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Flares

Flares are impulsive events that release large bursts of energy over short
timescales.

The aftereffects of solar flares include spectacular aurorae, interference in
satellite communications, expansion of the thermosphere, and in particularly
strong cases could cause widespread electrical grid disruptions and blackouts.

Flares occur when magnetic energy stored in twisted flux tubes is released into
the hot plasma of the stellar corona. They occur predominantly where strong
magnetic fields are present, around sunspots, in areas called “Active Regions”.

However, flare onset is poorly understood. One of the major results of our
work is that the residual light curve can be fit as GARCH(p, q).



Our contribution

Flares are believed to occur due to a process called self-organized criticality,
which also governs the onset of avalanches and earthquakes, and the process
is known to be similar on stars as on the Sun (see e.g., Aschwanden et al.
2014, 2018).

Studying stars is an excellent way to improve our understanding of the Sun.
Effectively, they allows us to look at how the Sun would behave if it had a
different mass, or age, or composition, or rotational rate, or magnetic dynamo
strength, or even if it had a close-in giant hot Jupiter.

Studying ensembles of stars will let us pin down parameters and processes
that are important and control the nature of the corona.

Here we develop a method to detect flare occurrences in TESS light curves in
order to gain insight into flare distributions, cadence, and onset.



Our contribution

We have studied several white light flares from the Transiting Exoplanet
Survey Satellite (TESS), and modeled them via a GARCH process.

The GARCH process has been applied extensively in econometrics to
understand stock price fluctuations, and our preliminary findings show that
stellar flares can also be described by the same mathematics.

We study the so-called volatility index, and find that it is a good guide to
flare occurrence. This is a remarkable new result, and promises to open new
avenues of exploration, to understand the precise nature of flare onset.

Our goal: to define the modeling process, and to analyze the large dataset of
light curves obtained from TESS to characterize the different stars. This will
allow us to explore differences with spectral type, with stellar age and activity
level, and even whether tidal and magnetic interactions with nearby
exoplanets changes flaring behavior

We develop a new and powerful method to analyze time series to detect flares
in TESS light curves.



Our novel semi-parametric approach

Our approach combines a non-parametric method that removes the harmonic
trend with a parametric method that detects the flares

1 Non-parametric
First, we remove the trend using a time-varying harmonic fit combined with a
NP-test for the local variance, so to capture changes in the deterministic
amplitude of the light curve.

2 Parametric
Then we enlighten the analogy between the stochastic part of the light curves
and GARCH processes, and detect the flares by exploiting the parametric
structure.

- We demonstrate that flares can be detected as significantly large deviations
from the baseline.

- We apply the method on exemplar light curves from flaring stars
TIC13955147 (s4, sb and s31) and TIC269797536 (s2).



A snapshot of our novel method
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Our Statistical Model

Our novel model is the sum of a non-random trend and a stochastic error:
Y = p(t) + Xy, t=1,...,n (1)

- The function u(t) is a deterministic, periodic time-trend that allows for
time-varation in its coefficients, whereas

- the errors X; follow a GARCH model
X = 0464, €t %N(Oa 1)3 (2)

where the stochastic conditional variance o7 = Var(X;|Z;) depends linearly on
p past squared shocks:

p q
of =ao+ Y aXi +Y Bior 3)

i=1 j=1



Deterministic Trend: Time-varying Harmonics

Data:
e random observed vector Y = (Y, Y,,..., Y, )
e time vector t = (¢,,¢,,...,t,)

Modulation model
Y; = Z{J“ ) cos(w,t;) + g,, (ti) sin(w,t;)} + X,,  i=1,...,N,
e smooth time-varying amplitudes
e K number of harmonics

e X =(X,,...,X,) followa GARCH(p, q) process

We estimate the parameters using penalized B-splines (Motta et al., 2002)
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Modulation

Continuous wave modulation can be divided into two sets:
e amplitude modulation (AM)
e angle modulation

— frequency modulation (PM)
— phase modulation (FM)



Amplitude modulation

- Carrier wave c(t) = U sin(2rft + ¢.)
where U, f, and ¢, are the amplitude, frequency, and phase of the carrier
wave, respectively.

- Modulation signal U, (t): waveform (the message) to be transmitted

- Modulated signal
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Amplitude modulation: Example 1

- Carrier wave c(t) = U.sin(2rf.t + ¢.)

- Modulation signal U, (t) = U#sin(2n f, t + ¢*)

m

- Modulated signal
Un (1) = [U + U sin@2nf t + ¢ sin(2r f 1+ 6,),
or equivalently, using
1 s

sin(a) sin(b) = 3[cos(a — b) — cos(a +b)] and sin(a) = cos(a — §)

UAM (t) = ch Sin(2ﬂ'f;t + ¢c)

U4 m

+ 2= [sin2r(f, = £) + (6 = 6, +3))]
U4 m

— = [sin(@n(f, + £) + (@2 + 6.+ 3)]



Amplitude modulation: Example 2

Suppose U,, = U, = U,, then the carrier wave

c(t) = U, sin2nf t + 4.,) + U, sin(@rfot + 4.,)-
is given by

c(t) = U, sin(2rf,t + ¢.,) + U.sin(2m f,t + ¢.5).

Using sin(a) + sin(b) = 2 cos(%52) sin(%£2),

c(t) = [2U, cos (27r e ;fcz)t 4 G 5%2 ) ] sin (27r Uer ;fd)t + %1 J2F¢C2 )

[U, (t)=time—varying amplitude] average wave
If U, (t) = U sin(2n f,,t + ¢7), the modulated signal U, ,, (t) is as follows

%uzlgﬁgtmd;az)

Uans(0) = 0.0+ U sin(zm -+ o) sin
or in form of equation (4) we have

UA sin(2n f,, t+64)
U (@) = |1+ - U, () o

I

2
Uc Z sin(27rfm-t -+ ¢Cl)
=1

where U, (t) is the amplitude of the non-modulated curve c(t).



Frequency modulation: Example 3
A simple case: fg U, (7)dr takes the form
t
/ U, (7)dr = sin(27f, t + o). (7)
0
Substituting (7) in
t
Upns () = Usin(2af e+ [ 0, (r)dr +,) ®)
0

the modulated signal is

U, (t)=Usin(2rft +sin(2nf t + ¢F) +¢.).



Examples 1 & 2 (AM) and 3 (FM)

Amplitude modulation

Phase modulation

Frequency modulation
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Stochastic Errors: Heteroskedastic Volatility

ARCH(p) model has a multiplicative form

X; = o4&y, et~ N(0,1), (9)
where ,
o} = ap+ Zain_i, t>p, (10)
with ag >0, aq,...,0, > 0. -
Properties

E(X:|Xs,s<t)=E(X;)=0

E(X,X,) =0, s#1t

E(X7P[Xs,s <t) =0} = a0+ >, aiX{

E(X?) = ao/(1 - X0, o)

X? ~ AR(p) and p_, (h) > 0 for all h (generating persistence of volatility)
X has heavier tails than &, in the sense that its kurtosis

EX2
(EX?)?

is > than that of ¢,



Stochastic Errors: Heteroskedastic Volatility

A GARCH(p, ¢) model has a multiplicative form
Xt:UtEt, EtNN(O,l),

where
P q
‘7152 =ap+ ZaiXtZﬂ' + Zﬁjat{jv t > max(p,q),
i=1 j=1
with ag >0, aq,...,0, >0, PBi1,...,8,>0.

Properties
E(X,|X,,s <t) =E(X,) =0
E(X:Xs)=0,s#t
E(X?|Xs,s <t) =07 = a0+ 21y i X}, + Z?:l 5]'03—3'
E(X?) = ao/(1 = 37, @i — Z}I»:l B;)
X7 ~ ARMA(p,q) and p_, (h) > 0 for all h



Stochastic Errors: Heteroskedastic Volatility
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Heteroskedastic Volatility

Stylized facts of financial resturs

heavy tailed
Pr(|X|>z)~Cz™®, 0O<a<4

uncorrelated
Py (h) near 0 for all lags h >0

| X;| and X? have slowly decaying autocorrelations
fx (h) and p_, (h) converge to 0 slowly as h increases

stochastic and persistent volatility

- large (small) fluctuations in the data tend to be followed by fluctuations of
comparable magnitude

- this is reflected by GARCH models through the correlation in the sequence
{02} of conditional variances
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A semi-parametric approach
NON-PARAMETRIC de-trend

We detect flares in TESS light curves via hypothesis testing. We propose a
uniform threshold, computed using the residuals of light curves X; = Y; — u(t)
by examining each time-varying volatility within its local neighborhood.

Since the conditional variance of a GARCH is time-varying, given the residual
value X; = Y; — pu(t), we can test

Hy: Xi|Z; ~WN(0,02) vs Xy ~ WN(0,0}).

Under Hy, Var(X;|Z;) = o2 Vt. Under Hy, Var(X;|Z;) = 02 > o3 for somet.

To this end, we define our time-varying test statistic as X?/S?, where S; is a
robust, time-varying estimator of the conditional volatility.

Hy: X¢ = 0oer ~ N(0,03) for all t, whereas Hy : X4|Z; ~ N(0,0? > o3).
Under the null, X7?/S? is distributed according to a Fy ,_; distribution.

We reject the null if X2/S2 > Fy ,—1(1 — ).



A semi-parametric approach
NON-PARAMETRIC de-trend

d
Asn — o0, F17n_1 — X%.

(Xt/St)Q > Xf(a is equivalent to | X;|/S: > Q(a , where o = Pr(?—[ > Q{g),
‘H being a Standard Half-Normal random varlable

Our ejection region: {|Y; — p(t)] > Sy Q?al\i

We reject the Hy if Pr(H > Qfg\;) < a, where the tuning parameter « (the
significance level of the test) is often set by the astronomy ez-ante.

We estimate a rather than assigning an arbitrary valued to this parameter:
we define an upper bound o, and then select, among those values of the
above probability that are smaller than .y, the largest one.

The presence of flares makes ji biased. For this reason, we (detect and) delete
the flares from Y and then re-fit u to the ‘flares-filtered’ data.



A semi-parametric approach: robust estimation of oy
Hampel (1974)

MAD,, =1.4826 x med |X; — med Xj|
1<i<n 1<j<n
- The MAD has the best possible breakdown point (50%, twice as much as the

interquartile range)

- A breakdown point of 50% is the highest possible, because the estimate
remains bounded when fewer than 50% of the data points are replaced by
arbitrary numbers.

- The MAD also has some drawbacks.

1) Its efficiency at Gaussian distributions is very low; whereas the location
median’s asymptotic efficiency is still 64%, the MAD is only 37% efficient.

2) MAD takes a symmetric view on dispersion, because one first estimates a
central value (the median) and then attaches equal importance to positive
and negative deviations from it.



A semi-parametric approach: robust estimation of oy
Rousseeuw & Croux (1993)

S, =1.1926 x med { med |X; — X;|}
1<i<n 1<j<n

- More efficient and not slanted towards symmetric distributions.

- Unlike the MAD, it does not need any location estimate of the data. Instead
of measuring how far away the observations are from a central value, S;, looks
at a typical distance between observations, which is still valid at asymmetric
distributions.



A semi-parametric approach: robust estimation of oy
Rousseeuw & Croux (1993)

Simulate
2 __ 2 2
0,y = O + alXt,1 + 6102571 N

with ag = 0.1, a; = 0.2, and B; = 0.5.




A semi-parametric approach
PARAMETRIC flares-detection

P q
of =g+ Y eop g+ Yy Biot ;. t>max{p,q}, (13)
- =1

- Parametric test statistics based on the past conditional volatility.

- Generalized x? distribution to model the sequence of conditional variances:

X(w, kX C) = wiel ;4 +Ci,
%

a weighted sum of non-central Chi-square random variables E?_L ki v With
degrees of freedom k; and non-centralities \;.

- Test statistics:
otlo7, = Xe(we, kX, Cr),

with wy; = a;o?_,, degrees of freedom k; = 1, and non-centralized parameters
A =0Vi, and C; = agp + Z?Zl ﬂjatzfj. We decide that ¢ is an extreme point if

Pt = Pr(f(t(wt,k:,)\,ct) > O'tZ) S .



Our algorithm
Non-parametric detrending
Define X =Y (© — ;9 and o = ayay
for iin0:(I—1)do

. )
for all ¢ in 1:n do 71'151) = Pr(?—l > I)S(fi)l)

if W,El) < a' then
delete {t,Y:}
else '
Yt(H‘l) — }/t(l)
X0+ = y(+1) _ ,UJ(”D, and a(t) =  max ﬂ'gi)
t: ﬂ'gi)<0((i>
Parametric Flares-detection
Fit a GARCH(p, q) to X() =y (©) — (D
for all t in 1:n do P, = Pr[x:(wy, k, X, Cy) > 07]
if I¢p,<ay X ]l{Xt(I)>O} =1 then
Define F; = Y;



Our algorithm
Non-parametric detrending
Define X =Y (© — ;9 and o = ayay
for iin0:(I—1)do

. )
for all ¢ in 1:n do 71'151) = Pr(?—l > I)S(@)I

t

)
if wgl) < a' then
delete {t,Y:}
else '
Yt(H‘l) — }/t(l)
X0+ — y @+ _ 64D and o) = max ﬂ'Ei)
t: ﬂ'gi)<0((i>
Parametric Flares-detection
Fit a GARCH(p, q) to X() =y (©) — (D
for all t in 1:n do P, = Pr[x:(wy, k, X, Cy) > 07]
if I¢p,<ay X 1{X§I)>O} =1 then
Define F; = Y;

The value of « is guaranteed to decrease over ¢ because the inequality

appearing in both the condition 7Tt(i) < a and the update a(+1) is strict.
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Data: TESS Light Curves

We demonstrate the application of our method to TESS (Transiting Exoplanet
Survey Satellite)! datasets which have been observed multiple times.

We choose two stars on which flares have been unambiguously observed (see
Feinstein et al. 2022).

Both are eruptive variables, at similar distances, and one is solar-like, and the
other is a low-mass star.

We apply our method to detect flares in the PDCSAP (Pre-Search Data
Conditioning Simple Aperture Photometry) electron count rate light curves,
which have backgrounds subtracted and systematics corrected for cotrending
basis vectors?.

We show the light curves, converted from electron count rate to mJy? for
TIC 13955147 and for TIC 269797536.

Thttps://tess.mit.edu

2https://spacetelescope.github.io/mast_notebooks/notebooks/TESS/beginner_tour_
lc_tp/beginner_tour_lc_tp.html

Shttps://tess.mit.edu/public/tesstransients/pages/readme.html


https://tess.mit.edu
https://spacetelescope.github.io/mast_notebooks/notebooks/TESS/beginner_tour_lc_tp/beginner_tour_lc_tp.html
https://spacetelescope.github.io/mast_notebooks/notebooks/TESS/beginner_tour_lc_tp/beginner_tour_lc_tp.html
https://tess.mit.edu/public/tesstransients/pages/readme.html

List of stars and datasets selected

We downloaded the processed light curve data from the TESS Science
Processing Pipeline (TESS-SPOC)? from the MAST Portal (Mikulski Archive
for Space Telescopes)® for the sectors listed in the Table below.

TIC Other Names | Spectral  Distancel Sectors
Typel [pc]
13955147 HD 32372 G5V 78 1,5, 31, 32

2MASS J05005186-4101065
Gaia DR34813691219557127808
1RXS J050051.7-410100
269797536 2MASS J04363294-7851021 M4V 70 2,5, 8,11, 12, 13,
Gaia DR34622912654918835200 27, 28, 29, 32, 35, 38, 39
T: From the SIMBAD database (Wenger et al. 2000)

4https://archive.stsci.edu/hlsp/tess-spoc
Shttps://archive.stsci.edu/missions-and-data/tess


https://archive.stsci.edu/hlsp/tess-spoc
https://archive.stsci.edu/missions-and-data/tess
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TIC13955147-s31-1 — Harmonic Fit

Harmonic Detrend
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TIC13955147-s31-1 — Residuals
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TIC13955147-s31-1 — Non-parametric flares detection
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TIC13955147-s31-1 — Non-parametric flares detection
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TIC13955147-s31-1 — GARCH fitted to the residuals

X =y© — uD
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TIC13955147-s31-1 — Non-parametric flares detection
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TIC13955147-s31-1 — Parametric flares detection
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TIC13955147-s31-1 — parametric flares detection

Py = Pr(xe(we, k, A, Ct) > O'tz) <a
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TIC13955147-s31-1 — parametric flares detection

Flares are positive extreme values: 1(p, <4} X 1{X§I)>0} =1
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TIC13955147-s4-1
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TIC13955147-s5-1
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That’s it

Thanks ©



ARFIMA

- The Autoregressive Fractionally Integrated Moving Average (ARFIMA)
model extends the classical ARIMA model by incorporating a fractional
differencing parameter, enabling the model to capture both short-term
autocorrelation and long-range dependence within time series data.

- Particularly valuable for analyzing data sets where phenomena persist over
time, such as in economics and finance.

(1—Z¢2L’> L)%Y, = 1+ZeLJ £t

where:
L is the lag operator such that LY; = Y;_1,
p is the order of the autoregressive (AR) part,

d is the order of fractional differencing, allowing the model to handle
processes with long memory,

q is the order of the moving average (MA) part,
¢; are the coefficients of the AR part,
6; are the coeflicients of the MA part,

€¢ is the error term, assumed to be white noise.



ARFIMA

The unconditional variance of the model is influenced by the parameters of both the
AR and MA parts as well as the differencing parameter d, which affects the
long-term dependence properties of the series.

The conditional mean of the ARFIMA model is given by the AR part:
P
E(Yi|Yie1,Yioa,..) =Y ¢:Vis
i=1

while the conditional variance remains constant.

Primary motivation ARFIMA: their ability to model series with highly complex
stochastic structures that exhibit both short-term and long-term dependencies.

For instance, financial time series often display volatility clustering (short-term) and
long memory (long-term dependencies in volatility), both of which can be effectively
captured by the ARFIMA model.



ARFIMA-GARCH fit with 1 iteration
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ARFIMA-GARCH fit after 5 iteration
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