Statistical Properties of Solar Flare Dependency

Noah Kochanski Yang Chen

University of Michigan

June 9, 2023

Contact: noahkoch@umich.edu

Noah Kochanski (University of Michigan)

Solar Flare Dependency

June 9, 2023

イロト 不得 トイヨト イヨト

1/23

What are solar flares?

Solar flares are characterized by a large eruptions of electromagnetic radiation from the Sun. Solar flares can cause:

- Radio blackouts
- Increased radiation exposure to pilots

• Albeit rare, computer malfunctions

Solar flares are difficult phenomena to predict due to their rarity. As a result, machine learning methods are becoming more prevalent within the field of solar flare prediction.

- Regression
- Neural Network
- Decision Tree Learning
- Support Vector Machines

イロト 不得下 イヨト イヨト

э

Motivation

- Machine learning models are not oracles.
- Multiple types of models are producing similar accuracy rates.
- While the physical traits of the flaring process are understood, the distributions governing solar flares are less understood.

Solar Flares

Noah Kochanski (University of Michigan)

Solar Flare Dependency

June 9, 2023

What is the dependency structure that solar flares exhibit when coming from a single active region?

イロト 不得 トイヨト イヨト

oah Kochanski (University of Michigan)	Solar Flare Dependency	June 9, 2023	7 / 23

- H_0 : Flares that occur within 6 hours of each other are **independent**. H_1 : Flares that occur within 6 hours of each other are **dependent**. \mathbb{C} H_0 : $\mathbb{1}_{\text{Flare in next 6 hours}} \perp \mathbb{1}_{\text{Flare in previous 6 hours}}$

イロト 不得 トイラト イラト 一日

The arrive beneficially of michigan	Noah Kochanski (University of Michigan)	Solar Flare Dependency	June 9, 2023
-------------------------------------	---	------------------------	--------------

9/23

Noah Kochanski (University of Michigan)

Solar Flare Dependency

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ June 9, 2023

∃ つへで 10/23

June 9, 2023

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Collecting all samples from this active region, we get the following table summarizing the data,

No flare in previous 6 hours	No flare in next 6 hours 36	Flare in next 6 hours 6
Flare in previous 6 hours	6	4

Using the typical χ^2 Test of Independence, yields a p-value of 0.1592.

What about other tests? If we un-summarize our data, it would look something like this,

Flare in	Flare in
previous 6 hours	next 6 hours
0	0
1	1
:	÷
1	1
1	0

Under the null, these two variables are independent.

イロト イポト イヨト イヨト 二日

- Permute the first column of the data.
- Compute $b_n = \sum_{i,j} (\text{observed}_{i,j} \text{expected}_{i,j})^2$
- Repeat this process, N times, and compare our observed table to the distributions of b_1, b_2, \cdots, b_N
- \Rightarrow Doing this for active region 1275 yields a p-value of 0.0128.

イロト 不得下 イヨト イヨト 二日

Generalizing to δ time interval

For AR 1275, instead of considering a single time interval, we can vary the time considered.

Flare Catalogue

The previous process done for a catalogue consisting of:

- Roughly an entire solar cycle
- 12,496 solar flares
- 1,044 active regions

Furthermore, we break the testing into homogeneous and heterogeneous results.

<pre>Product: 2005015(events.tct (created: 2005 08 16 km /1 1080 UT :Date: 2005 08 16 # Propared by the U.S. Dept. of Commerce, NOAA, Space Environment Center. # Plesses send comments and suggestions to SEC.Webmaster@noaa.gov # Missing data: //// # Ubdated every 30 minutes.</pre>										
÷			core	eu Lv	enc	3 101	2005 Har .			
#Event #	Begin	Max	End	0bs	Q	Type	Loc/Frq	Particu	lars	Reg#
	0340		0240					~		
1590	0318	0318	0318	LEA	6	KBK	245	51		
1620 +	0348	1111	1635	COM	С	RSP	30-80	CTM/1		
1600 +	0408	0410	0412	LEA	G	RBR	245	210		
1730 +	0422	1214	1511	сом	G	RNS	245	160		
1610	0522	0528	0532	G10	5	XRA	1-8A	B4.2	1.9E-04	
1630	0744	0744	0740	C10		VDA	1.04	81.0	7 35 65	
1630	0741	////	0748	SVI	ć	RSP	025-089	III/1	7.50-05	
1640	1052	1111	1053	SVI	U	RSP	025-046	III/1		
4650	4435	44.25	4425	out	~	000	245	05		
1650	1125	1125	1125	SVI	6	RBR	410	46		
					-					
1660	1150	////	1150	SVI	С	RSP	025-041	III/1		
1670 +	1205	1208	1210	G12	5	XRA	1-8A	83.5	8.1E-05	0742
1670	1206	1206	1209	SAG	G	RBR	245	100		0742
1670	1207	1207	1207	SAG	G	RBR	410	56		0742
1670	1209	1210	1210	G12	5	XEL	S02W48	3.0E+02	6.5E+02	0742
1670	1210	1111	2228	SAG	С	RSP	110-180	CTM/1		8742
1680 +	1217	1221	1223	G12	5	XRA	1-8A	85.1	1.4E-04	0742
1680 +	1219	1219	1219	SVI	G	RBR	410	310		0742
1680	1221	1222	1223	G12	5	XFL	S03W50	7.5E+02	2.3E+03	0742
1698 +	1242	1245	1247	612	5	YRA	1-84	B3 1	7 7E-05	0742
1690	1246	1246	1247	G12	5	XFL	507₩48	4.3E+02	9.1E+02	0742

Homogeneous Results

Homogeneous Results across different time intervals (\delta)

Noah Kochanski (University of Michigan)

June 9, 2023

Homogeneous Results

Histogram of AR Lifetime

June 9, 2023

Homogeneous Results w/X-ray Class

The previous results treat all solar flares alike, however we can further test the dependency structure that occurs between x-ray classes.

	Weak Flares (A/B/C)	Strong Flares (M/X)
Weak Flares (A/B/C)	Hypotheses for B/C flares produce significant results at 0.05 level until ~3 days at which flares act as independent events	All hypotheses for M/X vs. C flares produce significant results at 0.05 level
Strong Flares (M/X)		All hypotheses for M vs X flares produce significant results at 0.05 level

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

Heterogeneous Results

Histogram of Number of Flares within each AR

Noah Kochanski (University of Michigan)

June 9, 2023

イロン イ理 とく ヨン イヨン

Heterogeneous Results

Proportion of Significant Active Regions by Number of Flares at 0.05 level

Noah Kochanski (University of Michigan)

June 9, 2023

< □ > < @ >

æ

∃ →

In summary;

- Solar flares are highly dependent events
- $\bullet\,$ In both 'quiet' and 'active' ARs we see that \sim 3 days is when we see the largest dependency
- Flare dependency is not monotonic in the time interval considered
- For weak flares, after 3 days, is when weak flares appear to act as independent events

イロト イヨト イヨト ・

Thank you for having me!

イロン イ理 とく ヨン イヨン