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1. Introduction to |systematic errors and some methods to account
for them

2. A new model of systematic errors based on the|intrinsic model
variance

3. ‘Use of this methlod for [(a) estimating |[systemagic errars; or |(b)
hypothesis testing.




1. Systematic | errors: An introduction

It-isla common situation that Jthe. goodphess of fit, in fghis. case{C_ ., is|not

acceptable, yet the model generally follows the data without systematic
trends. In such cases, 1t 1s possible to consider whether there are other
sources of variance in the data that have not been considered.
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These spectra are from Spence+2023 for|the quasar 1ES 1553+113.

Spence, D., Bonamente, M. et al. (2023). A search flor the missing baryons with X-ray
absorption lines towards the blazar 1ES 1553+113, MNRAS 532 (2), 2329.



Some quotes on “systematic errors”:

Eisenhart| (1962): ‘.. Systematic error, precision, and| accuracy
are inherent characteristics of a measurement process and not of
a particular measurement yielded by the process’,

Jeffries (1966) : |‘The usual physical practice 1is to distinguish
between ”“accidental” errors, which are reduced according to the
usjual rule when many observations are combined, and “systematiic”
enirors, which appear in levery observation and persist|in the
mean.’

A review by van Dyk & Lyons (2023) summarizes some of the
avaliable methods: one-parameter-at-a-time error
propagation,;several parameters simultaneously, nuisance
parameters etc., |sometimes requiring ancillary data for their
determination.

C. Eisenhart (1962), Realistic evaluation of the precision and accuracy of instrument calibration
systems, Journal of Research of the National Bureau of Standards-C, Engineering and
Instrumentation 67C(2)

H. Jeffreys (1966), Theory of Probability, Third Ed.

D. van Dyk and L. Lyons (2023), How to incorporate systematic effects into parameter determi-
nation.



For Gaussian data regression, y, ~ Gauss(pi,ci), the traditional route

is to identify additional sources of variance, sz A and | tydicallylagd

these variances prilor to the ML regression,

il [ P ozﬁ (12)
and then carry on with the chi-squared distributed goodness-of-fit
sttt stio
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Fok Poisson data,| y|, [~1Poilsg(jn),] therelis ng diréect [way to[provide

additional wvariance, unlike in the case of Gaussian data. This 1is an
ingrinsic limitatign of the|l Boisson|regresision.

One could alternatively chose other integer-values distributions that
result from the compounding| of the Poisson with other distributions,
such as the negative binomial (e.g., Hilbe 2011) or the Poisson
inverse Gaussian. However, retaining the Poisson distribution is
generally preferred, especially in astronomy, primarily for its
simplicitliv]

Hilbe, J.M. (2011). Negative Binomial Regression, Cambridge Univ. Press,



Thene are a number of considerations |[to take into account when
considering |la method| to account for systematic errors

(a) The need for ancillary observations. Often nuisance parameters
regyire—addiftionaldatatfor—{their+lilkelihood; | andsom¢times—tERisis—hot
possible or undesirable.

(b) Overall complexity of the computations. For example, Bayesian
methods may require an integration (usually numerical)over the prior,
which may bel expensive.

(c) Does the method yield a goodness-of-fit measure? Bayesian methods
would tend to use relative information criteria (Bayes factors),

e.g. AIC (Akaike, 1974), or BIC (Schwartz, 1978). Sometimes an absolute
measure 1s preferred.

I argue that, at present, there Is no simple method that yields a
gondnesiszmof-litl sitatisttic, andl withogdtlthae hepd for lanchi llary ldata,l £or
the regression of Polsson or count data, similar to the one for normal
data.

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Au-
tomatic Control 19 (1974), pp. 716=723.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics 6 (1978), pp.
461 — 464. Available at https://doi.org/10.1214/a0s/1176344136



2. A new model of systematic errors for regression applications

Motivated by this limitation, I have developed a method to account for
systiematic errors in|the Poigson ML negression (preliminary results were
in Bonamente 2023).

batg—model—y——Poigsu =t N—dnd— =0 wi-thl-mfree—parametefds:

i

The method is based on treating the ML estimate of each data point as a
random variable M, gccording to

f(;r.i) i M;, with E(M;) = fi;, Var(M;) == o2

int,1"

Thig introdulces an i1htrinsicimodetd vdriance oiim;associated wirth+the

model itself, while retaining the Poisson distribution for the data.
This means that the ML estimate, for example
P~ -Gausp-(i; 041D (13)

is no longer a fixed number, but a random variable whose mean is the
meaqured ;. [{Other distributilons. (e.gl, gamma) can/shquld be used

instead.

Bonamente, M. (2023). Hypothesis testing with the Cash statistic for overdispersed Poisson
count data. MNRAS 522 (2), 1987.
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ITllustration of the model of systematic errors: The best-fit model (solid
curve) 1s obtained via usual ML methods, and/ a post-fit randomization
according tp M, (blue curve) is used to determine the g— statistitc, which

1s explained in the following.



As a result of this assumption, the goodness-of-fit statistic becomes:

N
¥ — T N.Y o— ¢ : yi o il AR
C min,sys — Chin(M;) = -)Z (,";".* In (J[,) (.*';"r. *‘IF-J)

1=1

(thg wspal |l statistic has ﬁ;in plajce of M)~
This statistic can be written as the sum of two separate components:
L : - o 1 b
5 T | K+ ¥ —wilithX+= g—1 and Y N(pc,oc)

where ﬁ}Oi:can be estimated from the data. Y 1s defined by:

Y =7 — X = Cuin(M;) — Crmin (i)

It ids arqgued that X and Y are in fact independent, under the null
hypothesis H . In fact, the distribution of X=C . 1is independent of model

parameterization (per Wilks’ theorem); and Y, by construction, 1is
rrgependentlod—yt

Bonamente, M. (2023). Hypothesis testing with the Cash statistic for overdispersed Poisson
count data. MNRAS 522 (2), 1987.



For small values of the systematic errors, fl=p /pi, the Y variable is

int, 1
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The mean and variance of Y can also be easily calculated:
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Var(Y) = IZ,H)" +Z “ 4+ ;) f; - kurt(. Zu g

=1 =1

These results have been tested with several numerical simulations to be
presented in Bonamente+24.

Bonamente, M. et al. (2024) Maximum-likelihood Poisson regression with systematic errors:
Methodology and applications to the goodness-of-fit statistic, to be submitted.



Simulation wilth £ =0.1, N=100ldata pointts; thel DF of fhe V| component  hig
E[Y]=100, which means that the goodness-of-fit statistic has
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The distribution of Z is therefore the convolution of a normal and a
chi-squared distributlion, in the asymptotic ldrge-mean| limit, which is
referred to as an overdispersed chi-squared distribution,

g ; 7 ~2
(IIIiII.H_\'H o B(U. He, (T(--)

In the extensive data limit of large N, it is the convolution of
two normal dilstribytionl.

As an| aside: In Bonamente and Zimmerman (2024) we report an analytical form for
the convolution of a gamma and normal distrnibution, which generalizes the
convolution problem. This leads the the gamma-normal distribution

(a0)"

fon(z a,r, .U-:UE) = \/ﬁ D_, (¢) - E(z),

where Dm(x) is a parabolic cylinder function, and E(x) is an exponential function

of the parameters. This generalizes earlier studies on the exponential-normal
(e.g., Grushka|1972) that have been used expensively in biology.

Bonamente, M. and Zimmerman, D. (2024). , The univariate normal-gamma and related
probability distributions, Submitted to METRON.
Gruskha, E. (1972). Characterization of exponentially modified Gaussian peaks in chro-

matography. Analytical chemistry 44, 1733-1738



3. Practical uses of this model for systematic errors
3.1 To estimate systematic errors from the data

In this case, one assumes that the model is correct, and E[Z]=(N-m)+ M s
thus leading to an estimate

jtc = Cmin —(N—m) >0

From this, it is immediate to estimate the f parameter:

?‘.‘ L ('mirl =i (—\' - ”")
| el

(confidence intervals on f can also be easily lobtained. For the Spence+23
spectra, this method gives reasonable results. Given the parameters

N=1526, m=48 [(it was A spline|model) and a measured C_|=1862.7,

the method estimated | £=0.018£0.02 which is the expected level | of
systematic errors for the XMM data.



3.2 To do hypothesis testing

The natural use of the method |is to do hypothesis testing, assuming an a
pliodi lestimabd for Ifl=a 1 I/ I Tnl Hhis| casel, [f] lelads{tolah legtimatel df

E[Y])=p, (technically it is not|a ‘hat’ quantity).

The goodnelss—of-fitf Istatisticd under H and in lthe extensive dara limit)

N -9, |is |a nprmally distributfed

r{ AT N af AT ~2

and usual hypothesis testing fiollows immediately, as usual.

Note: In the low-mean regime, 1t may be possible to use the latest
results by Li+24, which guarantees asymptotic normality of the Poisson
goodness-of fit. The E[X] and Var (X)would have to be modified
accondingliy.

Li, X., Chen, Y. Meng, X., Kashyap, V. and Bonamente, M. (2024), Comparison of Goodness-of-fit Assessment
Methods with C statistics in Astronomy, to be submitted
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