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X-RAY

1.5 arcmin

Cygnus X-1: > 6000 light-years away
(original image: NASA/CXC/M. Weiss) »




X-ray telescopes enable us to examine distant objects

SR ~ 1.5 arcmin

| ILLUSTRATION

Cygnus X-1is a black hole X-ray binary (original image: NASA/CXC/M. Weiss)




X-ray data arrives in event lists
from which we can extract spectra
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Images

Images: NASA/CXC/M. Weiss, NASA/CXC/MPI/Brusa et al. 2005
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X-ray spectra contain information

Images:
NOIRLab/NSF/AURA/
P. Marenfeld,
NASA/CXC/M.
WESS
NASA/CXC/SAO/Mil
ler et al. 2002
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about astrophysical object properties
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Photon pile-up
IS an instrumental effect _
related to detector frame rate ,|’
that is common in X-ray L”éigéu.gz(i fﬁﬁgﬁf
detectors. It affects observed

events and distorts spectra.
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Accurately understanding
pile-up is important for
measuring physical properties
such as black hole spin. L WV T
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Image: NASA/CXC/M. Weiss, NASA/CXC/SAO/Miller et al. 2002
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Chandra X-Ray Observatory, ACIS-S instrument

Aspect Camera Spacecra ft
Stray Light
Shade

High Resolution

/ Camera (HRC)

b Instrument Module
— (1ISIM)

Solar Array —

Thrusters (4)

Low Gain Antenna (2)

Imaging Spectrometer
(ACIS)

CCD (charge-coupled device):

a set of coupled capacitors that
converts an incoming photon to a
charge-cloud of electron-hole pairs
and produces an electric signal
linearly related to photon energy

The ACIS focal plane layout in ‘sky’ coordinates with each CCD labelled with its identification number.
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Photon pile-up occurs when a detector registers multiple
photons as a single event

single
event
(x, v, E, ...)
> with
grade
2 Oor more
Image adapted from: NASA/CXC/M. CCD will detect : :
Weiss, NASA/CXC/D. Berry & A. Hobart charge clouds In a 5_|n9|e
frame time and
pixel region
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Pile-up affects both events and spectra

Pile-up causes

* energy migration (events
are associated with higher

energies)

* decrease In event count

rates

 grade migration (events
may be assighed "grades”
of poorer quality and may

be rejected)
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Neural network for simulated pile-up
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Pile-up affects both events and spectra

o ~ le+01 Example Source Spectrum
Pile-up causes el T
 energy migration (events
are associated with higher < | |
energies)
. le+034 Simulated observed spectrum without pile-up
i decrease |n event Cou nt Simulated observed spectrum with pile-up
rates revar
« grade migration (events ;I
may be assighed "grades”
of poorer quality and may
be rejected)

le-05 .
100
Energy [keV]
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Counts /s / keV

Counts / s / keV

Pile-up is only one part of the instrument response
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Lesol] Incident spectrum
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Chandra ACIS-S
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Parts of the instrument response are described by the ARF and
RMF, which are well-understood and calibrated
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Parts of the instrument response are described by the ARF and
RMF, which are well-understood and calibrated
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Signal broadening from RMF :
(redistribution matrix file): maps
incident photon energy to

signal distributed over channels.

Detector sensitivity is
parametrized by the
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Pile-up is an important effect to model, but it is fundamentally

photon-level and is difficult to model analytically
le+02
teror ] Incident spectrum Incident
E 1e+00 spectrum
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The current standard is the Davis 2001 pile-up model

sl Davis 2001:

spectrum

Probability (piled-up combination of n photons has a good

Detector grade, given that the combination of photons 1, ...,n —
response: ARF

1 had a good grade) = «
« Often, analysis assumes a = 0.5
» Statistical model does not hold for severe pile-up

Pile-up

Detector « Standard method, e.g. implemented in MARX
TEREMEH {47 ("“Model of AXAF Response to X-rays”), a ray-trace
Monte Carlo simulator of Chandra observations.

Output

spectrum
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Can a neural network emulate a simulated version of pile-up,
and eventually the empirical Chandra/ACIS pile-up?
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* Neural networks are good function approximators and may be
able to directly learn the function that distorts the idealized
spectrum into an observed spectrum

;ﬁﬁ simulated « Neural networks can be
_observation evaluated much faster than
g 1e01- with no pile-up . .

MARX simulations
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parameters

illuminating
radiation

Introduction Pile-up in Chandra

Neural Network Model

spectral model

incident

Neural network for simulated pile-up

> spectrum
l¢ ARE., RMF

incident spectrum with
instrumental response

l

Neural Network

l

piled-up spectrum

Neural network validation Future work
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A trained neural network can be incorporated into
different parameter inference methods

parameters ,
T »| Neural Network —» piled-up spectrum

Spectral I

model

Observed spectrum

\ -

R ——"

illuminating 9
radiation ‘ =
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Details of the
neural network

Training data:
>17,000 pairs of
(incident spectrum
with instrumental
response,
MARX-simulated
spectrum with pile-
up and observational
noise)

Introduction Pile-up in Chandra

Incident spectrum with
instrumental response

— TN

Neural Network
3 hidden layers
256 neurons each
RelLU activations
dropout(p=0.1)

Chandra-specific
simulator, MARX,
including pile-up

Training data

Y

Minimizing a
(MSE of normalized counts/s spectra)
adjusts the neural network

Neural network
prediction for
piled-up
counts/s spectrum

Neural network for simulated pile-up Neural network validation Future work 20



The neural network can closely reproduce a MARX-
simulated piled-up spectrum
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The neural network can closely reproduce a MARX-
simulated piled-up spectrum
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Energy [keV]

Neural network for simulated pile-up

Neural network validation

Future work
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Preliminary work using the neural network in an MCMC
IS promising

 Parameter inference with emcee MCMC
code (Foreman-Mackey et al. 2012)

* Optimization quantity = log(P) = »
log[product over channels k of Probability .= = .
(MARX counts in channel k, given Poisson

mean = NN-predicted counts in channel k)]
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Preliminary work using the neural network in an MCMC
IS promising

le-03 -

incl

0

=
P
o
N
1

Counts/s

log
PR IR 4

le-05+

nH
25 % 9% %

0.998

™, —— MARX simulation
NN prediction

average

pileup
threshold

1 count

v @

spin
\,
0, 0,0 0

v

SRR S A B U U U T T I I S R R S P I )
NN AR Y 0 07 7 7 o7 o¥ 9707 o7 o
gamma incl logxi nH spin

o
3.0 . 1=
N Bl e b O

&

o

Introduction Pile-up in Chandra Neural network for simulated pile-up

Energy [keV]

Neural network validation Future work 24



nH logxi incl

spin
Y o o o

S

2

)

N

k4

X

o

N
0'<9

FAEE-IERCINE 4

5 <
0 s

S

‘0w @

‘?

Preliminary work using the neural network in an MCMC
IS promising
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Neural network for simulated pile-up
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Future work: can the neural network emulate the empirical
Chandra/ACIS pile-up?

Transfer learning to real Chandra observations with HETG data:

P {————— > (Csitrgxr;gd) D;(t-éi¥o?§r?ay Im d g €s.
Xerays o Canizares et al.
X / — \g‘r:e:}l;e% Zero-order beams 2 OO 5’
mi_r:?r/s ---- Diffracted beams TGCat
SO S1  S2 S3 sS4 S5 (Huenemoerder
S e T etal. 2011)

* Observations taken with Chandra/HETG (High-Energy Transmission Grating)
distribute photons across more pixels and reduce pile-up in dispersed spectra.
We will use 1st-order dispersed spectra as a proxy for unpiled “ground truth”
spectra.

« New training data set: ~ 1000 pairs of (unpiled 1st-order HETG spectra, piled-up
ACIS-S spectra)
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Possible extensions of work

* Relevance for other non-CCD detectors

* E.g. transition edge sensor (TES) microcalorimeters have a
different pile-up effect, related to finite time resolution
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Conclusions

A simple, fully-connected neural
network can emulate a
simulated version of pile-up.

« We are investigating how to use
it for robust and accurate
parameter inference from piled-
up data.

e Future work will include transfer
learning with ~1000 Chandra
observations.

« Does your data experience a
distortion like the Chandra/ACIS
version of pile-up?
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