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From loss minimization to generative models

Parameter estimation often involves minimizing a selected loss and statistics

θest = argminθLoss(D,Dm(θ)) (1)

where D is the observed statistics and Dm(θ) is the output from a model.

Limitation: (1) Choice of loss and statistics may not be optimal; (2) Lack of
uncertainty quantification; (3) Scalability and stability of optimization.

We propose to improve the loss minimization in following a two-step principle.

Build a (large) probabilistic model of untransformed data with parameters
that can be identified from data. Show equivalence between estimation in
loss minimization and a statistical estimator of the probabilistic model.

Derive a more efficient estimator by marginalizing out random components.

Fast algorithms can be developed to accelerate the computation. An approach
that defines generative models and propagates the uncertainty from the beginning
of data processing, an ab initio uncertainty quantification (AIUQ) approach [1].
[1] Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. Under
review, Physical Review X, arXiv preprint arXiv:2309.02468.
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1 Example: AIUQ in scattering analysis of dynamics
Scattering analysis and differential dynamic microscopy
A latent factor model as the data generative model
Acceleration by the generalized Schur method for Toeplitz
covariances
Three sets of simulated studies
Three sets of real experiments

2 Marginalization and generative models of a few other examples

3 Calibration of imperfect geophysical models by satellite interferograms
with measurement bias

Calibration of imperfect models
Imperfect model calibration by imperfect data
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Example: AIUQ in scattering analysis of dynamics

From time-lapse videos to dynamical information

Figure 1: Multiple particle tracking (MPT) for (a) Polystyrene and (b) guiding
fibroblast toward alignment [Gu et al., 2023b].

Two different approaches for analyzing time-lapse microscopy videos:

Localizing particle intensity profile and linking trajectory by multiple particle
tracking (MPT) [Crocker and Grier, 1996] shown in Fig 1. Parameters needs
to be tuned in MPT case-by-case. Poor quality in e.g. (1) optically dense
systems, (2) systems with non-elliptical objects, (3) not eligible for placing
florescent probes.

Basis decomposition method without tracking individual particle (to be
discussed).

Mengyang Gu (UC Santa Barbara) AIUQ Harvard AstroStat 5 / 60
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Example: AIUQ in scattering analysis of dynamics Scattering analysis and differential dynamic microscopy

Scattering analysis of dynamics

Denote the normalized summation of 2D positions of M particles in the reciprocal space
ψ(q, t) = 1√

M

∑M
m=1 exp(−iq · xm(t)) where xm(t) is the position of the mth particle.

Particles are often assumed to have no or weak interaction and the intermediate
scattering function (ISF) follows:

fθ(q,∆t) = Cov(ψ(q, t), ψ∗(q, t+ ∆t)) = E

[
1

M

M∑
m=1

exp (iq ·∆xm(t,∆t))

]
,

(Parametric models). E.g., for 2D diffusive processes, the ISF follows

fθ(q,∆t) = exp
(
−q2θ∆t

)
,

where q =
√
q2
1 + q2

2 . Here θ is the diffusion coefficient, from which one can
estimate viscosity or particle sizes from Stokes-Einstein relation: θ = kBT

6πηr
.

(Nonparametric models). Approximate ISF by mean squared displacement

fθ(q,∆t) ≈ exp

(
−q

2〈∆x2(∆t)〉)
4

)
, (by cumulant theorem)

where θ(∆t) = 〈∆x2(∆t)〉. The storage and loss modulus can be obtained by the
generalized Stokes-Einstein relation [Mason, 2000].
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Example: AIUQ in scattering analysis of dynamics Scattering analysis and differential dynamic microscopy

Differential dynamic microscopy

In differential dynamic microscopy (DDM) [Cerbino and Trappe, 2008], one
compute the image structure function D(q,∆t) =

∑n
i=1 ∆ŷ(q, ti,∆t)

2/n

D(q,∆t) = A(q)(1− fθ(q,∆t)) +B, (2)

where A(q) is the real-valued scalar of amplitude parameter for wavevector q, fθ
is the ISF and B denotes a random noise with mean parameter B̄. Suppose we
have J distinct ISFs for each ∆t, and n time frames. One fits the image structure
function with respect to a loss function (such as the L2 loss):

(θest,Aest,1:J , B̄est) = argminθ,A1:J ,B̄Loss(D,Dm), (3)

where the entry of Dm and D is Dm(qj ,∆tk) = A(qj)(1− fθ(qj ,∆tk)) + B̄ and
D(qj ,∆tk) , respectively, for j = 1, ..., J and k = 1, ..., n.
Mengyang Gu (UC Santa Barbara) AIUQ Harvard AstroStat 8 / 60



Example: AIUQ in scattering analysis of dynamics Scattering analysis and differential dynamic microscopy

Wide applications and challenges in automated analysis
In DDM, each pixel in microscopic images is analogous to a point detector in
dynamic light scattering [Berne and Pecora, 2000].

Complement to particle tracking: applicable to nonspherical particles, optically
dense, and fast dynamics, etc, without tracking individual particles.

DDM has wide applications: e.g. bacteria [Wilson et al., 2011], concentrated
particle suspensions [Lu et al., 2012], phase separating colloidal gels [Gao et al.,
2015], and actin-microtubule network [Lee et al., 2021].

Three challenges: (1) A range of wavevectors needs to be pre-selected for
aggregating the information; (2) Lack of uncertainty quantification; (3)
computational and storage cost [Gu et al., 2021].

A question to be answered: What is the probabilistic model implicitly assumed for the
real-space image intensity in DDM?
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Example: AIUQ in scattering analysis of dynamics A latent factor model as the data generative model

A latent factor model as the generative model

Consider a latent factor model of a square view of image intensities at N pixels
y(t) = [y(x1, t), ..., y(xN , t)]

T [1]:

y(t) =
1√
N

W∗z(t) + ε(t); (4)

W∗ is an N ×N complex conjugate of the 2D discrete Fourier basis.

Noises follow ε(t) ∼ MN(0, σ2
0IN ) with variance σ2

0 = B̄
2 .

The complex latent factor follows z(t): z(t) = zre(t) + izim(t), where zre(t)
and zim(t) are both N-dimensional real-valued zero-mean Gaussian vectors.

Each latent factor at n time frames follows zj′,re ∼ MN(0,
Aj
4 Rj) and

zj′,im ∼ MN(0,
Aj
4 Rj) for indices j′ ∈ Sj = {(j′1, j′2) : q2

j′1,1
+ q2

j′2,2
= q2

j },
which contains indices of ‘ring’ j, for j = 1, ..., J .

Key: Rj is formed by ISF: Rj(k1, k2) = fθ(qj ,∆tk) with
∆tk = |k2 − k1|∆tmin with ∆tmin being the length of consecutive frames.

[1] Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv
preprint arXiv:2309.02468.
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Example: AIUQ in scattering analysis of dynamics A latent factor model as the data generative model

Connection between physics and statistics

Let ŷ(t) = Wy(t)√
N

= ŷre(t) + iŷim(t) be the normalized Fourier transformed

quantities. For any wavevector q = (q1, q2), the image structure function in DDM
equals to the temporal variogram in the reciprocal space.

E
[
(ŷq(t+ ∆t)− ŷq(t))(ŷ∗q(t+ ∆t)− ŷ∗q(t))

]
= A(q)(1− fθ(q,∆t)) + B̄,

Summary: DDM is fitting the temporal variogram at each wavevector in the
reciprocal space by the generative model in Eq. (4), whereas aggregating the
estimators is notoriously hard.
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Let ŷ(t) = Wy(t)√
N
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Example: AIUQ in scattering analysis of dynamics A latent factor model as the data generative model

Efficient estimator, no need to specify a wavevector range

Integrating out the random factor processes
p(Y | θ,A1:J , B̄) =

∫
p(Y | Z,θ,A1:J , B̄)p(Z | θ,A1:J , B̄)dZ, the

marginal likelihood of J rings of Fourier transformed quantity follows:

L
(
θ,A1:J , B̄

)
=

J∏
j=1

∏
j′∈Sj

pMN (ŷre,j′ ; 0, Σj)× pMN (ŷim,j′ ; 0, Σj) ,

where Σj =
Aj
4 Rj + B̄

4 In, pMN (·) is a multivariate normal density, and
ŷre,j′ = [yre,j′(t1), ..., yre,j′(tn)]T and ŷim,j′ = [yim,j′(t1), ..., yim,j′(tn)]T

are the real and imaginary parts of Fourier transformed intensities at j′.

Directly maximizing the marginal likelihood needs to search a large
parameter space. For any B̄, an unbiased estimator of Aj follows

Aest,j =
2

Sjn

∑
j′∈Sj

n∑
k=1

|ŷj′(tk)|2 − B̄, (5)

for j = 1, ..., J . Absolute value is used to ensure Aest,j nonnegative. Then

(θest, B̄est) = argmaxθ,B̄L
(
θ,Aest,1:J , B̄

)
. (6)

Mengyang Gu (UC Santa Barbara) AIUQ Harvard AstroStat 13 / 60



Example: AIUQ in scattering analysis of dynamics A latent factor model as the data generative model

Extension to anisotropic processes

We can split the intermediate function to two coordinates:
fθ(q,∆t) = fθ1

(q1,∆t)fθ2
(q2,∆t), where fθl(ql,∆t) is an intermediate

scattering function for the lth coordinate, and the parameters can be split to
θ = {θ1,θ2} with θ1 and θ2 being the parameters of fθl(ql,∆t) for l = 1, 2.

From the cumulant approximation, the anisotropic ISF follows

fθ(q,∆t) ≈ exp

(
−q

2
1〈∆x2

1(∆t)〉+ q2
2〈∆x2

2(∆t)〉
2

)
,

where 〈∆x2
1(∆t)〉 and 〈∆x2

2(∆t)〉 are MSD at ∆t along the two
coordinates, respectively. As the process is anisotropic, the ISF is different
for each wavevector in general. Then one can compute the maximum
marginal likelihood estimator in Eq. (6) with the anisotropic ISF. Since the
amplitude Aj depends on the transformed intensity at zero lag time and
image noise [Giavazzi et al., 2009, Nixon-Luke et al., 2022].

Mengyang Gu (UC Santa Barbara) AIUQ Harvard AstroStat 14 / 60
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Example: AIUQ in scattering analysis of dynamics
Acceleration by the generalized Schur method for Toeplitz

covariances

Accelerating the computation by generalized Schur
Denote no. of indices in each ring Sj = #Sj , and Ñ =

∑J
j=1 Sj . Directly

computing the likelihood T times requires O(TJn3) + O(TÑn2) and O(TÑn3)
operations for isotropic and anisotropic processes, respectively, making ∼ 1015

operations in computing MMLE for a 500× 500× 500 video.

Video microscopy is equally spaced in time, making Σj a symmetric Toeplitz
matrix, where the (k, k + ∆k)th entry follows

Σj(k, k + ∆k) = Ajfθ(qj ,∆tk) +
B̄

4
1∆k=0,

with ∆tk = ∆k∆tmin with ∆tmin is the interval between consecutive time frames.

The inverse and determinant of any n× n Toeplitz matrix Σ follows

Σ−1 =
1

δn−1

(
L1L

T
1 − L0L

T
0

)
, and |Σ| = Σ1,1

n−1∏
k=1

δk,

where L0, L1 (lower triangular Toeplitz matrices) and δk can be obtained by the
generalized Schur algorithm [Ammar and Gragg, 1987, 1988] reducing the cost
from O(n3) to O(n(log(n))2). In R, see the “SuperGauss” package [Ling, 2019].

One can further reduce dimensions by selecting J0:
∑J0
j=1 Aj/

∑J
j=1 Aj ≥ 1− ε.

Together we reduce the cost more than 105 times with nearly no approximation.
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Example: AIUQ in scattering analysis of dynamics
Acceleration by the generalized Schur method for Toeplitz

covariances

Automated analysis without selecting wavevectors
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Figure 2: (a) B, D estimates in likelihood space using different methods: AIUQ
(x), AIUQ with all q (o), DDM with fixed A, B (4), DDM with optimized A, B
(�), whereas the solid dot denotes the truth. (b) The D estimate using different
methods with the fraction of q used in the estimate and the solid line dots the
truth. Each video is 500× 500× 500, generated by simulating a Brownian motion
of 50 particles with slow dynamics.
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Example: AIUQ in scattering analysis of dynamics
Acceleration by the generalized Schur method for Toeplitz

covariances

Confidence interval and model selection

Interval and model selection was not available in DDM but they are available
because of the probabilistic representation through the generative model.

Uncertainty from parameter estimation. We use central limit theory
(CLT) [Mardia and Marshall, 1984] to approximate the parameter estimation
uncertainty through an asymptotically normal distribution.

I Information comes from M trajectories (M ≈ 50-200) of particles
instead of N ≈ 105 pixels at each frame. Discount the likelihood by a
factor of M/N seems needed in either CLT, bootstrap or Bayesian
sampling for this problem.

Uncertainty in discretization of pixels may be considered by re-estimating
(θ, B̄) by letting the associated amplitude of the wavevector qj to be
qj −∆qmin and qj −∆qmax for j = 1, ..., J separately.

Model selection can be achieved by information criteria, such as Akaike
information criterion (AIC): AIC = 2p− 2 log(Lmax), or Bayesian
information criteria (BIC): AIC = p log(nobs)− 2 log(Lmax), where Lmax is
the maximum likelihood, p and nobs are the no. of parameter different and
obs., respectively. Or one can select the model by the predictive error.

Mengyang Gu (UC Santa Barbara) AIUQ Harvard AstroStat 18 / 60



Example: AIUQ in scattering analysis of dynamics Three sets of simulated studies
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Example: AIUQ in scattering analysis of dynamics Three sets of simulated studies

Setting for simul study 1

Simulate 6 processes: Brownian motion (BM) with fast and slow dynamics,
fractional Brownian motion (FBM) with sub-diffusion and super-diffusion, one
OrnsteinUhlenbeck (OU) and a mixture of OU process and FBM.

Small video (100× 100× 100) and regular videos (500× 500× 500) are simulated.

Compare AIUQ with MPT and DDM with (i) fixed or pre-estimated Aj and B̄, or
(ii) optimize parameters at each set of wavevevtors and then average.

AIUQ with all and reduced wavevectors range are shown. The first 25% of rings of
wavevetors typically explains 99% variability and the first 50% explains more than
99.9% variability. Estimation of θ by different reduced wavevectors are almost
exactly the same but estimation of noise can be slightly different.

Parametric ISF, fθ(q,∆t)

BM exp
(
−q2σ2

BM∆t/4
)

FBM exp
(
−q2σ2

FBM∆tα/4
)

OU exp
(
−q2σ2

OU (1− ρ∆t)/4
)

OU+FBM exp
(
−q2(σ2

1∆tα + σ2
2(1− ρ∆t))/4

)
Nonparametric ISF, fθ(q,∆t)

Cumulant approx. exp
(
−q2〈∆x2(∆t)〉/4

)
Table 1: A list of models of the intermediate scattering function (ISF).
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Example: AIUQ in scattering analysis of dynamics Three sets of simulated studies

Processes, Regular video

true parameters DDM DDM AIUQ AIUQ
fixed opt reduced q all q

BM, σ2
BM = .020 2.8 .56 .019 [.019,.020] .020 [.019,.020]

BM, σ2
BM = 2.0 3.6 2.8 2.0 [2.0, 2.1] 2.0 [2.0, 2.1]

FBM, 6.7 3.8 8.1 [7.8,8.5) 8.1 [7.8,8.5)
α = .60 .87 .88 .59 [.58,.61) .59 [.58,.61)

FBM, σ2
FBM = .50 3.0 .74 .50 [.47,.54] .50 [.46,.55]

α = 1.4 1.3 1.0 1.4 [1.4,1.4] 1.4 [1.3,1.4]

OU, σ2
OU = 64 7.0× 104 22 61 (44,86) 61 [35,110)

ρ = .95 .71 .57 .95 (.93,.96] .95 (.91,.97)

OU+FBM, σ2
1 = 2.0 1.9 2.5 2.0 (1.6,2.4) 2.0 (1.4,2.7)

1.2 .76 .44 (.41,.48] .44 (.38,.51)
σ2

2 = 9.0 7.6 2.1 9.7 (7.1,13] 9.7(5.4,17]
ρ = .85 .62 .50 .85 (.81,.89) .85 (.77,.91]

Table 2: Parameter estimation for regular videos have contains 500× 500 pixels
over 500 time frames. The brackets give 95% confidence intervals by AIUQ
approaches. All intervals by AIUQ approaches cover the true parameters given in
the first column.
Mengyang Gu (UC Santa Barbara) AIUQ Harvard AstroStat 21 / 60



Example: AIUQ in scattering analysis of dynamics Three sets of simulated studies

Simul Eg 1: Mean squared displacements (MSD)
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Figure 3: Estimating mean-squared displacements (MSDs) versus lag time for
simulated videos containing the trajectories of M = 50 simulated particles. The
shaded area denotes the 95% interval for AIUQ with reduced wavevectors. The
truth overlaps with both AIUQ approaches.
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Example: AIUQ in scattering analysis of dynamics Three sets of simulated studies

Estimated MSD by model-free methods

Figure 4: Estimated MSDs by approximating ISF through cumulant theorem
fθ(q,∆t) ≈ exp

(
−q2〈∆x2(∆t)〉/4

)
. The AIUQ nonparametric approach is the

current approach [1] and DDM-UQ os our previous approach [2].

[1] Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv
preprint arXiv:2309.02468.
[2] Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential
dynamic microscopy. Physical Review E. Matlab package: https://github.com/UncertaintyQuantification/DDM-UQ.
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Example: AIUQ in scattering analysis of dynamics Three sets of simulated studies

Simul Eg 2: Model selection

We simulate processes by BM, FBM and OU and fit different model.

BM is a special case of FBM with α = 1, and BM can be well-approximated by
OU as MSDOU = σ2

OU (1− ρ∆t) ≈ σ2
OU (1− ρ)∆t, when 1− ρ is close to zero.

(b) Truth: FBM

(a) Truth: BM
BM FBM OU

(c) Truth: OU

Figure 5: Predictive root Mean Square Error (RMSE) for (a) Brownian Motion
(σ2
BM = 0.02) (b) Fractional Brownian Motion (σ2

FBM = 8, α = 0.6) and (c)
OrnsteinUhlenbeck process (σ2

OU = 64, ρ = 0.5) trained on the first 300 lag
times. The horizontal lines are the averages. AIC also shows similar results.
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Example: AIUQ in scattering analysis of dynamics Three sets of simulated studies

Simul Eg 3: Anisotropic systems

Figure 6: (a)-(c): Estimated MSD by AIUQ, MPT and truth from anisotropic BM
and two FBMs. (d)-(f): true parameters (histogram), estimated parameters and
95% intervals by AIUQ approaches.
Mengyang Gu (UC Santa Barbara) AIUQ Harvard AstroStat 25 / 60



Example: AIUQ in scattering analysis of dynamics Three sets of real experiments

Outline

1 Example: AIUQ in scattering analysis of dynamics
Scattering analysis and differential dynamic microscopy
A latent factor model as the data generative model
Acceleration by the generalized Schur method for Toeplitz
covariances
Three sets of simulated studies
Three sets of real experiments

2 Marginalization and generative models of a few other examples

3 Calibration of imperfect geophysical models by satellite interferograms
with measurement bias

Calibration of imperfect models
Imperfect model calibration by imperfect data
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Example: AIUQ in scattering analysis of dynamics Three sets of real experiments

Real Eg 1: Beyond diffraction limit in optically dense
samples
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Figure 7: The diagram shows the mean-squared displacement of fluorescent
probes in a 4 wt% PVA solution, the molecular structure is also shown in the
inset in (a). (a-c) The mean squared displacement against the lag time is plotted
for different embedded particle sizes: (a) 2a = 1 µm, (b) 2a = 200 nm and (c)
2a = 100 nm. The thin solid black line denotes literature values, where viscosity
η ≈ 0.025 Pa·s. The blue shaded region denotes the confidence interval using
AIUQ with a reduced wavevector range.
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Example: AIUQ in scattering analysis of dynamics Three sets of real experiments

Real Eg 2: Automated determination of the gelling point
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Figure 8: (a) Reaction between tetraPEG-SG and tetraPEGNH2. (b) Estimated
MSD by MPT of the probes embedded in the mixed tetra-functional PEG. (c)
Estimated MSD by AIUQ. (d) Superposition in (b) using MPT data. (e) Shift
factors a (red) and b (blue) for pregel (circles), and postgel (triangles). (f)
Estimated ρ from OU from video at different time denoted by black circles. The
black solid line denotes generalized logistic fit. The literature value is ∼ 44min.
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Example: AIUQ in scattering analysis of dynamics Three sets of real experiments

Real Eg 3: Anisotropic systems
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Figure 9: Anisotropic diffusion in lyotropic LC disodium cromoglycate (DSCG),
where LC molecules self-assemble into rod-like structure. (a) Schematics of a
probe particle moving amongst assembled stacks of DSCG, not drawn to scale.
(b-c) Crossed-polarizer images when the channel is aligned either 45o in (b) or
parallel to the alignment direction of the channel in (c). The double-sided arrows
denote the direction of the polarizer and analyzer. (d-e) Method comparisons
between AIUQ fitting (filled circles) and MPT tracking (solid lines) of the image
stack are presented in (d) lin-lin plot and (e) log-log plot. The inset in (d) shows
an example particle trajectory. The shaded region denotes 95% confidence
interval estimated using AIUQ reduced q.
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Marginalization and generative models of a few other examples

Outline

1 Example: AIUQ in scattering analysis of dynamics
Scattering analysis and differential dynamic microscopy
A latent factor model as the data generative model
Acceleration by the generalized Schur method for Toeplitz
covariances
Three sets of simulated studies
Three sets of real experiments

2 Marginalization and generative models of a few other examples

3 Calibration of imperfect geophysical models by satellite interferograms
with measurement bias

Calibration of imperfect models
Imperfect model calibration by imperfect data
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Marginalization and generative models of a few other examples

Principles of parameter estimation and marginalization

Minimization a loss function can be improved in two steps:

Build a (large) probabilistic generative model of untransformed data.

Show equivalence to a statistical estimator of the generative model, and
derive a more efficient estimator by marginalizing out random components.

Marginalization of random components is an iconic feature of Bayesian analysis.

The art of marginalization includes De Finetti’s theorem [De Finetti, 1937],
which states that {Yi}∞i=1 is exchangeable, if and only if there exists a
random variable θ ∈ Θ with probability distribution π(θ):

p(y1, ..., yn) =
∫ ∏n

i=1 p(yi|θ)π(θ)dθ.

Bayesian model selection [Berger and Pericchi, 1996] and Bayesian model
averaging (BMA) [Raftery et al., 1997], are two examples of marginalization.
For spatially correlated data, defining an objective prior according to the
marginal likelihood can make posterior proper [Berger et al., 2001].

Marginalization is a natural way for propagating the uncertainty
[Lakshminarayanan et al., 2017, Wilson and Izmailov, 2020] and avoids
over-fitting.
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Marginalization and generative models of a few other examples

Eg 1: Generalized probabilistic principal component analysis (GPPCA)

Consider the generative model Y = AZ + E, where Z ∼ MN(0, IdN ) and
E ∼ MN(0, σ2

0INn) The estimation by principal component analysis of A has
the same linear subspace to the MMLE of this model [Tipping and Bishop, 1999]:

Â = argmaxA

∫
p(Y | A,Z)p(Z)d(Z),

Consider outputs y(x) = (y1(x), ..., yN (x))T modeled by:

y(x) = Az(x) + ε,

where A[N×d] = [a1, ...,ad] and factor processes z(x) = (z1(x), ..., zd(x))T , with

d ≤ N and ε ∼MN(0, σ2
0IN ). Denote ZTl = (zl(x1), ..., zl(xn))T ∼ MN(0,Σl).

Assume ATA = Id, marginalizing out ZTl for l = 1, 2, ..., d [Gu and Shen, 2020]:

I If Σ1 = ... = Σd = Σ, the marginal likelihood is maximized when

Â = UR,

where U is a N × d matrix of the first d principal eigenvectors of
G = Y(σ2

0Σ−1 + In)−1YT and R is a d× d rotation matrix;
I If any Σi 6= Σj , denoting Gl = Y(σ2

0Σ−1
l + In)−1YT , we have:

Â = argmaxA

∑d
l=1 aTl Glal, s.t. ATA = Id.
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Marginalization and generative models of a few other examples

Eg 2: Kalman filter is a fast way of marginalization

For a continuous-time linear state space model:

y(ti) = F(ti)z(ti) + εi

z(ti) = G(ti)z(ti−1) + w(ti), w(ti) ∼ N(0,W(ti))

Write F(ti) = Fi G(ti) = Gi, W(ti) = Wi and z(ti) = zi. Conditional on (σ2, σ2
0 , γ):

(Kalman Filter [Kalman, 1960]) Let zi−1|y1:i−1 ∼ MN(mi−1,Ci−1). For i = 2, ..., n:

(i) The one-step-ahead predictive distribution of zi given y1:i−1 is
zi|y1:i−1 ∼ MN(bi,Bi). with bi = Gimi−1 and Bi = GiCi−1G

T
i + Wi.

(ii) The one-step-ahead predictive distribution of Yi given y1:i−1 is
Yi|y1:i−1 ∼ N(fi, Qi), with fi = Fiai, and Qi = FiBiF

T
i + σ2

0 .

(iii) The filtering distribution of zi given y1:i is zi|y1:i ∼ MN(mi,Ci), with
mi = bi + BiF

T
i Q
−1
i (yi − fi) and Ci = Bi −BiF

T
i Q
−1
i FiBi.

The likelihood p(y1:n) = p(y1)p(y2|y1)...p(yn|y1, ..., yn−1) follows

p(y1:n) = (2π)−n/2
∏n
i=1 Q

−1/2
i exp

{
−
∑n
i=1

(yi−fi)2
Qi

}
.

Remark [Gu et al., 2022a]:

Latent states z1:n are marginalized (integrated) out.

Computing the likelihood only takes O(n) instead of O(n3) operations.

Is Kalman a Bayesian? Or perhaps he thinks like a Bayesian?
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Marginalization and generative models of a few other examples

Eg 3: A generative model of DMD

Let us consider N × n matrix Y at n time points, where the Y1:n−1 and Y2:n.
Dynamic mode decomposition (DMD) [Schmid, 2010, Tu et al., 2014] reconstructs
the input-output pair, y(xt+1) ≈ Ay(xt), by

Â = argminA‖Y2:n −AY1:n−1‖= Y2:n(Y1:n−1)+, (7)

which produces discretized approximation of Koopman modes and eigenvalues
[Rowley et al., 2009, Brunton et al., 2022].

(A generative model for DMD). In [Gu et al., 2023c], we found Â in Eq. (7) is
the MLE of A of the model:

y(xt+1) = Ay(xt) + εt+1, (8)

where εt+1 ∼MN(0,Σε) is a vector of Gaussian distributions with a positive
definite covariance matrix Σε, for any t = 1, 2, ..., n.

The predictive distribution for DMD follows [Gu et al., 2023c]:(
y(xt∗) | Y, Â, Σ̂ε

)
∼MN

(
ŷ(xt∗),

t∗−n−1∑
i=0

ÂiΣ̂ε(Â
T )i
)
, (9)

where ŷ(xt∗) = Ât∗−ny(xn) for any t∗ > n.

Limitation of DMD: (1) Noise is not modeled; (2) The process is non-differentiable.
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Calibration of imperfect geophysical models by satellite
interferograms with measurement bias

Outline

1 Example: AIUQ in scattering analysis of dynamics
Scattering analysis and differential dynamic microscopy
A latent factor model as the data generative model
Acceleration by the generalized Schur method for Toeplitz
covariances
Three sets of simulated studies
Three sets of real experiments

2 Marginalization and generative models of a few other examples

3 Calibration of imperfect geophysical models by satellite interferograms
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Calibration of imperfect geophysical models by satellite
interferograms with measurement bias

Geological hazard quantification

Figure 10: 1 K̄ılauea Volcano eruption in 2018, ground deformation observations and

model fit.

[3] Anderson, K., Johanson, I., Patrick, M., Gu, M., Segall, P., Poland M., Montgomery-Brown E. and Miklius, A. (2019).
Magma reservoir failure and the onset of caldera collapse at K̄ılauea volcano in 2018. Science, 366(6470).
[4] Gu, M., Palomo, J., & Berger, J. O. (2019). RobustGaSP: Robust Gaussian stochastic process emulation in R. The R
Journal. MATLAB version: doi:10.5281/zenodo.3370575. Python version:
https://github.com/UncertaintyQuantification/P RobustGP. Fast prediction and UQ for expensive computer models with

f(x) ∈ RN where N can be e.g. 105. It was also used routinely for nonparametric regression [Edwards et al., 2021].
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Calibration of imperfect geophysical models by satellite
interferograms with measurement bias Calibration of imperfect models

Calibrating imperfect mathematical models

Denote fM (x,θ) a mathematical model at observable input x and
unobservable inputs θ. When the mathematical model is imperfect, it is
usual to model

yF (x) = fM (x,θ) + δ(x)︸ ︷︷ ︸
yR(x)

+ε,

where δ(x) models the discrepancy and ε ∼ N(0, σ2
0) is a zero-mean

independent Gaussian noise. yR(x) denotes the reality at x ∈ X.

Assume the trend and intercept are properly defined in fM . [Kennedy and
O’Hagan, 2001] modeled δ via a Gaussian process (GP) or Gaussian
stochastic process (GaSP), such that any marginal distribution follows

(δ(x1), ..., δ(xn))T ∼ MN(0, σ2R),

where Ri,j = K(xi,xj), with K(·, ·) being a kernel function. This approach
is used in many studies (e.g. [Bayarri et al., 2007, Higdon et al., 2008, Liu
et al., 2009, Paulo et al., 2012, Arendt et al., 2012]).
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Calibration of imperfect geophysical models by satellite
interferograms with measurement bias Calibration of imperfect models

Identifiability and inconsistency

Example 1 ([Gu et al., 2023a])

Assume noise-free data: yF (x) = fM (x, θ) + δ(x) and δ(·) ∼ GaSP (0, σ2K(·, ·)),
where fM (x, θ) = θ and K(xi, xj) = exp(−|xi − xj |/γ). yF (xi) is equally spaced at
xi ∈ [0, 1], for i = 1, ..., n. When the sample size n→∞, the maximum likelihood
estimator (MLE) θ̂MLE = (1TnR−11n)−11TnR−1yF has the limiting distribution

θ̂MLE ∼ N
(
θ,

2σ2γ

2γ + 1

)
.

Mean squared error (MSE) of MLE of θ (red curve) and theoretical bound (black curve)
for γ = 0.1 (left) and for γ = 0.02 (right) are shown above.
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Calibration of imperfect geophysical models by satellite
interferograms with measurement bias Calibration of imperfect models

L2 calibration and LS calibration

The L2 calibration in [Tuo and Wu, 2015, 2016].

I Step 1, use an estimator ŷR(·) of the reality using a nonparametric
regression model without a computer model.

I Step 2, estimate θ by

θ̂L2
= argmin

θ∈Θ

∫
x∈X

(ŷR(x)− fM (x,θ))2dx.

I In step 1, The L2 approach does not use the mathematical model to
predict the reality, while mathematical model is useful for prediction.

The LS calibration in [Wong et al., 2017]:

I Step 1, use a least squared estimator for calibration parameter
θ̂LS = argmin

θ∈Θ

∑n
i=1(yF (xi)− fM (xi,θ))2.

I Step 2, estimate the model discrepancy by a nonparameteric regression
by fitting the residual yF (xi)− fM (xi, θ̂LS).
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Calibration of imperfect geophysical models by satellite
interferograms with measurement bias Calibration of imperfect models

The scaled Gaussian stochastic process

We build the scaled Gaussian stochastic process (S-GaSP) to model the
discrepancy δz(·) [Gu and Wang, 2018]:

δz(x) =
{
δ(x) |

∫
ξ∈Xδ

2(ξ)dξ = Z
}
,

δ(·) ∼ GaSP(0, σ2K(·, ·)),
(10)

Given Z = z, the S-GaSP becomes a GaSP constrained at the space∫
x∈X δ

2(x)dx = z. Let pδ(Z = z) be the density of Z induced by GaSP.
Conditional on all the parameters, the default choice of pZ(·) is

pZ(z) =
gZ (z) pδ (Z = z)∫∞

0
gZ (t) pδ (Z = t) dt

, (11)

with the scaling function gZ(z) = λz
2σ2 exp

(
−λzz2σ2

)
.

Remark: We showed any GaSP (or Gaussian Markov random field) is a special
case of S-GaSP with λz = 0. We will discuss the default choice of λz.
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Properties of S-GaSP: orthogonal sequence representation

Let ρk and φk(·) be the ordered eigenvalues and eigenfunctions of kernel K(·, ·).

Lemma 1 ([Gu et al., 2022b])

Any marginal distribution of the S-GaSP is given below:

[δz(x1), ..., δz(xn) | σ2Rz] ∼ MN(0, σ2Rz),

where the (i, j) entry of Rz is Kz(xi,xj) below

Kz(xi,xj) =

∞∑
k=1

ρk
1 + λzρk

φk(xi)φk(xj).

For any x ∈ X, the S-GaSP δz(·) can be written as

δz(x) = σ

∞∑
k=1

ρk
1 + λzρk

Zkφk(x),

where Zk
i.i.d.∼ N(0, 1).

Remark: These two results can be viewed as the Mercer’s theorem and
Karhunen-Loève theorem for S-GaSP.
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Eigenvalues in GaSP and the associated S-GaSP
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Figure 11: Log eigenvalues and cumulative distribution function (CDF) of the L2

loss based on n = 200 inputs equally spaced from [0, 1]. In the left panel, red
symbols give the logarithm of empirical eigenvalues ρ̃i/n of the covariance matrix
parameterized by the unit variance Matérn kernel in (14) with two range

parameters. The scaled eigenvalues ρ̃i/n
ρ̃i/n+λz

by S-GaSP, with λz = 103, are

graphed by blue symbols. In the right panel, the empirical CDF of the
approximated L2 loss Z =

∫
δ2(x)dx is shown. The variance parameter is

adjusted such that the summation of the eigenvalues to be the same.
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MLE as the penalized kernel ridge regression in S-GaSP

Denote Lz(θ) the likelihood for θ in the S-GaSP calibration in (10) after
marginalizing out δz.

Lemma 2

The MLE θ̂z := argmaxθLz(θ) and predictive mean
δ̂z(·) := E[δz(·) | yF , θ̂z, λ, λz] are equivalent to the estimator of the
penalized kernel ridge regression below

(θ̂z, δ̂z(·)) = argmin
δ(·)∈H,θ∈Θ

`z(θ, δ), where

`z(θ, δ) =

[
1

n

n∑
i=1

(yF (xi)− fM (xi,θ)− δ(xi))2 + λ||δ||2Hz

]
,

with ||δ||2Hz := ||δ||2H + λz||δ||2L2(X)
.

Remark: both ||δ||2H and ||δ||2L2(X)
are in the penalty term.
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Theorem 1
Define the estimator for the reality in S-GaSP for any x ∈ X

ŷRz (x, θ̂z) := fM (x, θ̂z) + δ̂z(x).

i. (Convergence to the reality.) Assume the reality resides in the p dimensional
Sobolev space with order m > p/2, we have

‖yR(·)− ŷRz (·, θ̂z)‖L2(X) = Op(n
− m

2m+p ),

by choosing λ = O(n
− 2m

2m+p ) and λz = O(λ−1/2) and the jth ordered eigenvalue
of K(·, ·) satisfies cρj

−2m/p ≤ ρj ≤ Cρj−2m/p for some cρ > 0 and Cρ > 0.

ii. (Parameter convergence.) Under some more conditions, one has

θ̂z = θL2 +Op(n
− m

2m+p ),

with the same choice of K(·, ·), λ and λz.

Remark: (1) The second result does not hold for GaSP calibration. (2) The proof is not
trivial, as ||δ||2Hz = ||δ||2H + λz||δ||2L2(X) is not bounded when n→∞, whereas ||δ||2H is
typically bounded.
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Theoretical bound and numerical bound
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Figure 12: Prediction and calibration by the GaSP and discretized S-GaSP
calibration models based on a function in the Soblev space of order 3. In the left
panel, the average RMSE of predicting the reality by the GaSP calibration and
that of the discretized S-GaSP calibration are graphed as the red triangles and
blue dots, respectively; the black curve is n−m/(2m+p)/5, representing the
theoretical upper bound (up to a constant). In the right panel, the natural
logarithm of the RMSE of the calibration parameter of the GaSP and discretized
S-GaSP calibration are graphed as the red triangles and blue circles, respectively;
the black line is log(n−m/(2m+p)/40), the theoretical upper bound (up to a
constant). λ = n−2m/(2m+p) × 10−4 and λz = λ−1/2 are assumed.
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The discretized scaled Gaussian stochastic process

W.l.o.g., let the discretization points be the observed inputs, i.e. xCi = xi for
i = 1, ..., NC and NC = n. The discretized S-GaSP is to replace δz in Equation
(10) by [Gu and Wang, 2018]:

δzd(x) =

{
δ(x) | 1

n

n∑
i=1

δ(xi)
2 = Zd

}
. (12)

Marginalizing out Zd, δzd(·) is a zero-mean GaSP with the covariance function

σ2Kzd(xa,xb) = σ2(K(xa,xb)− rT (xa)R̃−1r(xb)) (13)

for any xa,xb ∈ X, where R̃ := R + nIn/λz.

Denote the ith largest eigenvalues of R and R̃ by ρ̃i and ρ̃z,i, respectively. Note
ρ̃z,i
n

=
ρ̃i
n

(1+λz
ρi
n

)
, which coincides with the shrinkage of eigenvalues of a

non-discretized S-GaSP, by using ρ̃i/n as approximation of ρi.

Default choice λz = (czλ||γ̃||)−1/2, where by default cz = 1, λ = σ2
0/(σ

2n) and
γ̃ = (γ̃1, ..., γ̃p)

T , with γ̃i being the range parameter normalized by the input
length, as it satisfies the convergence conditions in [Gu et al., 2022b]. Besides,
only the ratio of the range and variance parameters can be estimated consistently
[Zhang, 2004].
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Marginal distributions

Recall λ = σ2
0/(nσ

2). We have the following predictive distribution of field observations.

Theorem 2
The predictive distribution of the field data at any x ∈ X by the discretized S-GaSP
calibration model in (12) is a multivariate normal distribution

yF (x) | yF ,θ, σ2
0 , λ, λz ∼ MN(µ̂zd(x), σ2

0((nλ)−1K∗zd(x,x) + 1)),

where µ̂zd(x) = fM (x,θ) + rT (x)
1+λλz

(
R + nλ

1+λλz
In
)−1 (

yF − fMθ
)
, and

K∗zd(x,x) = K(x,x)− rT (x)

[
In +

(
R + nλ

1+λλz
In
)−1

n
(1+λλz)λz

]
R̃−1r(x), with

r(x) = (K(x,x1), ...,K(x,xn))T and R̃ = R + n
λz

In with the (i, j) entry of R being
K(xi,xj).

For any xa,xb ∈ X, one may assume K(xa,xb) =
∏p
i=1 Ki(di), where Ki(·) is a kernel

for di = |xai − xbi|. For example, the Matérn kernel with smoothness νi = 5/2 is

Ki(di) =

(
1 +

√
5di
γi

+
5d2
i

3γ2
i

)
exp

(
−
√

5di
γi

)
. (14)
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Example 2 (Estimators from coherent generative models are better)

Let yF (x) = yR(x) + ε, where ε ∼ N(0, 0.052) independently and
yR(x) = g1(x) + g2(x), with g1(x) =

∑100
j=1 j

−1 cos(5π(j − 0.5)x) sin(5j) and

g2(x) =
∑100
j=1 j

−6 cos(5π(j − 0.5)x) sin(5j). Let the mathematical model be

fM (x) = g1θ. The goal is to predict yR(·) and estimate θ.
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Figure 13: Comparison of different approaches in Example 2. In the left panel, the
logarithm of the AvgRMSEfM+δ of four calibration approaches are graphed at the
logarithm of different sample sizes. The histogram of the estimated calibration
parameter of each experiment of different approaches are given in the middle
panel and the right panel.
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Outline

1 Example: AIUQ in scattering analysis of dynamics
Scattering analysis and differential dynamic microscopy
A latent factor model as the data generative model
Acceleration by the generalized Schur method for Toeplitz
covariances
Three sets of simulated studies
Three sets of real experiments

2 Marginalization and generative models of a few other examples

3 Calibration of imperfect geophysical models by satellite interferograms
with measurement bias

Calibration of imperfect models
Imperfect model calibration by imperfect data
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Interferograms processing

Figure 14: (b) Wrapped InSAR interferogram from the COSMO-SkyMed satellite,

spanning 20 Oct 2011 to 15 May 2012. The inset box shows the flight path of the

satellite (arrow) and the downward look direction of the satellite at 41◦. White areas

have no data due to radar decorrelation. Number of data points is around 1.5× 105. (c)

Same data as in (b), but unwrapped. (d) Quadtree-processed interferogram.
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A model with correlated atmospheric error

The calibration model by multiple sources of data with measurement bias
(correlated atmospheric error) can be written as

yFl (x) = fM (x,θ) + δ(x) + δl(x) + µl + εl, (15)

for each source l, l = 1, ..., k, and any x ∈ X, where µl is an unknown
mean parameter and δl(·) models the measurement bias in the source l,
l = 1, ..., k, independent of the discrepancy function.

We model δzd(·) and δl(·) by the discretized S-GaSP and GaSP
respectively. i.e.

δzd ∼ MN(0, σ2Rzd), δl ∼ MN(0, σ2l Rl),

for l = 1, ..., k, where Rzd = (R−1 + λz
n In)−1. The connection between

the individual level data and aggregated data (stacked image) is also
studied.
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Connection between individual data and aggregated data

When this is no measurement bias,

yFl (x) = fM (x,θ) + δ(x) + µ+ εl(x), (16)

where the independent noise follows εl(x) ∼ N(0, σ2
0) for each x, and l = 1, ..., k.

Directly averaging the data gives

ȳF (x) = fM (x,θ) + δ(x) + µ+ ε̄(x), (17)

where the noise independently follows ε̄(x) ∼ N(0, σ2
0/k) for each x.

Integrating out δ ∼ MN(0, τ2R), the log marginal likelihood in model (16) follows

`(θ, µ, σ2
0 , τ,R) = cσ2

0
+ ¯̀(θ, µ, σ2

0 , τ,R), (18)

where ¯̀(θ, µ, σ2
0 , τ,R) is log marginal likelihood from (17) [Gu et al., 2023a].

Remark: When σ2
0 is known, two models are equivalent; when σ2

0 is unknown, sufficient
statistics are ȳF and s2, where s2 =

∑k
l=1

∑n
i=1(yFl (xi)− ȳF (xi))

2. The sample
variance of σ2

0 by aggregate data is k
∑n
i=1(ȳF (xi)− yR(xi))

2/(n− 1), which has a
variance of 2nσ4

0/(n− 1)2, which is larger than the variance of the sample variance
s2/(n(k − 1)) based on full data: 2σ4

0/(n(k − 1)). When there is measurement bias,
typically aggregated data (stacked image) is less efficient.
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The RobustCalibration package

Figure 15: Schematic overview of the RobustCalibration package available on CRAN
[Gu, 2022]. All three type of calibration models in the left panel is implemented. The
right panel give an overview of the major functions and classes. The scalar-valued and
vector-valued emulator from the RobustGaSP package available on CRAN [Gu et al.,
2019] can be called for approximating expensive computer models. Finally, the object
classes can be used for predicting the reality.
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Simulated study
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Figure 16: Simulated study: yFl (x) = fM (x,θ) + δ(x) + δl(x) + εl, where
fM (x, θ) = sin(θx) with the true θ = π/2. The model discrepancy and
measurement bias are both assumed to follow GaSPs with Matérn kernel with
roughness parameter 5/2. The 95% posterior credible intervals from the S-GaSP
calibration is graphed as the shaded area. The true δ(·) is from a GaSP but
estimation from S-GaSP is also reasonably well. Stacking reduces information.
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Satellite interferograms

Figure 17: Five COSMO-SkyMed satellite interferograms spanning from: 1) 17
Oct 2011 - 04 May 2012; 2) 21 Oct 2011 - 16 May 2012; 3); 20 Oct 2011 to 15
May 2012; 4) 28 Oct 2011 to 11 May 2012; 5) 12 Oct 2011 - 07 May 2012.
Interferograms 1 and 2 have an ascending-mode look angle, while the rest are
descending-mode. Horizontal position is in meters relative to a chosen point in
K̄ılauea Caldera; vertical scale is m/yr. The last figure shows the stack (average)
of 6 images.
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Input variables and calibration parameters

Table 3: Input variables, calibration parameters of the geophysical model in
calibration.

Input variables (x) Description

x1 East-west spatial coordinate
x2 South-north spatial coordinate

Calibration parameters (θ) Description

θ1 ∈ [−2000, 3000] Spatial coordinate of east-west chamber (m)
θ2 ∈ [−2000, 5000] Spatial coordinate of north-south chamber (m)
θ3 ∈ [500, 6000] Depth of the chamber (m)
θ4 ∈ [0, 0.15] Volume change rate of the reservoir (m3/s)
θ5 ∈ [0.25, 0.33] Poisson’s ratio (host rock property)
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Predictions by S-GaSP

MSEfM image 1 image 2 image 3 image 4 image 5

GaSP 1.26 1.63 7.80 4.33 1.97
S-GaSP 1.21 1.45 7.66 4.05 1.76

MSEfM+δ+δl
image 1 image 2 image 3 image 4 image 5

GaSP 0.116 0.115 0.264 0.134 0.120
S-GaSP 0.109 0.112 0.267 0.131 0.123

MSE in predicting each interferogram by 400 samples. The number is by 10−4.
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Posterior samples of the parameters

Figure 18: The posterior samples of θ in the GaSP and S-GaSP calibrations. The
range of the parameter θ5 (Poisson’s ratio) is consistent with many rock types,
but the geophysical model is relatively insensitive to this parameter [Mogi, 1958].
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Summary and Acknowledgement

We discussed a two-step principle to improve parameter estimation from
loss-minimization:

I Build a (large) probabilistic generative model of untransformed data.
I Show equivalence to a statistical estimator of the generative model,

and derive a more efficient estimator by marginalizing out random
components.

Latent factor models are generative models of many physical approaches of
images and functions. Physical models can be encoded in correlation.

Fast and exact approaches, such as fast Fourier transform, generalized Schur
algorithm, and Kalman filter can be used for computing the likelihood at
pseudo-linear complexity without approximation.
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