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1. Introduction to systematic errors and some methods to account 
for them

2. A new model of systematic errors based on the intrinsic model 
variance

3. Use of this method for (a) estimating systematic errors; or (b) 
hypothesis testing.



  

1. Systematic errors: An introduction 

It is a common situation that the goodness of fit, in this case C
min
, is not 

acceptable, yet the model generally follows the data without systematic 
trends. In such cases, it is possible to consider whether there are other 
sources of variance in the data that have not been considered.

These spectra are from Spence+2023 for the quasar 1ES 1553+113.

Spence, D., Bonamente, M. et al. (2023). A search for the missing baryons with X-ray 
absorption lines towards the blazar 1ES 1553+113, MNRAS 532(2), 2329.



  

Some quotes on “systematic errors”:

Eisenhart (1962): ‘… Systematic error, precision, and accuracy 
are inherent characteristics of a measurement process and not of 
a particular measurement yielded by the process’,

Jeffries (1966): ‘The usual physical practice is to distinguish 
between ”accidental” errors, which are reduced according to the 
usual rule when many observations are combined, and ”systematic” 
errors, which appear in every observation and persist in the 
mean.’

A review by van Dyk & Lyons (2023) summarizes some of the 
avaliable methods: one-parameter-at-a-time error 
propagation,several parameters simultaneously, nuisance 
parameters etc., sometimes requiring ancillary data for their 
determination.

C. Eisenhart (1962), Realistic evaluation of the precision and accuracy of instrument calibration
systems, Journal of Research of the National Bureau of Standards-C, Engineering and
Instrumentation 67C(2)
H. Jeffreys (1966), Theory of Probability, Third Ed.
D. van Dyk and L. Lyons (2023), How to incorporate systematic effects into parameter determi-
nation.



  

For Gaussian data regression, y
i
 ~ Gauss(μ

i
,σ2

i
), the traditional route 

is to identify additional sources of variance, σ2
sys
 , and typically add 

these variances prior to the ML regression, 

σ2
new,i 

= σ2
i
 + σ2

sys
(12)

and then carry on with the chi-squared distributed goodness-of-fit 
statistic

S = Σ (y
i 
– μ

i
)2/ σ2

new,i 

For Poisson data, y
i
 ~ Poiss(μ

i
), there is no direct way to provide 

additional variance, unlike in the case of Gaussian data. This is an 
intrinsic limitation of the Poisson regression.

One could alternatively chose other integer-values distributions that 
result from the compounding of the Poisson with other distributions, 
such as the negative binomial (e.g., Hilbe 2011) or the Poisson 
inverse Gaussian. However, retaining the Poisson distribution is 
generally preferred, especially in astronomy, primarily for its 
simplicity.

Hilbe, J.M. (2011). Negative Binomial Regression, Cambridge Univ. Press, 



  

There are a number of considerations to take into account when 
considering a method to account for systematic errors

(a) The need for ancillary observations. Often nuisance parameters 
require additional data for their likelihood, and sometimes this is not 
possible or undesirable.

(b) Overall complexity of the computations. For example, Bayesian 
methods may require an integration (usually numerical)over the prior, 
which may be expensive.

(c) Does the method yield a goodness-of-fit measure? Bayesian methods 
would tend to use relative information criteria (Bayes factors), 
e.g. AIC (Akaike, 1974), or BIC (Schwartz, 1978). Sometimes an absolute 
measure is preferred. 

I argue that, at present, there is no simple method that yields a 
goodness-of-fit statistic, and without the need for ancillary data, for 
the regression of Poisson or count data, similar to the one for normal 
data.

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Au-
tomatic Control 19 (1974), pp. 716–723.
G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics 6 (1978), pp.
461 – 464. Available at https://doi.org/10.1214/aos/1176344136



  

2. A new model of systematic errors for regression applications

Motivated by this limitation, I have developed a method to account for 
systematic errors in the Poisson ML regression (preliminary results were 
in Bonamente 2023).

Data model: yi ~ Poiss(μi), i=1,..,N and μi=f(xi;θ)with m free parameters.

The method is based on treating the ML estimate of each data point as a 
random variable Mi, according to

This introduces an intrinsic model variance σ2
i,int

 associated with the 
model itself, while retaining the Poisson distribution for the data. 

This means that the ML estimate, for example

M
i 
~ Gauss(μ

i
,σ2

int,i
) (13)

is no longer a fixed number, but a random variable whose mean is the 
measured μ

i
. Other distributions (e.g., gamma) can/should be used 

instead.

Bonamente, M. (2023). Hypothesis testing with the Cash statistic for overdispersed Poisson
count data. MNRAS 522 (2), 1987.



  

Illustration of the model of systematic errors: The best-fit model (solid 
curve) is obtained via usual ML methods, and a post-fit randomization 
according to M

i
 (blue curve) is used to determine the C

min
 statistic, which 

is explained in the following.



  

As a result of this assumption, the goodness-of-fit statistic becomes:

(the usual C
min
 statistic has μ

i 
in place of M

i
).

This statistic can be written as the sum of two separate components:

C
min,sys

 = X + Y with X = C
min
 and Y ~ N(μ

C
,σ2

C
)

where μ,σ2
C 
can be estimated from the data. Y is defined by:

It is argued that X and Y are in fact independent, under the null 
hypothesis H0. In fact, the distribution of X=Cmin is independent of model 
parameterization (per Wilks’ theorem); and Y, by construction, is 
independent of y

i
.

Bonamente, M. (2023). Hypothesis testing with the Cash statistic for overdispersed Poisson
count data. MNRAS 522 (2), 1987.



  

For small values of the systematic errors, fi=σint,i/μi, the Y variable is

The mean and variance of Y can also be easily calculated:

These results have been tested with several numerical simulations to be 
presented in Bonamente+24.

 

Bonamente, M. et al. (2024) Maximum–likelihood Poisson regression with systematic errors: 
Methodology and applications to the goodness–of–fit statistic, to be submitted.



  

Simulation with fi=0.1, N=100 data points; the CDF of the Y component has 
E[Y]=100, which means that the goodness-of-fit statistic has 
E[Cmin,sys]= E[Cmin]+E[Y]≈ 200.



  

Bonamente, M. and Zimmerman, D. (2024). , The univariate normal–gamma and related 
probability distributions, Submitted to METRON.
Gruskha, E. (1972). Characterization of exponentially modified Gaussian peaks in chro-
matography. Analytical chemistry 44, 1733–1738

The distribution of Z is therefore the convolution of a normal and a 
chi-squared distribution, in the asymptotic large-mean limit, which is 
referred to as an overdispersed chi-squared distribution, 

In the extensive data limit of large N, it is the convolution of 
two normal distribution.

As an aside: In Bonamente and Zimmerman (2024) we report an analytical form for 
the convolution of a gamma and normal distribution, which generalizes the 
convolution problem. This leads the the gamma-normal distribution

where D
-p
(x) is a parabolic cylinder function, and E(x) is an exponential function 

of the parameters. This generalizes earlier studies on the exponential-normal 
(e.g., Grushka 1972) that have been used expensively in biology.



  

3. Practical uses of this model for systematic errors

3.1 To estimate systematic errors from the data

In this case, one assumes that the model is correct, and E[Z]=(N-m)+ μ
C 
, 

thus leading to an estimate

From this, it is immediate to estimate the f parameter:

(confidence intervals on f can also be easily obtained. For the Spence+23 
spectra, this method gives reasonable results. Given the parameters

N=1526, m=48 (it was a spline model) and a measured C
min
=1862.7, 

the method estimated  f=0.018±0.02 which is the expected level of 
systematic errors for the XMM data.

 



  

3.2 To do hypothesis testing

The natural use of the method is to do hypothesis testing, assuming an a 
priori estimate for f

i
=σ

int,i
/μ

i
. In this case, f

i
 leads to an estimate of

E[Y]=μ
C 
(technically it is not a ‘hat’ quantity).

The goodness-of-fit statistic, under H
0
 and in the extensive data limit, 

N → ∞, is a normally distributed 

and usual hypothesis testing follows immediately, as usual.

Note: In the low-mean regime, it may be possible to use the latest 
results by Li+24, which guarantees asymptotic normality of the Poisson 
goodness-of fit. The E[X] and Var(X)would have to be modified 
accordingly.

 

Li, X., Chen, Y. Meng, X., Kashyap, V. and Bonamente, M. (2024), Comparison of Goodness–of–fit Assessment 
Methods with C statistics in Astronomy, to be submitted
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