Controlled Discovery and Localization of Astronomical Point Sources via Bayesian Linear Programming (BLiP)

Lucas Janson

Harvard University Department of Statistics

International CHASC AstroStatistics Centre, May 17, 2022

Coauthor

Asher Spector (First-year PhD student at Stanford Statistics)

Lucas Janson (Harvard Statistics)

BLiP: Signal Discovery and Localization

- Motivation
- Problem statement
- Methodological contribution: Bayesian Linear Programming (BLiP)
- Simulations
- Application to genetic fine-mapping
- Application to astronomical point-source detection

Astronomical point source detection

Figure: Cartoon of partial point source data

 $\mathcal{L} = \mathsf{space} \mathsf{ of potential signal locations}$

Pre-specify partition of ${\cal L}$ into disjoint regions G_1,\ldots,G_m and do selection

 \mathcal{L} = space of potential signal locations Pre-specify partition of \mathcal{L} into disjoint regions G_1, \ldots, G_m and do selection

• Outputted regions disjoint

 $\mathcal{L}=$ space of potential signal locations

Pre-specify partition of ${\cal L}$ into disjoint regions G_1,\ldots,G_m and do selection

- Outputted regions disjoint
- Can control false discoveries via many existing methods (e.g., multiple testing on region p-values or Bayesian selection on region PIPs)

 $\mathcal{L} = \mathsf{space} \ \mathsf{of} \ \mathsf{potential} \ \mathsf{signal} \ \mathsf{locations}$

Pre-specify partition of $\mathcal L$ into disjoint regions G_1,\ldots,G_m and do selection

- Outputted regions disjoint
- Can control false discoveries via many existing methods (e.g., multiple testing on region p-values or Bayesian selection on region PIPs)
- But how to pre-specify partition?

 $\mathcal{L} = \mathsf{space} \ \mathsf{of} \ \mathsf{potential} \ \mathsf{signal} \ \mathsf{locations}$

Pre-specify partition of $\mathcal L$ into disjoint regions G_1,\ldots,G_m and do selection

- Outputted regions disjoint
- Can control false discoveries via many existing methods (e.g., multiple testing on region p-values or Bayesian selection on region PIPs)
- But how to pre-specify partition?

Toy example: $\operatorname{Corr}(X_1, X_2) = 0.99$, $Y = X_1\beta_1 + \varepsilon$; split (X_1, X_2) or no?

 $\mathcal{L} = \mathsf{space} \ \mathsf{of} \ \mathsf{potential} \ \mathsf{signal} \ \mathsf{locations}$

Pre-specify partition of $\mathcal L$ into disjoint regions G_1,\ldots,G_m and do selection

- Outputted regions disjoint
- Can control false discoveries via many existing methods (e.g., multiple testing on region p-values or Bayesian selection on region PIPs)
- But how to pre-specify partition?

Toy example: $\operatorname{Corr}(X_1, X_2) = 0.99$, $Y = X_1\beta_1 + \varepsilon$; split (X_1, X_2) or no?

Solution: adaptively selected regions

Don't want to narrow potential discovery regions until after seeing data

$$\begin{split} \max & \quad \mathbb{E}\left[\mathsf{Power}(G_1,\ldots,G_R)\right] \\ \text{s.t.} & \quad \mathsf{FDR} := \mathbb{E}\left[\frac{\#\{G_r \text{ containing no signal}\}}{\max(1,R)}\right] \leq q, \\ & \quad G_1,\ldots,G_R \subset \mathcal{L} \text{ are disjoint.} \end{split}$$

$$\begin{array}{ll} \max & \mathbb{E}\left[\mathsf{Power}(G_1,\ldots,G_R)\right] \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E}\left[\frac{\#\{G_r \text{ containing no signal}\}}{\max(1,R)}\right] \leq q, \\ & G_1,\ldots,G_R \subset \mathcal{L} \text{ are disjoint.} \end{array}$$

What does high Power() look like?

$$\begin{array}{ll} \max & \mathbb{E}\left[\mathsf{Power}(G_1,\ldots,G_R)\right] \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E}\left[\frac{\#\{G_r \text{ containing no signal}\}}{\max(1,R)}\right] \leq q, \\ & G_1,\ldots,G_R \subset \mathcal{L} \text{ are disjoint.} \end{array}$$

What does high Power() look like?

• As many (true) discovered regions G_r as possible

$$\begin{array}{ll} \max & \mathbb{E}\left[\mathsf{Power}(G_1, \dots, G_R)\right] \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E}\left[\frac{\#\{G_r \text{ containing no signal}\}}{\max(1, R)}\right] \leq q, \\ & G_1, \dots, G_R \subset \mathcal{L} \text{ are disjoint.} \end{array}$$

What does high Power() look like?

- As many (true) discovered regions G_r as possible
- Discovered regions G_r should be as small as possible

$$\begin{array}{ll} \max & \mathbb{E}\left[\mathsf{Power}(G_1,\ldots,G_R)\right] \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E}\left[\frac{\#\{G_r \text{ containing no signal}\}}{\max(1,R)}\right] \leq q, \\ & G_1,\ldots,G_R \subset \mathcal{L} \text{ are disjoint.} \end{array}$$

What does high Power() look like?

- As many (true) discovered regions G_r as possible
- Discovered regions G_r should be as small as possible

Existing work: no formalization of what "power" means, so cannot optimize it

• Should penalize larger groups

- Should penalize larger groups
- A canonical choice is inverse-size weighting: w(G) = 1/|G|

- Should penalize larger groups
- A canonical choice is inverse-size weighting: $w({\cal G})=1/|{\cal G}|$
- $\bullet~$ If G are circles on a sky survey, $w(G)=1/\mathrm{radius}(G)$ natural

- Should penalize larger groups
- A canonical choice is inverse-size weighting: $w({\cal G})=1/|{\cal G}|$
- $\bullet~$ If G are circles on a sky survey, $w(G)=1/{\rm radius}(G)$ natural
- If want to precisely know the *number* of sources in each G:

- Should penalize larger groups
- A canonical choice is inverse-size weighting: $w({\cal G})=1/|{\cal G}|$
- $\bullet~$ If G are circles on a sky survey, $w(G)=1/{\rm radius}(G)$ natural
- If want to precisely know the *number* of sources in each G:
 - Pair each G with a $J \subset \mathbb{N}$ representing possible numbers of sources in G

- Should penalize larger groups
- A canonical choice is inverse-size weighting: $w({\cal G})=1/|{\cal G}|$
- $\bullet~$ If G are circles on a sky survey, $w(G)=1/{\rm radius}(G)$ natural
- If want to precisely know the *number* of sources in each G:
 - Pair each G with a $J \subset \mathbb{N}$ representing possible numbers of sources in G
 - Set w(G,J) = 1/|J| (we call this the "separation-based" weight function)

Optimizing resolution-adjusted power

Sum weights of true rejections to get Power():

$$\mathsf{Power}(G_1,\ldots,G_R) = \sum_{r=1}^R I_{G_r} w(G_r),$$

where I_G is the indicator that G contains a signal (i.e., is a true discovery)

Optimizing resolution-adjusted power

Sum weights of true rejections to get Power():

$$\mathsf{Power}(G_1,\ldots,G_R) = \sum_{r=1}^R I_{G_r} w(G_r),$$

where I_G is the indicator that G contains a signal (i.e., is a true discovery)

Then the power of a Bayesian method that discovers G_1, \ldots, G_R is

$$\mathbb{E}[\mathsf{Power}(G_1,\ldots,G_R) \mid \mathsf{Data}] = \mathbb{E}\left[\sum_{r=1}^R I_{G_r} w(G_r) \mid \mathsf{Data}\right] = \sum_{G \subseteq \mathcal{L}} p_G w(G) x_G,$$

x_G ∈ {0,1} is indicator that G is one of the method's discoveries
p_G = E[I_G | Data] is posterior inclusion probability (PIP)

$$\begin{split} \max_{\{x_G\}_{G\subseteq\mathcal{L}}} & \mathsf{Power} = \sum_G p_G w(G) x_G \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E} \left[\frac{\#\{\mathsf{false discoveries}\}}{\#\{\mathsf{discoveries}\}} \; \middle| \; \mathsf{Data} \right] = \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \leq q \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad \text{(all discoveries are disjoint)} \\ & x_G \in \{0, 1\} \quad \forall G. \end{split}$$

Optimal Bayesian method would solve:

$$\begin{array}{ll} \max_{\{x_G\}_{G\subseteq\mathcal{L}}} & \mathsf{Power} = \sum_{G} p_G w(G) x_G \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E} \left[\frac{\#\{\mathsf{false discoveries}\}}{\#\{\mathsf{discoveries}\}} \; \middle| \; \mathsf{Data} \right] = \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \leq q \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad \text{(all discoveries are disjoint)} \\ & x_G \in \{0, 1\} \quad \forall G. \end{array}$$

• Objective and disjointness constraints are linear (good!)

$$\begin{split} \max_{\{x_G\}_{G\subseteq\mathcal{L}}} & \mathsf{Power} = \sum_G p_G w(G) x_G \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E} \left[\frac{\#\{\mathsf{false discoveries}\}}{\#\{\mathsf{discoveries}\}} \; \middle| \; \mathsf{Data} \right] = \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \leq q \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad \text{(all discoveries are disjoint)} \\ & x_G \in \{0, 1\} \quad \forall G. \end{split}$$

- Objective and disjointness constraints are linear (good!)
- FDR constraint not obviously convex (maybe bad)

$$\begin{array}{ll} \max_{\{x_G\}_{G\subseteq\mathcal{L}}} & \mathsf{Power} = \sum_G p_G w(G) x_G \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E} \left[\frac{\#\{\mathsf{false \ discoveries}\}}{\#\{\mathsf{discoveries}\}} \; \middle| \; \mathsf{Data} \right] = \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \leq q \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad \text{(all \ discoveries \ are \ disjoint)} \\ & x_G \in \{0, 1\} \quad \forall G. \end{array}$$

- Objective and disjointness constraints are linear (good!)
- FDR constraint not obviously convex (maybe bad)
- Integer constraint definitely not convex (bad!)

$$\begin{array}{ll} \max_{\{x_G\}_{G\subseteq \mathcal{L}}} & \mathsf{Power} = \sum_G p_G w(G) x_G \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E} \left[\frac{\#\{\mathsf{false \ discoveries}\}}{\#\{\mathsf{discoveries}\}} \; \middle| \; \mathsf{Data} \right] = \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \leq q \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad \text{(all \ discoveries \ are \ disjoint)} \\ & x_G \in \{0, 1\} \quad \forall G. \end{array}$$

- Objective and disjointness constraints are linear (good!)
- FDR constraint not obviously convex (maybe bad)
- Integer constraint definitely not convex (bad!)
- $G \subseteq \mathcal{L}$ is too many to search over (bad!)

$$\begin{split} \max_{\{x_G\}_{G\subseteq \mathcal{L}}} & \mathsf{Power} = \sum_G p_G w(G) x_G \\ \text{s.t.} & \mathsf{FDR} := \mathbb{E} \left[\frac{\#\{\mathsf{false discoveries}\}}{\#\{\mathsf{discoveries}\}} \; \middle| \; \mathsf{Data} \right] = \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \leq q \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad \text{(all discoveries are disjoint)} \\ & x_G \in \{0, 1\} \quad \forall G. \end{split}$$

- Objective and disjointness constraints are linear (good!)
- FDR constraint not obviously convex (maybe bad)
- Integer constraint definitely not convex (bad!)
- $G \subseteq \mathcal{L}$ is too many to search over (bad!)

Linearizing the FDR constraint

$$\mathsf{FDR} = \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \le q \qquad \Leftrightarrow \qquad \sum_G (1 - p_G - q) x_G \le 0$$

$$\begin{aligned} \mathsf{FDR} &= \frac{\sum_{G} (1 - p_G) x_G}{\sum_{G} x_G} \leq q \quad \Leftrightarrow \quad \sum_{G} (1 - p_G - q) x_G \leq 0 \\ \\ \max_{\{x_G\}_{G \subseteq \mathcal{L}}} & \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all discoveries are disjoint}) \\ & x_G \in \{0, 1\} \quad \forall G. \end{aligned}$$

$$\begin{aligned} \mathsf{FDR} &= \frac{\sum_G (1 - p_G) x_G}{\sum_G x_G} \leq q \qquad \Leftrightarrow \qquad \sum_G (1 - p_G - q) x_G \leq 0 \\ &\underset{\{x_G\}_{G \subseteq \mathcal{L}}}{\max} \qquad \sum_G p_G w(G) x_G \qquad (\mathsf{Power}) \\ &\text{s.t.} \qquad \sum_G (1 - p_G - q) x_G \leq 0 \qquad (\mathsf{FDR}) \\ &\underset{G \ni \ell}{\sum} x_G \leq 1 \quad \forall \ell \qquad (\mathsf{all discoveries are disjoint}) \\ &x_G \in \{0, 1\} \quad \forall G. \end{aligned}$$

Mixed-integer linear program (MILP) non-convex; fast solvers for small problems

Convexifying the integer constraint

$$\begin{array}{ll} \displaystyle \max_{\{x_G\}_{G\subseteq \mathcal{L}}} & \displaystyle \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \displaystyle \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \displaystyle \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all \ discoveries \ are \ disjoint}) \\ & \displaystyle x_G \in [0, 1] \quad \forall G. \end{array}$$
Convexifying the integer constraint

$$\begin{array}{ll} \displaystyle \max_{\{x_G\}_{G \subseteq \mathcal{L}}} & \displaystyle \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \displaystyle \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \displaystyle \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all \ discoveries \ are \ disjoint}) \\ & \displaystyle x_G \in [0, 1] \quad \forall G. \end{array}$$

Now a **linear program (LP)** \Rightarrow optimal solution $\{x_G^{\star}\}$ easy for large problems • If $x_G^{\star} \in \{0, 1\} \forall G \Rightarrow$ solution to MILP

Convexifying the integer constraint

$$\begin{array}{ll} \displaystyle \max_{\{x_G\}_{G \subseteq \mathcal{L}}} & \displaystyle \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \displaystyle \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \displaystyle \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all \ discoveries \ are \ disjoint}) \\ & \displaystyle x_G \in [0, 1] \quad \forall G. \end{array}$$

Now a linear program (LP) \Rightarrow optimal solution $\{x_G^{\star}\}$ easy for large problems

- If $x_G^{\star} \in \{0,1\} \ \forall G \Rightarrow$ solution to MILP
- Else, fix $\{x_G^{\star} \in \{0,1\}\}$ and solve MILP over rest of x_G to get $\{x_G^{\star\star}\}$

Convexifying the integer constraint

$$\begin{array}{ll} \displaystyle \max_{\{x_G\}_{G \subseteq \mathcal{L}}} & \displaystyle \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \displaystyle \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \displaystyle \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all \ discoveries \ are \ disjoint}) \\ & \displaystyle x_G \in [0, 1] \quad \forall G. \end{array}$$

Now a linear program (LP) \Rightarrow optimal solution $\{x_G^{\star}\}$ easy for large problems

• If $x_G^{\star} \in \{0,1\} \ \forall G \Rightarrow$ solution to MILP

• Else, fix $\{x_G^{\star} \in \{0,1\}\}$ and solve MILP over rest of x_G to get $\{x_G^{\star\star}\}$

Empirically, Very few $x_G^{\star} \notin \{0,1\}$, and $\{x_G^{\star\star}\}$ very nearly MILP-optimal

BLiP is verifiably nearly optimal

An exact upper-bound for the suboptimality of $\{x_G^{\star\star}\}$ is

$$\sum_{G} p_G w(G) x_G^{\star} - \sum_{G} p_G w(G) x_G^{\star\star},$$

since $\{x_G^{\star}\}$ optimizes LP which relaxes MILP

BLiP is verifiably nearly optimal

An exact upper-bound for the suboptimality of $\{x_G^{\star\star}\}$ is

$$\sum_{G} p_G w(G) x_G^{\star} - \sum_{G} p_G w(G) x_G^{\star\star},$$

since $\{x_G^{\star}\}$ optimizes LP which relaxes MILP

Figure: Expected power (objective function) of $\{x_G^{\star\star}\}$ (BLiP) vs. $\{x_G^{\star}\}$ (Upper bound). Optimization dimension $\geq 50,000$.

Can rapidly solve big LPs...

Can rapidly solve big LPs... but not $2^{\mathcal{L}}$ big...

Can rapidly solve big LPs... but not $2^{\mathcal{L}}$ big... restrict to set of regions $\mathcal{G} \subset 2^{\mathcal{L}}$:

$$\begin{array}{ll} \max_{\{x_G\}_{G\in\mathcal{G}}} & \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all discoveries are disjoint}) \\ & x_G \in [0, 1] \quad \forall G. \end{array}$$

Can rapidly solve big LPs... but not $2^{\mathcal{L}}$ big... restrict to set of regions $\mathcal{G} \subset 2^{\mathcal{L}}$:

$$\begin{array}{ll} \displaystyle \max_{\{x_G\}_{G\in\mathcal{G}}} & \displaystyle \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \displaystyle \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \displaystyle \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all discoveries are disjoint}) \\ & \displaystyle x_G \in [0, 1] \quad \forall G. \end{array}$$

 ${\cal G}$ can be as large as computationally feasible, like $|{\cal G}| \sim 10^8$

Can rapidly solve big LPs... but not $2^{\mathcal{L}}$ big... restrict to set of regions $\mathcal{G} \subset 2^{\mathcal{L}}$:

$$\begin{array}{ll} \displaystyle \max_{\{x_G\}_{G\in\mathcal{G}}} & \displaystyle \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \displaystyle \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \displaystyle \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all discoveries are disjoint}) \\ & \displaystyle x_G \in [0, 1] \quad \forall G. \end{array}$$

 ${\cal G}$ can be as large as computationally feasible, like $|{\cal G}|\sim 10^8$

 $\bullet\,$ E.g., (fine-mapping) all contiguous groups of size ≤ 25

Can rapidly solve big LPs... but not $2^{\mathcal{L}}$ big... restrict to set of regions $\mathcal{G} \subset 2^{\mathcal{L}}$:

$$\begin{array}{ll} \displaystyle \max_{\{x_G\}_{G\in\mathcal{G}}} & \displaystyle \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \displaystyle \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \displaystyle \sum_{G\ni\ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all discoveries are disjoint}) \\ & \displaystyle x_G \in [0,1] \quad \forall G. \end{array}$$

 ${\cal G}$ can be as large as computationally feasible, like $|{\cal G}|\sim 10^8$

- $\bullet\,$ E.g., (fine-mapping) all contiguous groups of size ≤ 25
- E.g., (point-source detection) circles of varying radii and centers

Can rapidly solve big LPs... but not $2^{\mathcal{L}}$ big... restrict to set of regions $\mathcal{G} \subset 2^{\mathcal{L}}$:

$$\begin{array}{ll} \max_{\{x_G\}_{G\in\mathcal{G}}} & \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all discoveries are disjoint}) \\ & x_G \in [0, 1] \quad \forall G. \end{array}$$

 ${\cal G}$ can be as large as computationally feasible, like $|{\cal G}|\sim 10^8$

- $\bullet\,$ E.g., (fine-mapping) all contiguous groups of size ≤ 25
- E.g., (point-source detection) circles of varying radii and centers
- E.g., (variable selection) hierarchical clustering(s)

Can rapidly solve big LPs... but not $2^{\mathcal{L}}$ big... restrict to set of regions $\mathcal{G} \subset 2^{\mathcal{L}}$:

$$\begin{array}{ll} \max_{\{x_G\}_{G\in\mathcal{G}}} & \sum_{G} p_G w(G) x_G \quad (\mathsf{Power}) \\ \text{s.t.} & \sum_{G} (1 - p_G - q) x_G \leq 0 \quad (\mathsf{FDR}) \\ & \sum_{G \ni \ell} x_G \leq 1 \quad \forall \ell \quad (\mathsf{all discoveries are disjoint}) \\ & x_G \in [0, 1] \quad \forall G. \end{array}$$

 ${\cal G}$ can be as large as computationally feasible, like $|{\cal G}|\sim 10^8$

- $\bullet\,$ E.g., (fine-mapping) all contiguous groups of size ≤ 25
- E.g., (point-source detection) circles of varying radii and centers
- E.g., (variable selection) hierarchical clustering(s)

Can also solve problem as if $|\mathcal{G}|$ were much bigger via adaptive pruning

Putting it all together: BLiP

Bayesian Linear Programming (BLiP)!

Putting it all together: BLiP

Bayesian Linear Programming (BLiP)!

Just needs posterior inclusion probabilities p_G as input

- From any Bayesian algorithm for computing/approximating the posterior,
- E.g., MCMC (average over posterior samples whether G contains a signal)
- E.g., variational inference

Putting it all together: BLiP

Bayesian Linear Programming (BLiP)!

Just needs posterior inclusion probabilities $p_{G}\xspace$ as input

- From any Bayesian algorithm for computing/approximating the posterior,
- E.g., MCMC (average over posterior samples whether G contains a signal)
- E.g., variational inference

Figure: p denotes dimension of linear model being fit, with n=p/2

• Bayesian (variational): DAP-G (Lee et al., 2018), SuSiE (Wang et al., 2020)

- Bayesian (variational): DAP-G (Lee et al., 2018), SuSiE (Wang et al., 2020)
- Frequentist: Yekutieli (Yekutieli, 2008), FBH (Katsevich et al., 2021)

- Bayesian (variational): DAP-G (Lee et al., 2018), SuSiE (Wang et al., 2020)
- Frequentist: Yekutieli (Yekutieli, 2008), FBH (Katsevich et al., 2021)
- Any Bayesian method + BLiP (LSS = linear spike & slab via Gibbs)

- Bayesian (variational): DAP-G (Lee et al., 2018), SuSiE (Wang et al., 2020)
- Frequentist: Yekutieli (Yekutieli, 2008), FBH (Katsevich et al., 2021)
- Any Bayesian method + BLiP (LSS = linear spike & slab via Gibbs)

Figure: Linear model w/ autocorrelated X, sparsity s, sample size n, and dimension p

BLiP idea works for other error rates: local FDR, PFER, FWER

Figure: BLiP's solution indistinguishable from upper-bound for optimal solution

BLiP applies out of the box to change point detection

Figure: Green bands denote LSS+BLiP's outputted regions; left is example SuSiE fails on due to variational approximation

100 x 100 pixel sub-image of Messier 2 star cluster from Sloan Digital Sky Survey

• Ground truth available from much more powerful Hubble Space Telescope

 100×100 pixel sub-image of Messier 2 star cluster from Sloan Digital Sky Survey

- Ground truth available from much more powerful Hubble Space Telescope
- StarNet (Liu et al., 2021): variational approx.'s MAPs + 0.5-pixel slack

 100×100 pixel sub-image of Messier 2 star cluster from Sloan Digital Sky Survey

- Ground truth available from much more powerful Hubble Space Telescope
- StarNet (Liu et al., 2021): variational approx.'s MAPs + 0.5-pixel slack
- continuous space of locations \mathcal{L} : BLiP takes $\leq 10 \text{ min}$ for 15 FDRs

100 \times 100 pixel sub-image of Messier 2 star cluster from Sloan Digital Sky Survey

- Ground truth available from much more powerful Hubble Space Telescope
- StarNet (Liu et al., 2021): variational approx.'s MAPs + 0.5-pixel slack
- continuous space of locations \mathcal{L} : BLiP takes $\leq 10 \text{ min}$ for 15 FDRs

Figure: 20×20 pixel sub-image; green dots = ground truth, red regions = false discoveries, blue regions = true discoveries

Point-source detection (contd)

Inverse Radius Weight Fn.

Point-source detection (contd)

Inverse Radius Weight Fn.

Lucas Janson (Harvard Statistics)

Fine-mapping

UK Biobank data: $n \approx 337,000$, $p \approx 19,000,000$; BLiP takes $\leq 1 \text{ min}$ per trait

Fine-mapping

UK Biobank data: $n \approx 337,000$, $p \approx 19,000,000$; BLiP takes $\leq 1 \text{ min}$ per trait

Lucas Janson (Harvard Statistics)

Fine-mapping

UK Biobank data: $n \approx 337,000$, $p \approx 19,000,000$; BLiP takes $\leq 1 \text{ min}$ per trait

Cumulative Frequency of Discovered Group Sizes

• Provable error control and verifiable near-optimality

- Provable error control and verifiable near-optimality
- Substantial power gains in minutes on fine-mapping and point-source detection

- Provable error control and verifiable near-optimality
- Substantial power gains in minutes on fine-mapping and point-source detection
- Software packages pyblip (Python) and blipr (R)

- Provable error control and verifiable near-optimality
- Substantial power gains in minutes on fine-mapping and point-source detection
- Software packages pyblip (Python) and blipr (R)
- Potential for other signal discovery problems with spatial structure

- Provable error control and verifiable near-optimality
- Substantial power gains in minutes on fine-mapping and point-source detection
- Software packages pyblip (Python) and blipr (R)
- Potential for other signal discovery problems with spatial structure

paper available at: https://arxiv.org/abs/2203.17208 all code posted at: https://github.com/amspector100
BLiP is a powerful, principled, efficient, and flexible method for resolution-adaptive signal discovery

- Provable error control and verifiable near-optimality
- Substantial power gains in minutes on fine-mapping and point-source detection
- Software packages pyblip (Python) and blipr (R)
- Potential for other signal discovery problems with spatial structure

paper available at: https://arxiv.org/abs/2203.17208
all code posted at: https://github.com/amspector100

Thank you! http://lucasjanson.fas.harvard.edu ljanson@fas.harvard.edu

- Katsevich, E., Sabatti, C., and Bogomolov, M. (2021). Filtering the rejection set while preserving false discovery rate control. *Journal of the American Statistical Association*, 0(0):1–12.
- Lee, Y., Luca, F., Pique-Regi, R., and Wen, X. (2018). Bayesian multi-snp genetic association analysis: Control of fdr and use of summary statistics. *bioRxiv*.
- Liu, R., McAuliffe, J. D., and Regier, J. (2021). Variational inference for deblending crowded starfields.
- Wang, G., Sarkar, A., Carbonetto, P., and Stephens, M. (2020). A simple new approach to variable selection in regression, with application to genetic fine mapping. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 82(5):1273–1300.
- Yekutieli, D. (2008). Hierarchical false discovery rate-controlling methodology. *Journal of the American Statistical Association*, 103(481):309–316.