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Summar

Introduction

The gravitational lensing phenomenon

o Light rays are bent by the strong gravitational field of the intervening
object (i.e. the lens) on their way to Earth.

o Different rays travel along different paths of different distances, and therefore
arrive to the observer at different times (separated by a delay A).
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Figure: Source: Tak et al. [2017]

@ Multiple copies of the original light curve, brightness fluctuations are
observed at different times in the different copies.

@ Refsdal [1964]: Estimates of time delays can be used to constrain
important cosmological parameters such as H.
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Introduction

A challenging statistical problem

Goal: estimate the time shift (x-axis) between multiple lensed light curves
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Figure: Source: Tak et al. [2017]

Data is subject to:
@ Irregular sampling (observational patterns)
@ Seasonal gaps (celestial cycles)

@ Brightness magnifications due to multiple effects (strong lensing,
micro-lensing)

@ Measurement errors (heteroskedastic)
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Introduction TD-CARMA S Summary

Current methods:

Two families of methods for time delay estimation:
@ Grid-based optimization methods (~ non-parametric)

» Minimize measure of distance between light curves, on a grid of A values
» Produce uncertainty estimates using Monte Carlo simulation
» Computationally expensive!

@ Statistics modelling the stochastic variability og AGN light curves

» More principled
» "Direct” quantification of uncertainty in time delay parameter

Time Delay Challenge (TDC, Liao et al. [2015]) surveyed and evaluated a
variety of time delay estimation techniques

@ Winners: COSMOGRAIL collaboration (combine estimates from 4 different
non-parametric techniques)

o Tak et al. [2017] did very well too! Bayesian method + DRW process to
model AGN variability)
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Introduction

Summar

Goals of this project

Goals of this project :
@ Improve Bayesian time delay estimation method, based on Tak et al. [2017]
@ Improve on the accuracy and applicability of time delay estimation method

@ Address some of the computational limitations of current estimation
strategies.

Current limitations:

o (Tak et al. [2017]) limited applicability of the DRW process to model AGN
light curves.

o Difficult computation, in part due to multi-modality issues

@ High sensitivity to initial guess for A, most methods require method to
compute plausible/starting value of A.
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Introduction TD-CARMA Numerical Results Summary

Our contributions

Limitation: use of the DRW to model AGN light curves restricts the range
of observations on which time delay method can be applied

@ Recent success in modeling AGN light curves with flexible CARMA(p, q) in
astrophysics literature [Kelly et al., 2014, Moreno et al., 2019].

@ AGNs and particularly quasars are sources for which strong gravitational
lensing is more likely to happen

o Generalization of DRW, which is a CARMA(1,0).

Main development: update the intrinsic light curve model from DRW
process to flexible Continuous Auto-Regressive Moving Average
(CARMA) process

@ Finer modeling tool can better fit a wider range of observations.

@ Better fit to the lightcurve data — better accuracy

Our method: TD-CARMA
Tak et al. [2017]: TD-DRW
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Introduction -CARM S Summary

Contributions

Additional development: update the parameter inference algorithm from
MCMC [Tak et al., 2017] to nested sampling (MultiNest)

o Deal with multi-modality of CARMA(p, g) and time delay parameters

» MultiNest identifies multiple modes in posterior distribution
» MultiNest output can be used to quantify relative probability of the modes

@ Blind Search: no initial value of A required

» Most existing time delay methods are highly sensitive to initial values
» Require an extra method to compute a plausible initial value
> Tak et al. [2017] compute the expensive profile likelihood

@ Model Selection: MultiNest estimates the Bayesian evidence (marginal
distribution of the data) at no extra computational cost
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Introduction )-CARMA Numerical Results
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Figure: Source: Tak et al. [2017]
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@ Observation times t = {t1,...,t,}
@ Observed magnitudes x = {x1,...,X,}, and y

o Measurement errors §* = {07,...,0%} and &Y (standard deviation).
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Time Delay Estimation Framework
Assumptions of the time delay model:

@ Assumption |: x and y = discrete realizations of unobserved continuous
lightcurves x(t) and y(t) (true source magnitudes), t € R.

@ Assumption Il: y(t) is time and magnitude shifted version of x(t).
Let’s translate them into our model:
@ Strong lensing effect 1: Time shift

y(t) = x(t = A) (1)
@ Strong lensing effect 2: different average magnitudes
y(t) = x(t = A) + 6o ()
© Micro lensing effect: extrinsic long-term variability
y(t) = x(t — A) + wn(t — A)O (3)

o wn(t—A):={1l,t—A,...,(t — A)™} vector of polynomial time variables
e 6 =1{b,...,0n} micro-lensing coefficients
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Numerical Results

Time Delay Estimation Framework

Plan:
@ Reconstruct intrinsic light curve from its lensed counterparts
@ Model stochastic variability in intrinsic lightcurve with CARMA process
Reconstructing the intrinsic light curve:
@ Given A and 0, construct measurements for the intrinsic light curve, denoted
— 2n
Z = {zj}j 1

o Measured at times t2 = {t;}7_, U {t; — A},
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Numerical Results

Time Delay Estimation Framework
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X; for some i if tjA isin t,
Z; —
! Yi — Wp(t; — A)@  for some i if tjA isint— A,

e Similarly, for the vector measurement error standard deviations {67 }2";:

5% =

{6;( for some i if tjA isin t,
j

67 for some i if tf isin t — A.
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Time Delay Measurement Framework

We constructed our intrinsic light curve:
e Given A and 6, we have {t2,z, 67} for the intrinsic light curve.

@ Assumption: z = discrete realization of unobserved continuous process z(t).

Let’s model the stochastic variability in the intrinsic lightcurve:
@ Parametric model, with parameter vector £, i.e. define p(z|A,6,Q)
o Tak et al. [2017]: CARMA(1,0) (DRW) process.
o We generalize this to CARMA(p, q) processes.

Likelihood function of model parameters (A, 0, Q) given observed data

L(A,0,Q) = p(x,y|A,0,9) (6)
= p(z|A,0,9)
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ction TD-CARMA

DRW and CARMA(p, q) processes

o A Damped Random Walk (DRW) process with mean p is the solution to
the following stochastic differential equation:

LX) — mwydt + (2) )

w

dX(t)

» ¢(t) ~ N(0,5°) is a white noise process.
» w = timescale for the process to revert to its long-term mean
> DRW = CARMA(1,0)
e A CARMA(p, q) process is the solution to the following stochastic
differential equation:

dPy(t) dP 1y (t) de(t)

“dr p—lw—i-"'—l-ao)’(t)—ﬁq dia + ot e(t) (8)
» a={ao,...,ap_1} = auto-regressive parameters
» B={po,...,B4—1} = moving-average coefficients
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Inti ion TD-CARMA

DRW and CARMA(p, q) processes

In time-space (Auto-Correlation Function):

o DRW auto-correlations: single exponentially decaying auto-correlation
function

o CARMA auto-correlations: weighted sum of exponentially decaying
auto-correlation functions and exponentially damped sinusoidal functions
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In frequency-space (Power Spectral Density)
o CARMA: multiple breaks and frequencies (QPOs) in the PSD
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DRW and CARMA: Auto-Covariance Functions
ACF of a DRW process: (tj > tj)

2 (5=t
R(ti—t)="5"e = (9)

@ exponentially decaying with e-folding timescale w

ACF of a CARMA(p, q) process: (t; > tj)

2 £ Z/ oﬁlrk [270,6,(— )/] exp (rkT)
R =8 =0 2 R el — )+ )

e r, = roots of auto-regressive polynomial A(z) = Y7 _, axz¥
o ACF of CARMA is a weighted sum of:

» exponentially decaying components (when ry is real)
> exponentially damped sinusoids (when ri is complex)

e Enforce Re(ry) < 0 for stationarity
TR



Summary

DRW and CARMA: Power Spectrum Density
PSD of a DRW process:

1
P(f)=0"+—— 11
)= 17+ ntp (1D
@ Lorentzian centered at 0, with a break frequency at 1/27w?
PSD of a CARMA process:
27if |2
P » B (Cilad W)

|Zk 0 i (2mif ) k|2

@ Weighted sum of Lorentzian functions
o Lorentzian centered at 0 — break frequency (when ry is real)

@ Lorentzian centered away from 0 — Quasi-Periodic Oscillation (QPO, when
re is complex).

Characteristics such as multiple break-like features and QPOs have
been observed in AGN optical data Kelly et al. [2014], Ryan et al. [2019]
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Introduction - Numerical Results Summar
Likelihood
CARMA and DRW process are Gaussian — p(z|A, 0, Q) is Gaussian

@ Typically, the computation of the likelihood of an n-point realization of a
Gaussian process requires the inversion of an n x n covariance matrix —
scales O(n?).

L(A,8,9) = p(2]A,0,9)
2n

= H p(Zi|Z<i7 Av 0, Q)

i=1

2n

1 1 (Z,' — E(Z,'|Z<,',A,0,Q))2
: IJ Var(zlz<, 8,0, 7° ( 2 Var(z]z1,A.6,9)

o But CARMA processes are special!

@ They admit a linear state-space representation that allows to compute the
likelihood in linear time O(n)!
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Computing the likelihood: state-space representation

Linear state-space representation of a CARMA(p,q) process denoted by z(t) is:

z(t) = bx(t) + (t),
{dx(t) = Ax(t)dt + edW(t) (13)

o Latent state process x(t) governs the underlying dynamics of the system

@ Observation equation gives relationship between latent process x and
observed process z(t).

@ 0(t) measurement error process.
Kalman Filter algorithm efficiently computes {E(z;|z.;,A,0,Q)}"_; and

{Var(z;|z.;, A, 0,Q)}"_; with linear complexity O(n).
o CARMA processes modelling is scalable to large datasets
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Bayesian Inference

We operate under the Bayesian paradigm:

@ Quantify the uncertainty in model parameters via their (joint) posterior
distribution

o Bayes' Theorem:

L(A, B,Q)p(A, B, Q)
p(D) (14)

p(A,B,Q|D) =

e p(A,3,Q|D) — posterior distribution

e p(D) = Z — marginal distribution of the data (can be used for Bayesian
model comparison).

e p(A,3,Q) — prior distribution (we choose uniform priors)
Prior distributions:

o A~ [ty — th ty — t1], p~[—30,30], 0 ~ [-M, M] with M large

@ «, 3, o sampled on log-scale, [-15,15].
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Posterior sampling

We produce a sample of the posterior distribution using the MultiNest
implementation of Nested Sampling (NS).

@ Standard MCMC have trouble sampling from multi-modal posteriors

@ MultiNest is designed to sample from multi-modal posterior posteriors

Most time delay estimation techniques are highly sensitive and require the
input of an initial guess for A

@ Need auxiliary method or prior knowledge to find plausible initial value for A

@ Tak et al. [2017] compute expensive profile likelihood to find good initial
guess.

MultiNest does not require the input of an initial value
@ You just need to specify the boundaries of the parameter space!

@ Method is blind search and standalone
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Numerical Results Summar

Bayesian Model Selection

Model selection problem:
e what is the (p, g, m) triplet that best fits the data?
o CARMA(p, q) models are non-nested.

MultiNest evaluates the Bayesian evidence Z:

zZ= /@ p(D|0)p(0)d0 (15)

@ Z is a measure of the "goodness of fit" of a model to the data D.

@ Incorporates Occam’s razor: more complex models, i.e. models defined on
higher-dimensional parameter spaces, are penalized if they do not sufficiently
improve the fit to the data.

@ No extra computational cost: Z is computed jointly to the posterior sampling
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Tackling multi-modality with MultiNest
Two multi-modality issues:

o CARMA(p, q) parameters a, 3,0

o Time Delay parameter A

Multi-modal posterior distributions are difficult to sample from. But
MultiNest can help!

@ MultiNest identifies modes in the posterior distribution

@ Partitions the parameter space into regions ©; on which the separated modes
are supported

o Evaluates the local-evidence Z; of each mode /, defined as:
z = / p(DI0)p(0)do. (16)
o Compute the relative probability p; of mode i:
i = 0|D)d (D|0)p(0)d
pi= [ p0i0)d0 = [ p(DI(0)ds
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Numerical Results

Time Delay Challenge dataset
Generated under the DRW model
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Figure: Doubly-lensed simulated quasar dataset from Time Delay Challenge (TDC)
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Numerical Results Summar

Time Delay Challenge (TDC) results

o We fit TD-CARMA(p, g, m) with p = {2,3,4}, g = {0,1,2,3} and
m={1,2,3}.

Model A SD(A)  In(2)
Truth 5.86
TD-DRW(3) [Tak et al., 2017] | 6.33 0.28
TD-DRW(3) (This work) 6.343 0.267 692.32

TD-CARMA(4,3,2) 6.206 0.255 699.11
TD-CARMA(4,2,2) 6.282 0.252 698.98
TD-CARMA(4,1,2) 6.287 0.259  698.49
TD-CARMA(2,1,2) 6.254 0.230 698.44
TD-CARMA(2,0,2) 6.269 0.242  698.39

Table: Posterior mean and standard deviation for A under the five models with highest Bayesian
log-evidence, comparing to true value and estimates from DRW methods, as reported by Tak
et al. [2017] and computed by our own code.
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Dataset Application -
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ntr TD-CARMA

HS2209: Results

Numerical Results

04 -
0.1 33 ACARMA(3,2,3)
ACARMA(2,1,3)
Eulaers et al. (2013} I
. -T- Kumar‘etal.(zol‘s) F! ,
—40 —35 -30 d;yzssl -20 -15
Technique Reference A SD(A)
Combined estimate (COSMOGRAIL) | Eulaers et al. [2013] | -20.0 5
Difference-smoothing (modified) Kumar et al. [2015] | -22.9 5.3
ACARMA(3,2,3) This work -21.96 | 1.448
ACARMA(2,1,3) This work 21.74 | 1.423
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Numerical Results

DRW process on H52209 data

@ Inconclusive results using timedelay package from Tak et al. [2017].

@ With our code, MultiNest finds 10 modes in the posterior distribution of A.
Modes for A include [—14.30,—11.72,16.44,17.50, 20.38, 43, 64] days.

151 0 -cARMA2,1,3)
1 TD-DRW(3)
00 T T )Jﬂl‘.L T T T Al
—40 -30 -20 a;jl:ﬁ] 0 10 20
Model A SD(A) | In(Z2) p
TD-CARMA(3,2,3) | -21.96 | 1.448 | 2760.24 0.601
TD-CARMA(4,2,3) | -21.95 | 1.403 | 2759.83 0.399
TD-CARMA(2,1,3) | -21.74 | 1.423 | 275252 | 4.4 x 107*
TD-DRW(3) 20.23 | 0.934 | 2536.03 | 4.23 x 10~
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Introduction -CAR Numerical Results

SDSS J1001+5027 doubly lensed quasar
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Numerical Results

J1001: Multi-modality of CARMA parameters
@ Two modes in the posterior distribution of CARMA parameters are identified
by MultiNest.

@ One mode corresponds to a frequency in the PSD (f = 2), but this frequency
falls below the measurement noise level (so we are discarding
modes/models that feature the frequency)

Jday]

Power Spectrum Density [mag’

1073 102 101 100 10! 17 118 119 120 121 122 123 124
Frequency [1/ dayl Delta [days]

@ Detection of frequency can dramatically reduce uncertainty in time delay A

~

(SD(A) = 0.686 without freq, 0.224 with) — but only if we believe the
frequency exists!
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Numerical Results

J1001: Results

[ ACARMA(4,3,2)
1 ACARMA(2,1,3)
Kumar et al. (2013)
=== Kumar etal. (2015)

16 118 120 122 124

4 [days]
Technique Reference A SD(A)
Combined estimate (COSMOGRAIL) | Kumar et al. [2013] | 119.1 33
Gaussian Processes Hojjati et al. [2013 117.8 3.2
Difference-smoothing (modified) Kumar et al. [2015] | 119.7 1.8
ACARMA(2, 1,3) This work 120.18 | 0.749
ACARMA(4,3,2) This work 120.93 | 1.015
TR



Numerical Results

DRW process on J1001 data

@ Inconclusive results using timedelay package from Tak et al. [2017].

@ With our code, MultiNest finds 20 modes in the posterior distribution of A.
Modes for A include [122.8,127.6,130.5, 132.8] days.

64 1 TD-CARMA(Z,1.3)
[ TD-DRW{3)

1

0 .’—’n;:lnl_’l""‘. T — T T
116 118 1z0 122 124 126 128 130 132

A [days]

Model A TSDA) [ In(2) p
TD-CARMA(4,3,2) | 120.93 | 1.015 | 2761.25 | 0.416
TD-CARMA(2,1,3) | 120.18 | 0.749 | 2744.05 | 4.1x108

TD-OU(3) 132.71 | 0.750 | 1803.24 0.0
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Future Research

Improvements of the method:

@ Speed up likelihood computation using celerite model [Foreman-Mackey
et al., 2017] (same complexity).

@ Multi-band light curves?

Applications of the method:
@ Hj estimation
@ Time delays arising in reverberation mapping

THANK YOQOU!
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