How Good is my Learning Algorithm? Building Cross-Validation Confidence Intervals for Test Error

> Alexandre Bayle Department of Statistics, Harvard University

Joint work with Pierre Bayle, Lucas Janson, Lester Mackey

Stat 310 - April 3, 2024

• Divide data into k folds

- Divide data into k folds
- Fit k prediction rules, each with one fold held out

- Divide data into k folds
- Fit k prediction rules, each with one fold held out
- Evaluate each prediction rule on its held-out set

- Divide data into k folds
- Fit k prediction rules, each with one fold held out
- Evaluate each prediction rule on its held-out set
- Average the k error estimates

- Divide data into k folds
- Fit k prediction rules, each with one fold held out
- Evaluate each prediction rule on its held-out set
- Average the k error estimates

Pros:

- Unbiased for test error
- Lower variance than single train-test split

How good is my learning algorithm?

How good is my learning algorithm?

Need: Test error confidence intervals to quantify uncertainty

How good is my learning algorithm?

Need: Test error confidence intervals to quantify uncertainty **Problem:** Existing intervals often invalid & CV distribution is complex

Is algorithm A actually better than algorithm B?

Is algorithm A actually better than algorithm B?

Need: Trustworthy hypothesis tests of algorithm improvement

Is algorithm A actually better than algorithm B?

Need: Trustworthy hypothesis tests of algorithm improvement

Problem: Standard tests (like the cross-validated *t*-test, the repeated train-validation *t*-test, and the 5×2 -fold CV test) do not appropriately account for dependence and have no correctness guarantees

Our Contributions

CV CLT

(Bayle, Bayle, Janson, and Mackey, 2020)

Alexandre Bayle

$$Z = \frac{\sqrt{n/k} \cdot \hat{R}_n}{\hat{\sigma}_n}$$

Alexandre Bayle

April 3, 2024

(Corrected) repeated train-validation t

(Nadeau and Bengio, 2003)

5x2 CV

• Datapoints Z_1, \ldots, Z_n

- Often each $Z_i = (X_i, Y_i)$ with covariates X_i and response Y_i
- For any vector ${\cal B}$ of indices, $Z_{\cal B}$ denotes the corresponding vector of datapoints

• Datapoints Z_1, \ldots, Z_n

- Often each $Z_i = (X_i, Y_i)$ with covariates X_i and response Y_i
- For any vector B of indices, ${\cal Z}_B$ denotes the corresponding vector of datapoints

• Loss function $h_n(Z_i, Z_B)$: error when training on Z_B and testing on Z_i

• Datapoints Z_1, \ldots, Z_n

- Often each $Z_i = (X_i, Y_i)$ with covariates X_i and response Y_i
- For any vector B of indices, ${\cal Z}_B$ denotes the corresponding vector of datapoints
- Loss function $h_n(Z_i, Z_B)$: error when training on Z_B and testing on Z_i
 - Regression: $h_n(Z_i, Z_B) = (Y_i \hat{f}(X_i; Z_B))^2$ for $\hat{f}(\cdot; Z_B)$ trained on Z_B

• Datapoints Z_1, \ldots, Z_n

- Often each $Z_i = (X_i, Y_i)$ with covariates X_i and response Y_i
- For any vector B of indices, ${\cal Z}_B$ denotes the corresponding vector of datapoints
- Loss function $h_n(Z_i, Z_B)$: error when training on Z_B and testing on Z_i
 - Regression: $h_n(Z_i, Z_B) = (Y_i \hat{f}(X_i; Z_B))^2$ for $\hat{f}(\cdot; Z_B)$ trained on Z_B
 - Classification: $h_n(Z_i, Z_B) = \mathbb{1}[Y_i \neq \hat{f}(X_i; Z_B)]$

- Datapoints Z_1, \ldots, Z_n
 - Often each $Z_i = (X_i, Y_i)$ with covariates X_i and response Y_i
 - For any vector B of indices, ${\cal Z}_B$ denotes the corresponding vector of datapoints
- Loss function $h_n(Z_i, Z_B)$: error when training on Z_B and testing on Z_i
 - Regression: $h_n(Z_i, Z_B) = (Y_i \hat{f}(X_i; Z_B))^2$ for $\hat{f}(\cdot; Z_B)$ trained on Z_B
 - Classification: $h_n(Z_i, Z_B) = \mathbb{1}[Y_i \neq \hat{f}(X_i; Z_B)]$
- Validation sets $\{B'_i\}_{i=1}^k$ and associated training sets $\{B_j\}_{j=1}^k$
 - Validation sets partition datapoint indices $\{1, \ldots, n\}$ into k folds
 - k can be fixed or grow with n

• Datapoints Z_1, \ldots, Z_n

- Often each $Z_i = (X_i, Y_i)$ with covariates X_i and response Y_i
- For any vector B of indices, ${\cal Z}_B$ denotes the corresponding vector of datapoints

• Loss function $h_n(Z_i, Z_B)$: error when training on Z_B and testing on Z_i

- Regression: $h_n(Z_i, Z_B) = (Y_i \hat{f}(X_i; Z_B))^2$ for $\hat{f}(\cdot; Z_B)$ trained on Z_B
- Classification: $h_n(Z_i, Z_B) = \mathbb{1}[Y_i \neq \hat{f}(X_i; Z_B)]$
- Validation sets $\{B'_i\}_{i=1}^k$ and associated training sets $\{B_j\}_{j=1}^k$
 - Validation sets partition datapoint indices $\{1, \ldots, n\}$ into k folds
 - $k \mbox{ can be fixed or grow with } n$

Cross-validation (CV) error

$$\widehat{R}_n = rac{1}{n} \sum_{j=1}^k \sum_{i \in B_j'} h_n(Z_i, Z_{B_j})$$
)

Why CV Error?

Cross-validation error: $\widehat{R}_n = rac{1}{n}\sum_{j=1}^k \sum_{i\in B_j'} h_n(Z_i,Z_{B_j})$

Why CV Error?

Cross-validation error: $\widehat{R}_n = rac{1}{n}\sum_{j=1}^k\sum_{i\in B_j'}h_n(Z_i,Z_{B_j})$

$$k$$
-fold test error: $R_n = \frac{1}{n} \sum_{j=1}^k \sum_{i \in B'_j} \mathbb{E}[h_n(Z_i, Z_{B_j}) \mid Z_{B_j}]$
 $= \frac{1}{k} \sum_{j=1}^k \mathbb{E}[h_n(Z_0, Z_{B_j}) \mid Z_{B_j}]$

• Average test error of the k prediction rules $\widehat{f}(\cdot; Z_{B_j})$

• Common inferential target

Why CV Error?

Cross-validation error: $\widehat{R}_n = \frac{1}{n} \sum_{j=1}^k \sum_{i \in B'_j} h_n(Z_i, Z_{B_j})$

k-fold test error:
$$R_n = \frac{1}{n} \sum_{j=1}^k \sum_{i \in B'_j} \mathbb{E}[h_n(Z_i, Z_{B_j}) \mid Z_{B_j}]$$

$$= \frac{1}{k} \sum_{j=1}^k \mathbb{E}[h_n(Z_0, Z_{B_j}) \mid Z_{B_j}]$$

• Average test error of the k prediction rules $\widehat{f}(\cdot; Z_{B_j})$

• Common inferential target

Goal: Establish a central limit theorem for $\widehat{R}_n - R_n$

Application: Confidence Intervals for Test Error

Problem

Construct an asymptotically-exact $(1-\alpha)\text{-confidence}$ interval for k-fold test error R_n

Application: Confidence Intervals for Test Error

Problem

Construct an asymptotically-exact $(1-\alpha)\text{-confidence}$ interval for k-fold test error R_n

Solution: CV Confidence Interval for Test Error

If we have a CLT and a variance estimator $\widehat{\sigma}_n^2$ that satisfies relative error consistency $(\widehat{\sigma}_n^2/\sigma_n^2 \xrightarrow{p} 1)$, then the interval $C_{\alpha} = \widehat{R}_n \pm q_{1-\alpha/2} \, \widehat{\sigma}_n / \sqrt{n}$

satisfies

$$\lim_{n \to \infty} \mathbb{P}(R_n \in C_\alpha) = 1 - \alpha$$

where $q_{1-\alpha/2}$ is the $(1-\alpha/2)\mbox{-quantile}$ of a standard normal distribution

Confidence Intervals for Test Error, k=10

$$C_{\alpha} = \widehat{R}_n \pm q_{1-\alpha/2} \, \widehat{\sigma}_n / \sqrt{n}$$
 with $1-\alpha = 0.95$

Our CV CLT procedure: valid coverage, smallest width

Alexandre Bayle

14 / 25

Application: Cls for Test Error Difference

Problem

Construct an asymptotically-exact $(1-\alpha)\text{-confidence}$ interval for the difference in k-fold test errors

Application: Cls for Test Error Difference

Problem

Construct an asymptotically-exact $(1-\alpha)\text{-confidence}$ interval for the difference in k-fold test errors

Solution: CV Confidence Interval for Test Error Difference

For a target loss function ℓ , define the \mathcal{A}_1 - \mathcal{A}_2 loss difference $h_n(Z_0, Z_B) = \ell(Y_0, \hat{f}_1(X_0; Z_B)) - \ell(Y_0, \hat{f}_2(X_0; Z_B)),$

if we have a CLT and a variance estimator $\widehat{\sigma}_n^2$ that satisfies relative error consistency $(\widehat{\sigma}_n^2/\sigma_n^2 \xrightarrow{p} 1)$, then the interval

$$C_{\alpha} = \widehat{R}_n^{(1)} - \widehat{R}_n^{(2)} \pm q_{1-\alpha/2} \,\widehat{\sigma}_n / \sqrt{n}$$

satisfies

$$\lim_{n \to \infty} \mathbb{P}(R_n^{(1)} - R_n^{(2)} \in C_\alpha) = 1 - \alpha$$

Application: Tests for Algorithm Improvement

Problem

Construct an asymptotically-exact level α test of whether \mathcal{A}_1 has smaller k-fold test error than \mathcal{A}_2

Application: Tests for Algorithm Improvement

Problem

Construct an asymptotically-exact level α test of whether \mathcal{A}_1 has smaller k-fold test error than \mathcal{A}_2

Solution: CV Test for Improved Test Error

For a target loss function ℓ , define the \mathcal{A}_1 - \mathcal{A}_2 loss difference $h_n(Z_0, Z_B) = \ell(Y_0, \widehat{f_1}(X_0; Z_B)) - \ell(Y_0, \widehat{f_2}(X_0; Z_B)),$

and consider testing $H_0: R_n \ge 0$ (\mathcal{A}_1 not better) against $H_1: R_n < 0$ (\mathcal{A}_1 is better). If we have a CLT and a variance estimator $\widehat{\sigma}_n^2$ that satisfies relative error consistency ($\widehat{\sigma}_n^2 / \sigma_n^2 \xrightarrow{p} 1$), then the test

REJECT
$$H_0 \Leftrightarrow \widehat{R}_n < q_\alpha \widehat{\sigma}_n / \sqrt{n}$$

has asymptotic level α for q_α the $\alpha\mbox{-quantile}$ of a standard normal distribution

Tests for Algorithm Improvement, $k{=}10$, $\alpha{=}0.05$

Our CV CLT procedure: valid size, most powerful

Alexandre Bayle

CV Confidence Intervals for Test Error

How much does the performance of a learned prediction rule change when one point in the training set is changed?

How much does the performance of a learned prediction rule change when one point in the training set is changed?

• Uniform stability: worst-case change in loss h_n

How much does the performance of a learned prediction rule change when one point in the training set is changed?

- Uniform stability: worst-case change in loss h_n
- Mean-square stability: mean-square change in loss h_n

How much does the performance of a learned prediction rule change when one point in the training set is changed?

- Uniform stability: worst-case change in loss h_n
- Mean-square stability: mean-square change in loss h_n
- Loss stability
 - Mean-square change in loss difference $h_n(Z_0, Z_{1:m}) \mathbb{E}[h_n(Z_0, Z_{1:m}) \mid Z_{1:m}]$

How much does the performance of a learned prediction rule change when one point in the training set is changed?

- Uniform stability: worst-case change in loss h_n
- Mean-square stability: mean-square change in loss h_n
- Loss stability
 - Mean-square change in loss difference $h_n(Z_0, Z_{1:m}) - \mathbb{E}[h_n(Z_0, Z_{1:m}) \mid Z_{1:m}]$

Note: $\gamma_{loss}(h_n) \leq \gamma_{ms}(h_n)$ [Kumar et al., 2013]

[Bousquet and Elisseeff, 2002, Kale et al., 2011, Kumar et al., 2013, Celisse and Guedj, 2016, . . .]

CV Central Limit Theorem (Bayle, Bayle, Janson, and Mackey, 2020)

Suppose Z_0, Z_1, \cdots, Z_n are i.i.d., and define the expected loss function

 $\overline{h}_n(Z_0) = \mathbb{E}[h_n(Z_0, Z_{1:n(1-1/k)}) \mid Z_0] \quad \text{ with } \quad \sigma_n^2 = \operatorname{Var}(\overline{h}_n(Z_0)).$

CV Central Limit Theorem (Bayle, Bayle, Janson, and Mackey, 2020)

Suppose Z_0, Z_1, \cdots, Z_n are i.i.d., and define the expected loss function

 $\overline{h}_n(Z_0) = \mathbb{E}[h_n(Z_0, Z_{1:n(1-1/k)}) \mid Z_0] \quad \text{ with } \quad \sigma_n^2 = \operatorname{Var}(\overline{h}_n(Z_0)).$

If loss stability = $o(\sigma_n^2/n)$

CV Central Limit Theorem (Bayle, Bayle, Janson, and Mackey, 2020)

Suppose Z_0, Z_1, \cdots, Z_n are i.i.d., and define the expected loss function

 $\overline{h}_n(Z_0) = \mathbb{E}[h_n(Z_0, Z_{1:n(1-1/k)}) \mid Z_0] \quad \text{ with } \quad \sigma_n^2 = \operatorname{Var}(\overline{h}_n(Z_0)).$

If loss stability = $o(\sigma_n^2/n)$ and $(\overline{h}_n(Z_0) - \mathbb{E}[\overline{h}_n(Z_0)])^2/\sigma_n^2$ is uniformly integrable

Sufficient condition: $\sup_n \mathbb{E}[|\overline{h}_n(Z_0) - \mathbb{E}[\overline{h}_n(Z_0)]|^{\alpha}/\sigma_n^{\alpha}] < \infty$ for some $\alpha > 2$

CV Central Limit Theorem (Bayle, Bayle, Janson, and Mackey, 2020)

Suppose Z_0, Z_1, \cdots, Z_n are i.i.d., and define the expected loss function

$$\overline{h}_n(Z_0) = \mathbb{E}[h_n(Z_0, Z_{1:n(1-1/k)}) \mid Z_0] \quad \text{ with } \quad \sigma_n^2 = \operatorname{Var}(\overline{h}_n(Z_0)).$$

If loss stability = $o(\sigma_n^2/n)$ and $(\overline{h}_n(Z_0) - \mathbb{E}[\overline{h}_n(Z_0)])^2/\sigma_n^2$ is uniformly integrable then

$$\frac{\sqrt{n}}{\sigma_n}(\widehat{R}_n - R_n) \xrightarrow{d} \mathcal{N}(0, 1).$$

Sufficient condition: $\sup_n \mathbb{E}[|\overline{h}_n(Z_0) - \mathbb{E}[\overline{h}_n(Z_0)]|^{\alpha}/\sigma_n^{\alpha}] < \infty$ for some $\alpha > 2$

CV Central Limit Theorem (Bayle, Bayle, Janson, and Mackey, 2020)

Suppose Z_0, Z_1, \cdots, Z_n are i.i.d., and define the expected loss function

$$\overline{h}_n(Z_0) = \mathbb{E}[h_n(Z_0, Z_{1:n(1-1/k)}) \mid Z_0] \quad \text{ with } \quad \sigma_n^2 = \operatorname{Var}(\overline{h}_n(Z_0)).$$

If loss stability = $o(\sigma_n^2/n)$ and $(\overline{h}_n(Z_0) - \mathbb{E}[\overline{h}_n(Z_0)])^2/\sigma_n^2$ is uniformly integrable then

$$\frac{\sqrt{n}}{\sigma_n}(\widehat{R}_n - R_n) \xrightarrow{d} \mathcal{N}(0, 1).$$

Sufficient condition: $\sup_n \mathbb{E}[|\overline{h}_n(Z_0) - \mathbb{E}[\overline{h}_n(Z_0)]|^{\alpha}/\sigma_n^{\alpha}] < \infty$ for some $\alpha > 2$ Many learning algorithms enjoy decaying loss stability (e.g., SGD, ERM, *k*-NN, decision trees, ensemble methods)

Goal: Find a practical estimator $\widehat{\sigma}_n^2$ satisfying $\widehat{\sigma}_n^2 / \sigma_n^2 \xrightarrow{p} 1$ under weak conditions.

Goal: Find a practical estimator $\widehat{\sigma}_n^2$ satisfying $\widehat{\sigma}_n^2 / \sigma_n^2 \xrightarrow{p} 1$ under weak conditions.

Within-fold variance estimator $\hat{\sigma}_{n.in}^2$

Computes the variance of $h_n({\cal Z}_i,{\cal Z}_{B_j})$ in each fold and takes the average across folds

Goal: Find a practical estimator $\hat{\sigma}_n^2$ satisfying $\hat{\sigma}_n^2 / \sigma_n^2 \xrightarrow{p} 1$ under weak conditions.

All-pairs variance estimator $\widehat{\sigma}_{n,out}^2$

$$\widehat{\sigma}_{n,out}^2 = \frac{1}{n} \sum_{j=1}^k \sum_{i \in B'_j} (h_n(Z_i, Z_{B_j}) - \widehat{R}_n)^2$$

- Computes the empirical variance of $h_n(Z_i, Z_{B_j})$ across all folds
- Advantage: can also be used for leave-one-out cross-validation

Within-fold variance estimator $\widehat{\sigma}_{n,in}^2$

$$\widehat{\sigma}_{n,in}^2 = \frac{1}{k} \sum_{j=1}^k \frac{1}{(n/k)-1} \sum_{i \in B'_j} \left(h_n(Z_i, Z_{B_j}) - \frac{k}{n} \sum_{i' \in B'_j} h_n(Z_{i'}, Z_{B_j}) \right)^2$$

All-pairs variance estimator $\widehat{\sigma}_{n,out}^2$

$$\widehat{\sigma}_{n,out}^{2} = \frac{1}{n} \sum_{j=1}^{k} \sum_{i \in B_{j}'} (h_{n}(Z_{i}, Z_{B_{j}}) - \widehat{R}_{n})^{2}$$
$$= \frac{1}{k} \sum_{j=1}^{k} \frac{k}{n} \sum_{i \in B_{j}'} (h_{n}(Z_{i}, Z_{B_{j}}) - \widehat{R}_{n})^{2}$$

Low computational cost

 $\widehat{\sigma}_{n,in}^2$ and $\widehat{\sigma}_{n,out}^2$ can be computed in O(n) time, and if loss is binary, in O(k) and O(1) respectively

When h_n is binary, as in the case of 0-1 loss, one can compute

- $\hat{\sigma}_{n,out}^2 = \hat{R}_n(1 \hat{R}_n)$ in O(1) time given access to the overall cross-validation error \hat{R}_n ,
- $\widehat{\sigma}_{n,in}^2 = \frac{1}{k} \sum_{j=1}^k \frac{(n/k)}{(n/k)-1} \widehat{R}_{n,j} (1 \widehat{R}_{n,j})$ in O(k) time given access to the k average fold errors $\widehat{R}_{n,j} \triangleq \frac{k}{n} \sum_{i \in B'_j} h_n(Z_i, Z_{B_j})$.

Theorem: Consistency of CV Variance Estimators (Bayle et al.)

Under exactly the same conditions given for the CV central limit theorem (loss stability = $o(\sigma_n^2/n)$ and uniform integrability), we have

 $\widehat{\sigma}_{n,in}^2 / \sigma_n^2 \xrightarrow{L^1} 1.$

Theorem: Consistency of CV Variance Estimators (Bayle et al.)

Under exactly the same conditions given for the CV central limit theorem (loss stability = $o(\sigma_n^2/n)$ and uniform integrability), we have

$$\widehat{\sigma}_{n,in}^2 / \sigma_n^2 \xrightarrow{L^1} 1.$$

If, additionally, mean-square stability = $o(k\sigma_n^2/n)$, then

$$\widehat{\sigma}_{n,out}^2 / \sigma_n^2 \xrightarrow{L^1} 1.$$

 Mean-square stability condition particularly mild for leave-one-out CV (k = n), becomes o(σ_n²)

• New CV central limit theorem under algorithmic stability

- New CV central limit theorem under algorithmic stability
- Consistent estimators of CV variance

- New CV central limit theorem under algorithmic stability
- Consistent estimators of CV variance
- Asymptotically exact confidence intervals and tests for $k\mbox{-fold}$ test error

- New CV central limit theorem under algorithmic stability
- Consistent estimators of CV variance
- Asymptotically exact confidence intervals and tests for $k\mbox{-fold}$ test error

Thank you!