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The gravitational lensing phenomenon

Light rays are bent by the strong gravitational field of the intervening
object (i.e. the lens) on their way to Earth.

Different rays travel along different paths of different distances, and therefore
arrive to the observer at different times (separated by a delay ∆).

Figure: Source: Tak et al. [2017]

Multiple copies of the original light curve, brightness fluctuations are
observed at different times in the different copies.

Refsdal [1964]: Estimates of time delays can be used to constrain
important cosmological parameters such as H0.
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A challenging statistical problem
Goal: estimate the time shift (x-axis) between multiple lensed light curves

Figure: Source: Tak et al. [2017]

Data is subject to:

Irregular sampling (observational patterns)

Seasonal gaps (celestial cycles)

Brightness magnifications due to multiple effects (strong lensing,
micro-lensing)

Measurement errors (heteroskedastic)
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Current methods:

Two families of methods for time delay estimation:

Grid-based optimization methods (≈ non-parametric)
I Minimize measure of distance between light curves, on a grid of ∆ values
I Produce uncertainty estimates using Monte Carlo simulation
I Computationally expensive!

Statistics modelling the stochastic variability og AGN light curves
I More principled
I ”Direct” quantification of uncertainty in time delay parameter

Time Delay Challenge (TDC, Liao et al. [2015]) surveyed and evaluated a
variety of time delay estimation techniques

Winners: COSMOGRAIL collaboration (combine estimates from 4 different
non-parametric techniques)

Tak et al. [2017] did very well too! Bayesian method + DRW process to
model AGN variability)
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Goals of this project

Goals of this project :

Improve Bayesian time delay estimation method, based on Tak et al. [2017]

Improve on the accuracy and applicability of time delay estimation method

Address some of the computational limitations of current estimation
strategies.

Current limitations:

(Tak et al. [2017]) limited applicability of the DRW process to model AGN
light curves.

Difficult computation, in part due to multi-modality issues

High sensitivity to initial guess for ∆, most methods require method to
compute plausible/starting value of ∆.
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Our contributions

Limitation: use of the DRW to model AGN light curves restricts the range
of observations on which time delay method can be applied

Recent success in modeling AGN light curves with flexible CARMA(p, q) in
astrophysics literature [Kelly et al., 2014, Moreno et al., 2019].

AGNs and particularly quasars are sources for which strong gravitational
lensing is more likely to happen

Generalization of DRW, which is a CARMA(1,0).

Main development: update the intrinsic light curve model from DRW
process to flexible Continuous Auto-Regressive Moving Average
(CARMA) process

Finer modeling tool can better fit a wider range of observations.

Better fit to the lightcurve data → better accuracy

Our method: TD-CARMA
Tak et al. [2017]: TD-DRW
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Contributions

Additional development: update the parameter inference algorithm from
MCMC [Tak et al., 2017] to nested sampling (MultiNest)

Deal with multi-modality of CARMA(p, q) and time delay parameters
I MultiNest identifies multiple modes in posterior distribution
I MultiNest output can be used to quantify relative probability of the modes

Blind Search: no initial value of ∆ required
I Most existing time delay methods are highly sensitive to initial values
I Require an extra method to compute a plausible initial value
I Tak et al. [2017] compute the expensive profile likelihood

Model Selection: MultiNest estimates the Bayesian evidence (marginal
distribution of the data) at no extra computational cost
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Data

Figure: Source: Tak et al. [2017]

D = {ti , xi , δxi , yi , δ
y
i }

n
i=1

Observation times t = {t1, . . . , tn}
Observed magnitudes x = {x1, . . . , xn}, and y

Measurement errors δx = {δx1 , . . . , δxn} and δy (standard deviation).
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Time Delay Estimation Framework
Assumptions of the time delay model:

Assumption I: x and y = discrete realizations of unobserved continuous
lightcurves x(t) and y(t) (true source magnitudes), t ∈ R.

Assumption II: y(t) is time and magnitude shifted version of x(t).

Let’s translate them into our model:

1 Strong lensing effect 1: Time shift

y(t) = x(t −∆) (1)

2 Strong lensing effect 2: different average magnitudes

y(t) = x(t −∆) + θ0 (2)

3 Micro lensing effect: extrinsic long-term variability

y(t) = x(t −∆) + wm(t −∆)θ (3)

wm(t −∆) := {1, t −∆, . . . , (t −∆)m} vector of polynomial time variables

θ = {θ0, . . . , θm} micro-lensing coefficients
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Time Delay Estimation Framework

Plan:

1 Reconstruct intrinsic light curve from its lensed counterparts

2 Model stochastic variability in intrinsic lightcurve with CARMA process

Reconstructing the intrinsic light curve:

Given ∆ and θ, construct measurements for the intrinsic light curve, denoted
z = {zj}2n

j=1.

Measured at times t∆ = {ti}ni=1 ∪ {ti −∆}ni=1.
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Time Delay Estimation Framework

zj =

{
xi for some i if t∆

j is in t,

yi −wm(tj −∆)θ for some i if t∆
j is in t −∆,

(4)

Similarly, for the vector measurement error standard deviations {δzi }2n
i=1:

δzj =

{
δxi for some i if t∆

j is in t,

δyi for some i if t∆
j is in t −∆.

(5)
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Time Delay Measurement Framework

We constructed our intrinsic light curve:

Given ∆ and θ, we have {t∆, z , δz} for the intrinsic light curve.

Assumption: z = discrete realization of unobserved continuous process z(t).

Let’s model the stochastic variability in the intrinsic lightcurve:

Parametric model, with parameter vector Ω, i.e. define p(z |∆,θ,Ω)

Tak et al. [2017]: CARMA(1,0) (DRW) process.

We generalize this to CARMA(p, q) processes.

Likelihood function of model parameters (∆,θ,Ω) given observed data

L(∆,θ,Ω) = p(x , y |∆,θ,Ω)

= p(z |∆,θ,Ω)
(6)
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DRW and CARMA(p, q) processes

A Damped Random Walk (DRW) process with mean µ is the solution to
the following stochastic differential equation:

dX (t) = − 1

ω
(X (t)− µ)dt + ε(t) (7)

I ε(t) ∼ N(0, σ2) is a white noise process.
I ω = timescale for the process to revert to its long-term mean
I DRW = CARMA(1,0)

A CARMA(p, q) process is the solution to the following stochastic
differential equation:

dpy(t)

dtp
+ αp−1

dp−1y(t)

dtp−1
+ · · ·+ α0y(t) = βq

dqε(t)

dtq
+ · · ·+ ε(t) (8)

I α = {α0, . . . , αp−1} = auto-regressive parameters
I β = {β0, . . . , βq−1} = moving-average coefficients
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DRW and CARMA(p, q) processes
In time-space (Auto-Correlation Function):

DRW auto-correlations: single exponentially decaying auto-correlation
function

CARMA auto-correlations: weighted sum of exponentially decaying
auto-correlation functions and exponentially damped sinusoidal functions

In frequency-space (Power Spectral Density)

CARMA: multiple breaks and frequencies (QPOs) in the PSD
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DRW and CARMA: Auto-Covariance Functions
ACF of a DRW process: (ti > tj)

R(ti − tj) =
σ2ω

2
e−

(ti−tj )

ω (9)

exponentially decaying with e-folding timescale ω

ACF of a CARMA(p, q) process: (ti > tj)

R(ti − tj) = σ2
p∑

k=1

[∑q
l=0 βl r

l
k

] [∑q
l=0 βl(−rk)l

]
exp (rkτ)

−2Re(rk)
∏

l=1,l 6=k(rl − rk)(r∗l + rk)
. (10)

rk = roots of auto-regressive polynomial A(z) =
∑p

k=0 αkz
k

ACF of CARMA is a weighted sum of:
I exponentially decaying components (when rk is real)
I exponentially damped sinusoids (when rk is complex)

Enforce Re(rk) < 0 for stationarity
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DRW and CARMA: Power Spectrum Density
PSD of a DRW process:

P(f ) = σ2 1

( 1
ω )2 + (2πf )2

(11)

Lorentzian centered at 0, with a break frequency at 1/2πω2

PSD of a CARMA process:

P(f ) = σ2
|
∑q

j=0 βj(2πif )j |2

|
∑p

k=0 αk(2πif )k |2
(12)

Weighted sum of Lorentzian functions

Lorentzian centered at 0 → break frequency (when rk is real)

Lorentzian centered away from 0 → Quasi-Periodic Oscillation (QPO, when
rk is complex).

Characteristics such as multiple break-like features and QPOs have
been observed in AGN optical data Kelly et al. [2014], Ryan et al. [2019]
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Likelihood

CARMA and DRW process are Gaussian → p(z |∆, θ,Ω) is Gaussian

Typically, the computation of the likelihood of an n-point realization of a
Gaussian process requires the inversion of an n × n covariance matrix →
scales O(n3).

L(∆,θ,Ω) = p(z |∆,θ,Ω)

=
2n∏
i=1

p(zi |z<i ,∆,θ,Ω)

∝
2n∏
i=1

1

Var(zi |z<i ,∆,θ,Ω)
× exp

(
−1

2

(zi − E(zi |z<i ,∆,θ,Ω))2

Var(zi |z<i ,∆,θ,Ω)

)

But CARMA processes are special!

They admit a linear state-space representation that allows to compute the
likelihood in linear time O(n)!
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Computing the likelihood: state-space representation

Linear state-space representation of a CARMA(p,q) process denoted by z(t) is:{
z(t) = bx(t) + δ(t),

dx(t) = Ax(t)dt + edW (t)
(13)

Latent state process x(t) governs the underlying dynamics of the system

Observation equation gives relationship between latent process x and
observed process z(t).

δ(t) measurement error process.

Kalman Filter algorithm efficiently computes {E(zi |z<i ,∆,θ,Ω)}ni=1 and
{Var(zi |z<i ,∆,θ,Ω)}ni=1 with linear complexity O(n).

CARMA processes modelling is scalable to large datasets
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Bayesian Inference

We operate under the Bayesian paradigm:

Quantify the uncertainty in model parameters via their (joint) posterior
distribution

Bayes’ Theorem:

p(∆,β,Ω|D) =
L(∆,β,Ω)p(∆,β,Ω)

p(D)
(14)

p(∆,β,Ω|D) → posterior distribution

p(D) ≡ Z → marginal distribution of the data (can be used for Bayesian
model comparison).

p(∆,β,Ω) → prior distribution (we choose uniform priors)

Prior distributions:

∆ ∼ [t1 − tn, tn − t1], µ ∼ [−30, 30], θ ∼ [−M,M] with M large

α, β, σ sampled on log-scale, [-15,15].
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Posterior sampling

We produce a sample of the posterior distribution using the MultiNest
implementation of Nested Sampling (NS).

Standard MCMC have trouble sampling from multi-modal posteriors

MultiNest is designed to sample from multi-modal posterior posteriors

Most time delay estimation techniques are highly sensitive and require the
input of an initial guess for ∆

Need auxiliary method or prior knowledge to find plausible initial value for ∆

Tak et al. [2017] compute expensive profile likelihood to find good initial
guess.

MultiNest does not require the input of an initial value

You just need to specify the boundaries of the parameter space!

Method is blind search and standalone
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Bayesian Model Selection

Model selection problem:

what is the (p, q, m) triplet that best fits the data?

CARMA(p, q) models are non-nested.

MultiNest evaluates the Bayesian evidence Z:

Z =

∫
Θ

p(D|θ)p(θ)dθ (15)

Z is a measure of the ”goodness of fit” of a model to the data D.

Incorporates Occam’s razor: more complex models, i.e. models defined on
higher-dimensional parameter spaces, are penalized if they do not sufficiently
improve the fit to the data.

No extra computational cost: Z is computed jointly to the posterior sampling
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Tackling multi-modality with MultiNest
Two multi-modality issues:

CARMA(p, q) parameters α,β, σ

Time Delay parameter ∆

Multi-modal posterior distributions are difficult to sample from. But
MultiNest can help!

MultiNest identifies modes in the posterior distribution

Partitions the parameter space into regions Θi on which the separated modes
are supported

Evaluates the local-evidence Zi of each mode i , defined as:

Zi =

∫
Θi

p(D|θ)p(θ)dθ. (16)

Compute the relative probability pi of mode i :

pi ≡
∫

Θi

p(θ|D)dθ =
1

Z

∫
Θi

p(D|θ)p(θ)dθ =
Zi

Z
.
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Time Delay Challenge dataset
Generated under the DRW model

Figure: Doubly-lensed simulated quasar dataset from Time Delay Challenge (TDC)
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Time Delay Challenge (TDC) results

We fit TD-CARMA(p, q,m) with p = {2, 3, 4}, q = {0, 1, 2, 3} and
m = {1, 2, 3}.

Model ∆̂ SD(∆̂) ln(Z)
Truth 5.86

TD-DRW(3) [Tak et al., 2017] 6.33 0.28
TD-DRW(3) (This work) 6.343 0.267 692.32

TD-CARMA(4, 3, 2) 6.296 0.255 699.11
TD-CARMA(4, 2, 2) 6.282 0.252 698.98
TD-CARMA(4, 1, 2) 6.287 0.259 698.49
TD-CARMA(2, 1, 2) 6.254 0.230 698.44
TD-CARMA(2, 0, 2) 6.269 0.242 698.39

Table: Posterior mean and standard deviation for ∆ under the five models with highest Bayesian
log-evidence, comparing to true value and estimates from DRW methods, as reported by Tak
et al. [2017] and computed by our own code.

Antoine D. Meyer (adm18@ic.ac.uk) Time Delay CHASC 24 / 32



Introduction TD-CARMA Numerical Results Summary References

Dataset Application - HS2209
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HS2209: Results

Technique Reference ∆̂ SD(∆̂)
Combined estimate (COSMOGRAIL) Eulaers et al. [2013] -20.0 5

Difference-smoothing (modified) Kumar et al. [2015] -22.9 5.3
∆CARMA(3, 2, 3) This work -21.96 1.448
∆CARMA(2, 1, 3) This work -21.74 1.423
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DRW process on HS2209 data
Inconclusive results using timedelay package from Tak et al. [2017].

With our code, MultiNest finds 10 modes in the posterior distribution of ∆.
Modes for ∆ include [−14.30,−11.72, 16.44, 17.50, 20.38, 43, 64] days.

Model ∆̂ SD(∆̂) ln(Z) p
TD-CARMA(3, 2, 3) -21.96 1.448 2760.24 0.601
TD-CARMA(4, 2, 3) -21.95 1.403 2759.83 0.399
TD-CARMA(2, 1, 3) -21.74 1.423 2752.52 4.4× 10−4

TD-DRW(3) 20.23 0.934 2536.03 4.23× 10−98
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SDSS J1001+5027 doubly lensed quasar
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J1001: Multi-modality of CARMA parameters
Two modes in the posterior distribution of CARMA parameters are identified
by MultiNest.

One mode corresponds to a frequency in the PSD (f = 2), but this frequency
falls below the measurement noise level (so we are discarding
modes/models that feature the frequency)

Detection of frequency can dramatically reduce uncertainty in time delay ∆
(SD(∆̂) = 0.686 without freq, 0.224 with) → but only if we believe the
frequency exists!
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J1001: Results

Technique Reference ∆̂ SD(∆̂)
Combined estimate (COSMOGRAIL) Kumar et al. [2013] 119.1 3.3

Gaussian Processes Hojjati et al. [2013] 117.8 3.2
Difference-smoothing (modified) Kumar et al. [2015] 119.7 1.8

∆CARMA(2, 1, 3) This work 120.18 0.749
∆CARMA(4, 3, 2) This work 120.93 1.015
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DRW process on J1001 data

Inconclusive results using timedelay package from Tak et al. [2017].

With our code, MultiNest finds 20 modes in the posterior distribution of ∆.
Modes for ∆ include [122.8, 127.6, 130.5, 132.8] days.

Model ∆̂ SD(∆̂) ln(Z) p
TD-CARMA(4, 3, 2) 120.93 1.015 2761.25 0.416
TD-CARMA(2, 1, 3) 120.18 0.749 2744.05 4.1×10−8

TD-OU(3) 132.71 0.750 1803.24 0.0
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Future Research

Improvements of the method:

Speed up likelihood computation using celerite model [Foreman-Mackey
et al., 2017] (same complexity).

Multi-band light curves?

Applications of the method:

H0 estimation

Time delays arising in reverberation mapping

THANK YOU!
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