Uncorrelated VAR(1) Process

Yt | Xt ∼ Poisson(w · β1 · eXt,1) · Poisson(w · β2 · eXt,2),
Xt = ΦXt−1 + εt,

where Φ =
[
ϕ1 0
0 ϕ2

]
and εt

iid∼ N2

([
0
0

]
,

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

])
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State-Space Model Estimation Is Non-Trivial

Such state-space models are fully characterized by an initial density δ(x), a
transition kernel γ(x, y), and state-dependent densities hx(· | λx) for
x, y ∈ X

The likelihood function for the general state-space model is

L(η | y1:T ) =
∫

X
· · ·
∫

X
δ(x1)·hx1(y1 | λx1)

T∏
t=2

γ(xt−1, xt)·hxt
(yt | λxt

) dxT :1,

where dxT :1 = dxT · · · dx1

Even when X = R, this cannot be computed, let alone maximized
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A Discrete-Space HMM Approximation

By reducing X to a bounded subset A ⊂ Rd, partitioning it into m
hyperrectangles A =

⋃m
i=1 Ai, and selecting a “representative point” c∗

i ∈ Ai

within each, the likelihood can be approximated as

L(η | y1:T ) ≈
m∑

i1=1
· · ·

m∑
iT =1

(
P(X1 ∈ Ai1) · hc∗

i1
(y1 | λc∗

i1
) ·

T∏
t=2

(
P(Xt ∈ Ait

| Xt−1 = c∗
it−1

) · hc∗
it

(yt | λc∗
it

)
))

With a change of notation, this is

L(η | y1:T ) ≈
m∑

i1=1
· · ·

m∑
iT =1

(
δ̃i1 · hc∗

i1
(y1 | λc∗

i1
)

T∏
t=2

(
γ̃it−1,it

· hc∗
it

(yt | λc∗
it

)
))

,

which is (essentially) a discrete-space HMM likelihood!
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Model Selection for EV Lac

With some computational tricks, we maximize the approximate likelihood
numerically and use the parametric bootstrap for bias-correction and
standard errors

For Model 1 vs 2, the LRT works easily and clearly favors Model 2

For Model 2 vs 3, the LRT fails! So we use other checks and criteria

For example, the estimate of ρ in Model 3 is ρ̂ = 0.99999987... with a
standard error of ≈ 0

...we go with Model 2
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Flaring State Interval Classification

How do we perform inference on the hidden states?

Once the state-space model is fit, we can make posterior state predictions X̂t

for each Xt (this is local decoding)
▶ Specifically: X̂t = argmax

xt∈X
Pθ̂(Xt = xt | Y1:T = y1:T )

We view the X̂1, . . . , X̂T as fresh “data” and approximate their distribution
by a 2-component mixture:

X̂1, . . . , X̂T
iid∼ α · F1 + (1 − α) · F2

If we assume that the distribution F2 corresponds to “flaring”, then (1 − α) is
the overall proportion of time spent in this state
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Semi-Supervised Classification
If we have a clear sustained period [t1, tq] of quiescence at hand, we use
X̂t1:tq

as training data for a KDE for the quiescent mixture component

We approximate the flaring mixture component with a step function

We fit the mixture using a custom-designed EM algorithm, which gives
100% · (1 − α̂) ≈ 45%

Figure 5: Fitted component densities (left) and mixture density (right) for September
2001, overlaid on a histogram of {X̂1, . . . X̂2027}
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Unsupervised Classification
If no sustained period of quiescence is available, we instead use a
3-component normal mixture,

X̂1, . . . , X̂T
iid∼ α1 · N (µ1, τ2

1 ) + α2 · N (µ2, τ2
2 ) + α3 · N (µ3, τ2

3 )

where the “left” two components correspond to quiescence

Also easily fit with an EM algorithm, which gives 100% · α̂3 ≈ 27%

Figure 6: Fitted component densities (left) and mixture density (right) for March 2009,
overlaid on a histogram of {X̂1, . . . X̂1937}
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High Resolution Spectra

Figure 7: Spectra from both September 2001 and March 2009 epochs shown superposed
for both flaring and quiescence; the overall brightness is higher, and the continuum is
stronger and more prominent during the flaring state, signifying a different thermal
signature
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Potential Future Work

Consider more complex models for Yt,1 | Xt and Yt,2 | Xt

▶ Instead of assuming conditional independence, model dependence using
state-dependent copulas

▶ Model other temporal patterns (e.g., a flare in one band proceeds a flare in
another)

Enlarge the set of distributions of Xt | Xt−1 under consideration
▶ Multivariate-t for heavier tails
▶ Mixture distributions for more complicated physical mechanisms

Split the observations into more passbands and thus move X1:T into a
higher-dimensional state-space (many covariance structures available)

▶ But even our “efficient” estimation technique suffers from the curse of
dimensionality! Can we get around this?

Etc...
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Thank you!
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