
Hierarchical Bayesian method for constraining the
neutron star equation of state with an ensemble

of binary neutron star postmerger remnants:
statistical, computational, and collaborative

challenges

Galin Jones

University of Minnesota

14 July 2023



How it began



Data Science in Multi-Messenger Astrophysics



DSMMA Program

Above all else it is interdisciplinary and collaborative

Physics & Astronomy, Statistics, Electrical Engineering, and
Computer Science

Team-taught courses in Bayesian Astrostatistics and Machine
Learning for Astrophysics

Research project student teams mentored by
interdisciplinary teams of faculty



Research Projects

Since 2021 I have helped mentor four projects:

(i) a study of supernova siblings and the properties of the host
galaxies

(ii) using observed kilonova candidates to inform ejecta quantities

(iii) cross-correlation between stochastic gravitational wave
backgrounds and the cosmic microwave background

(iv) constraining the neutron star equation of state based on
binary neutron star inspiral and post-merger
gravitational wave signals.



Constraining the Neutron Star EoS

EoS – relationship between NS mass and radius (or,
equivalently, pressure and density)

Goal is to constrain R1.6, the radius of a 1.6M� NS

Current consensus: R1.6 = 12.07+0.98
−0.77 km (95% credible

interval)

Our work: R1.6 = 11.91+0.80
−0.56 km (95% credible interval)



NS EoS: Statistical Formalism and Challenges

Goal: Constrain R1.6

Inspiral signal provides the chirp mass

M = (m1m2)3/5

(m1 + m2)1/5

Post-merger signal peak frequency, fpeak.

Structure of Bayesian model:

Di | Mi , fpeak,i ∼ p(DIN,i | Mi)p(DPM,i | fpeak,i)
Mi , fpeak,i | R1.6 ∼ ν(Mi , fpeak,i | R1.6)

R1.6 ∼ ν(R1.6)



Likelihood

p(D|R1.6) =
N∏

i=1
p((DPM,DIN)i |R1.6)

=
N∏

i=1

∫
p(DIN,i ,DPM,i |Mi , fpeak,i)

× ν(Mi , fpeak,i |R1.6)dfpeak,idMi

=
N∏

i=1

∫
p(DIN,i |Mi)p(DPM,i |fpeak,i)

× ν(Mi , fpeak,i |R1.6)dfpeak,idMi ,



Complication

Di = (DIN,i ,DPM,i) is not available.

Instead the Bilby pipeline provides samples from

q(Mi | DIN,i) ∝ p(DIN,i | Mi)p0(Mi)

and the BayesWave pipeline provides samples from

q(fpeak,i | DPM,i) ∝ p(DPM,i | fpeak,i)p1(fpeak,i)

If BayesWave does not detect a peak frequency, then samples from
p1(fpeak) are returned.



Likelihood

p(D|R1.6) =
N∏

i=1

∫ p(Mi |DIN,i)p(DIN,i)
p0(Mi)

p(fpeak,i |DPM,i)p(DPM,i)
p1(fpeak,i)

× ν(fpeak,i ,Mi | R1.6)dfpeak,idMi

The likelihood is not available in analytic form.

Instead we have a Monte Carlo approximation of it from the
Bilby and BayesWave posterior samples.

How good is the approximation?



Open Question

The BayesWave pipeline which is used to sample from

q(fpeak,i | DPM,i) ∝ p(DPM,i | fpeak,i)p1(fpeak,i)

uses reversible jump Metropolis-Hastings to produce the samples.

RJMH is not at all well understood and has a reputation for being
finicky and unreliable.

Is the BayesWave pipeline reliable?

The theory required to study this question is being developed.



Priors

For R1.6 we consider two options

R1.6 ∼ Uniform(9km, 15km)

and an astrophysical prior which is the posterior reported by Huth et
al (2022).

ForM we use priors that match values found by Abbott et al
(2020) and Petrov et al (2022) which yield

M∼ N(1.33M�, 0.09M�)



Priors

Vretinaris et al (2020) use numerical relativity simulations to derive
EoS-agnostic relations between fpeak andM of the form

fpeak
M

= g(M,R1.6) + ε ε ∼ N(0, σ2)

but we need something of the form

fpeak = g(M,R1.6) + ε ε ∼ N(0, σ2)



Prior
Vretinaris et al (2020) suggests fpeak should be centered around

µf = β0 + β1M+ β2M2 + β3R1.6M+ β3R1.6M2 + β3R2
1.6M

Formally,

fpeak | data, µf , λf ∼ N(µf , λ
−1
f )

ν(µf , λf ) = λ
−1/2
f

yielding a posterior
q(µf | data)

We also consider an empirical Bayes approach to prewhitening and
set

fpeak = E [µf | data]



Model Validation

Validation: What happens if post-merger signals are just noise?

Developed a novel hypothesis testing framework based on
Wasserstein distance.

Model Validation: Perform tests under ideal conditions by

simulating BayesWave posteriors for fpeak

using wide range of merger masses

using a variety of EoSs



Ensemble of Mergers
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Model Evaluation

Simulations of future observing runs:

simulate 2 one-year observing runs of LVK (O4, O5)

Use two different EoSs



Simulation of Future Runs
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