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Astronomical point source detection

Figure: Cartoon of partial point source data
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A simple approach

L = space of potential signal locations
Pre-specify partition of L into disjoint regions G1, . . . , Gm and do selection

Outputted regions disjoint

Can control false discoveries via many existing methods (e.g., multiple testing
on region p-values or Bayesian selection on region PIPs)

But how to pre-specify partition?

Toy example: Corr(X1, X2) = 0.99, Y = X1β1 + ε; split (X1, X2) or no?

Solution: adaptively selected regions
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Informal problem statement

Don’t want to narrow potential discovery regions until after seeing data

Want method that looks at the data and outputs regions G1, . . . , GR so as to:

max E [Power(G1, . . . , GR)]

s.t. FDR := E
[
#{Gr containing no signal}

max(1, R)

]
≤ q,

G1, . . . , GR ⊂ L are disjoint.

What does high Power() look like?

As many (true) discovered regions Gr as possible

Discovered regions Gr should be as small as possible

Existing work: no formalization of what “power” means, so cannot optimize it
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Valuing discovered regions

Define a weighting function w(G) that measures value of discovering a group

Should penalize larger groups

A canonical choice is inverse-size weighting: w(G) = 1/|G|

If G are circles on a sky survey, w(G) = 1/radius(G) natural

If want to precisely know the number of sources in each G:

Pair each G with a J ⊂ N representing possible numbers of sources in G

Set w(G, J) = 1/|J | (we call this the “separation-based” weight function)
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Optimizing resolution-adjusted power

Sum weights of true rejections to get Power():

Power(G1, . . . , GR) =

R∑
r=1

IGr
w(Gr),

where IG is the indicator that G contains a signal (i.e., is a true discovery)

Then the power of a Bayesian method that discovers G1, . . . , GR is

E[Power(G1, . . . , GR) | Data] = E

[
R∑

r=1

IGr
w(Gr)

∣∣∣∣∣ Data

]
=

∑
G⊆L

pGw(G)xG,

xG ∈ {0, 1} is indicator that G is one of the method’s discoveries

pG = E[IG | Data] is posterior inclusion probability (PIP)
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Posterior optmization

Optimal Bayesian method would solve:

max
{xG}G⊆L

Power =
∑
G

pGw(G)xG

s.t. FDR := E

[
#{false discoveries}

#{discoveries}

∣∣∣∣∣ Data

]
=

∑
G(1− pG)xG∑

G xG
≤ q∑

G3`

xG ≤ 1 ∀` (all discoveries are disjoint)

xG ∈ {0, 1} ∀G.

Objective and disjointness constraints are linear (good!)

FDR constraint not obviously convex (maybe bad)

Integer constraint definitely not convex (bad!)

G ⊆ L is too many to search over (bad!)
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Linearizing the FDR constraint

FDR =

∑
G(1− pG)xG∑

G xG
≤ q ⇔

∑
G

(1− pG − q)xG ≤ 0

max
{xG}G⊆L

∑
G

pGw(G)xG (Power)

s.t.
∑
G

(1− pG − q)xG ≤ 0 (FDR)∑
G3`

xG ≤ 1 ∀` (all discoveries are disjoint)

xG ∈ {0, 1} ∀G.

Mixed-integer linear program (MILP) non-convex; fast solvers for small problems
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Convexifying the integer constraint

max
{xG}G⊆L

∑
G

pGw(G)xG (Power)

s.t.
∑
G

(1− pG − q)xG ≤ 0 (FDR)∑
G3`

xG ≤ 1 ∀` (all discoveries are disjoint)

xG ∈ [0, 1] ∀G.

Now a linear program (LP) ⇒ optimal solution {x?G} easy for large problems

If x?G ∈ {0, 1} ∀G⇒ solution to MILP

Else, fix {x?G ∈ {0, 1}} and solve MILP over rest of xG to get {x??G }

Empirically, Very few x?G /∈ {0, 1}, and {x??G } very nearly MILP-optimal
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BLiP is verifiably nearly optimal

An exact upper-bound for the suboptimality of {x??G } is∑
G

pGw(G)x
?
G −

∑
G

pGw(G)x
??
G ,

since {x?G} optimizes LP which relaxes MILP

Figure: Expected power (objective function) of {x??
G } (BLiP) vs. {x?

G} (Upper bound).
Optimization dimension ≥ 50, 000.
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Reducing the search space

Can rapidly solve big LPs...

but not 2L big... restrict to set of regions G ⊂ 2L:

max
{xG}G∈G

∑
G

pGw(G)xG (Power)

s.t.
∑
G

(1− pG − q)xG ≤ 0 (FDR)∑
G3`

xG ≤ 1 ∀` (all discoveries are disjoint)

xG ∈ [0, 1] ∀G.

G can be as large as computationally feasible, like |G| ∼ 108

E.g., (fine-mapping) all contiguous groups of size ≤ 25

E.g., (point-source detection) circles of varying radii and centers

E.g., (variable selection) hierarchical clustering(s)

Can also solve problem as if |G| were much bigger via adaptive pruning
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Putting it all together: BLiP

Bayesian Linear Programming (BLiP)!

Just needs posterior inclusion probabilities pG as input
From any Bayesian algorithm for computing/approximating the posterior,
E.g., MCMC (average over posterior samples whether G contains a signal)
E.g., variational inference

Figure: p denotes dimension of linear model being fit, with n = p/2
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Comparison with alternatives

Bayesian (variational): DAP-G (Lee et al., 2018), SuSiE (Wang et al., 2020)

Frequentist: Yekutieli (Yekutieli, 2008), FBH (Katsevich et al., 2021)

Any Bayesian method + BLiP (LSS = linear spike & slab via Gibbs)

Figure: Linear model w/ autocorrelated X, sparsity s, sample size n, and dimension p
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Other error rates

BLiP idea works for other error rates: local FDR, PFER, FWER

Figure: BLiP’s solution indistinguishable from upper-bound for optimal solution
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Change point detection

BLiP applies out of the box to change point detection

Figure: Green bands denote LSS+BLiP’s outputted regions; left is example SuSiE fails
on due to variational approximation
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Point-source detection

100 x 100 pixel sub-image of Messier 2 star cluster from Sloan Digital Sky Survey

Ground truth available from much more powerful Hubble Space Telescope

StarNet (Liu et al., 2021): variational approx.’s MAPs + 0.5-pixel slack

continuous space of locations L: BLiP takes < 10 min for 15 FDRs

Figure: 20 x 20 pixel sub-image; green dots = ground truth, red regions = false
discoveries, blue regions = true discoveries
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Point-source detection (contd)
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Point-source detection (contd)
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Fine-mapping

UK Biobank data: n ≈ 337, 000, p ≈ 19, 000, 000; BLiP takes < 1 min per trait
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Conclusion

BLiP is a powerful, principled, efficient, and flexible method for
resolution-adaptive signal discovery

Provable error control and verifiable near-optimality

Substantial power gains in minutes on fine-mapping and point-source
detection

Software packages pyblip (Python) and blipr (R)

Potential for other signal discovery problems with spatial structure

paper available at: https://arxiv.org/abs/2203.17208

all code posted at: https://github.com/amspector100

Thank you!
http://lucasjanson.fas.harvard.edu

ljanson@fas.harvard.edu
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