Emulating Photon Pile-up Effects on X-ray Spectra with a Neural Network

Justina R. Yang with Daniela Huppenkothen, Rafael Martínez-Galarza, Vinay Kashyap, Douglas Finkbeiner, Aneta Siemiginowska

> Wednesday, 6 November 2024 justina.yang@cfa.harvard.edu

X-ray telescopes enable us to examine distant objects

X-RAY

2 (original image: NASA/CXC/M. Weiss) Cygnus X-1: > 6000 light-years away

X-ray telescopes enable us to examine distant objects

Cygnus X-1 is a black hole X-ray binary (original image: NASA/CXC/M. Weiss)

X-ray data arrives in event lists from which we can extract spectra

4

X-ray spectra contain information about astrophysical object properties

Flux

Photon pile-up is an instrumental effect related to detector frame rate that is common in X-ray detectors. It affects observed events and distorts spectra.

Accurately understanding pile-up is important for measuring physical properties such as black hole spin.

Image: "The *Chandra* ABC Guide to Pileup"

6

Image: NASA/CXC/M. Weiss, NASA/CXC/SAO/Miller et al. 2002

Chandra X-Ray Observatory, ACIS-S instrument

and produces an electric signal linearly related to photon energy

The ACIS focal plane layout in 'sky' coordinates with each CCD labelled with its identification number.

7

Photon pile-up occurs when a detector registers multiple photons as a single event

Pile-up affects both events and spectra

Pile-up causes

- energy migration (events are associated with higher energies)
- decrease in event count rates
- grade migration (events may be assigned "grades" of poorer quality and may be rejected)

Pile-up affects both events and spectra

Pile-up causes

- energy migration (events are associated with higher energies)
- decrease in event count rates
- grade migration (events may be assigned "grades" of poorer quality and may be rejected)

Pile-up is only one part of the instrument response

Parts of the instrument response are described by the ARF and RMF, which are well-understood and calibrated

Detector sensitivity is parametrized by the **ARF** (ancillary response file): includes effective area, quantum

Parts of the instrument response are described by the ARF and RMF, which are well-understood and calibrated

Pile-up is an important effect to model, but it is fundamentally photon-level and is difficult to model analytically

The current standard is the Davis 2001 pile-up model

Incident spectrum Detector response: ARF Pile-up Detector response: RMF **Output** spectrum

Davis 2001:

Probability (piled-up combination of n photons has a good grade, given that the combination of photons 1, ..., $n -$ 1 had a good grade) = α

- Often, analysis assumes $\alpha = 0.5$
- Statistical model does not hold for severe pile-up
- Standard method, e.g. implemented in MARX ("Model of AXAF Response to X-rays"), a ray-trace Monte Carlo simulator of Chandra observations.

Can a neural network emulate a simulated version of pile-up, and eventually the empirical Chandra/ACIS pile-up?

• Neural networks are good function approximators and may be able to directly learn the function that distorts the idealized spectrum into an observed spectrum

• Neural networks can be evaluated much faster than MARX simulations

Neural Network Model

A trained neural network can be incorporated into different parameter inference methods

Details of the neural network

Training data: >17,000 pairs of (incident spectrum with instrumental response, MARX-simulated spectrum with pileup and observational noise)

Incident spectrum with instrumental response

20

The neural network can closely reproduce a MARXsimulated piled-up spectrum

The neural network can closely reproduce a MARXsimulated piled-up spectrum

Preliminary work using the neural network in an MCMC is promising

- Parameter inference with **emcee** MCMC code (Foreman-Mackey et al. 2012)
- Optimization quantity = $log(P)$ = log[product over channels k of Probability (MARX counts in channel k, given Poisson $mean = NN-predicted counts in channel k$

Preliminary work using the neural network in an MCMC is promising

Preliminary work using the neural network in an MCMC is promising

Future work: can the neural network emulate the empirical Chandra/ACIS pile-up?

Transfer learning to real Chandra observations with HETG data:

Images: Canizares et al. 2005, TGCat (Huenemoerder et al. 2011)

- Observations taken with *Chandra*/HETG (High-Energy Transmission Grating) distribute photons across more pixels and reduce pile-up in dispersed spectra. We will use 1st-order dispersed spectra as a proxy for unpiled "ground truth" spectra.
- New training data set: \sim 1000 pairs of (unpiled 1st-order HETG spectra, piled-up ACIS-S spectra)

Possible extensions of work

- Relevance for other non-CCD detectors
	- E.g. transition edge sensor (TES) microcalorimeters have a different pile-up effect, related to finite time resolution

Conclusions

- A simple, fully-connected neural network can emulate a simulated version of pile-up.
- We are investigating how to use it for robust and accurate parameter inference from piledup data.
- Future work will include transfer learning with \sim 1000 Chandra observations.
- Does your data experience a distortion like the Chandra/ACIS version of pile-up?

Neural Network Prediction

