Calibration Concordance for Astronomical Instruments

Yang Chen

Joint work with X.-L. Meng (Harvard University), X. Wang (Two Sigma Inc.), D. van Dyk (Imperial College London), V. Kashyap (Center for Astronomy), H. Marshall (MIT)

September 8, 2020

Calibration Concordance Problem (Example: E0102)

- Supernova remnant E0102
- Four sources correspond to four spectral lines in E0102

Yang Chen

Calibration Concordance

Measurements

Flux is the total amount of energy that crosses a unit area per unit time.

The flux of an astronomical source (F) depends on the luminosity of the object (L) and its distance from the Earth (r), $F = L/4\pi r^2$.

Observatory and Instruments

Current X-ray Observatory

USA: Chandra X-ray Observatory Euro High angular resolution (~0.5") High throug And •Rossi X-ray Timing Explorer •Swift •INTEGRAL etc.

Europe: XMM-Newton

High throughput (large effective area)

9 /72 September 8, 2020 4 / 39

Yang Chen

Calibration Concordance

Observatory and Instruments

CXC Home Proposer Archive Data Analysis Instruments & Calibration For the Public

CHANDRA INSTRUMENTS AND CALIBRATION

The Chardin X-ray Observatory (CXO) is designed for high resolution (s 1/2 arcset): X-ray imaging and spectroscopy. The High Resolution Mirror Assembly (HMM) focuses X-rays onto one of two instruments, ACIS or HFC. O May one detector (HFC or ACIS) is in the local giane at any given time. The graning spectroments (LTC or VerTC) can be placed in the organized build helm (HTM). The dispensed spectrum is read out by either ACIS or HFC. A high level evenies or bear the Order Structures and the Chardin X-ray Observatory can be sourd on the Acou Charding spectrum is read out by either ACIS or HFC. A high level evenies or bear the Order Structures (STC or VerTC) and the Order Structures (STC order Structures) and the Order Structures) and the Order Structures (STC order Structures) and the Orde

Current calibration data products for use in CIAO and other analysis systems can be found in the CALDB pages. A complete listing of all calibration products in the CALDB and a brief description of these products can be found in the Calibration Data Products.

CALIBRATION STATUS SUMMARY ACIS	Advanced CCD Imaging Spectrometer (ACIS)	High Resolution Camera (HRC)
HRC	The ACIS has two arrays of CCDs, one (ACIS-I) optimized for imaging wide fields (16x16 arc minutes) the other (ACIS-S) optimized as a readout for the HETG transmission grating. One chip of the ACIS-S	The HRC comprises two micro-channel plate imaging detectors, and offers the highest spatial (<0.5 arc second) and temporal (16 msec) resolutions. The HRC-I has the largest field-of-view (31x31 arc
LETG	(S3) can also be used for on-axis (8x8 arc minutes) imaging and offers the best energy resolution of the ACIS system.	minutes) available on Chandra. The HRC-S is most commonly used to read out the dispersed spectrum from the LETG.
HRMA Californion Database (CALDB)	High Energy Transmission Custing	Low Energy Transmission Creating
Cross-Caurenanos with other X-Ray Telescores	(HETG)	(LETG)
California Workshors and Revens	The HETG is optimized for high-resolution spectroscopy of bright sources over the energy band 0.4-10 keV. It is most commonly used with ACIS-S. The resolving power (E/AE) varies from -800 at 1.5 keV to	The LETG provides the highest spectral resolving power (E/ΔE > 1000) on Chandra at low energies (0.07 - 0.2 keV). The LETG/HRC-S combination is used extensively for high resolution spectroscopy of
SPIE PRODUCTIONS SOBACE AND CALIBRATION REQUIREMENTS	~200 at 6 keV.	bright, soft sources such as stellar coronae, white dwarf atmospheres and catacitysmic variables.
SCHOOL AND CALIBRATION RECOMMENTS		

Observatory and Instruments

CXC Home Proposer Archive Data Analysis Instruments & Calibration For the Public

CHANDRA INSTRUMENTS AND CALIBRATION

The Chardra Xiny Observatory (CKO) is designed for high resolution (s 12 ansec) Xiny imaging and spectroscopy. The High Resolution Mitror Assembly (HRMA) tocuses Xinys onto one of two instruments, ACIS or HRC. Only one detector (HRC or ACIS) is in the boar plane at any given time. The graning spectromenies (ECI or HETG) can be alload in the optical path behind the HRMA. The dispensed pacture is read out by alther ACIS or HRC. A high level cereview of the instruments on-board the Chardra Xing Observatory can be found on the Acout Chardra pages and a more detailed despression and board in the typopers. Observatory can be found not the Acout Chardra pages and a more detailed despression and board in the typopers. Observatory can be found not the Acout Chardra pages and a more detailed despression and board in the typopers. Observatory can be found not the Acout Chardra pages and a more detailed despression and board in the typopers. Observatory can be found not the Acout Chardra pages and a more detailed despression and board in the typopers. Observatory can be found not the Acout Chardra pages and a more detailed despression and board in the typopers. Observatory can be found not the Acout the Acout Chardra pages and a more detailed despression and board in the typopers. Observatory can be found not the Acout Chardra pages and a more detailed despression and board in the typopers.

Current calibration data products for use in CIAO and other analysis systems can be found in the CALDB pages. A complete listing of all calibration products in the CALDB and a brief description of these products can be found in the Calibration Data Products.

CALISIANTON STATUS BURMARY	Advanced CCD Imaging Spectrometer (ACIS)	High Resolution Camera (HRC)
HRC HETG LETG HRMA	The ACIS has two arrays of CCDs, one (ACIS-I) optimized for imaging wide fields (16x16 arc minutes) the other (ACIS-S) optimized as a readout for the HETG transmission grains. One chip of the ACIS-S (S3) can also be used for on-axis (8x8 arc minutes) imaging and offers the best energy resolution of the ACIS system.	The HRC comprises two micro-channel plate imaging detectors, and offers the highest spatial (<0.5 arc second) and temporal (file mec) resolutions. The HRC-I has the largest field-of-view (31x31 arc minutes) available on Chandra. The HRC-S is most commonly used to read out the dispersed spectrum from the LETG.
Славното Datasas (CALDB) Селоз-Саланиза или отея X-Rar Talencores Алист Investment Славното Witeraeres и Риге Риосския Вовиса на Силантия Перемянита	High Energy Transmission Grating $(\rm HETG)$. The HeTG is being on the energy band 0.410 keV is most commonly used on AGS-3. The resolution power (0.21) were from -450 at 15 keV to -200 at 8 keV.	Low Energy Transmission Grating (EEG) The LEEG INVERTIGATION OF THE AND A STATE AND A STATE AND A STATE (COV) - 52 km/s, how the leader of the Andrew State and the Andrew State bright, soft sources such as stellar corones, while dear almospheres and catedyamic variables.

Each of these instruments has a different photon collection efficiency – Effective Area. Reflectivity and vignetting, among other effects, cause the geometric area of a telescope to be reduced to a smaller "effective area".

Calibration Concordance Problem (Example: E0102)

- Four spectral lines observed with 11 X-ray detectors
- Main challenge the data/instruments do not agree

Outline

Introduction

- 2 Scientific and Statistical Models
 - Concordance Model
- 4 Advantages of Our Approach
 - Multiplicative Shrinkages
 - Benefits of fitting the variances
 - Extentions to handle outliers
 - Results from Astronomy Data

Summary

Introduction

- Scientific and Statistical Models
- 3 Concordance Model
- Advantages of Our Approach
 - Multiplicative Shrinkages
 - Benefits of fitting the variances
 - Extentions to handle outliers
 - Results from Astronomy Data

Summary

- *N* Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .

- *N* Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_i is unknown.

- *N* Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_j is unknown.
- Photon counts c_{ij} : from measuring flux F_j with instrument *i*.

- N Instruments with true effective area A_i , $1 \le i \le N$.
 - For each instrument *i*, we know estimated $a_i (\approx A_i)$ but not A_i .
- *M* Sources with fluxes F_j , $1 \le j \le M$.
 - For each source j, F_j is unknown.
- Photon counts c_{ij} : from measuring flux F_j with instrument *i*.
- Lower cases: data / estimators.
- Upper cases: parameter / estimand.

Calibration Concordance Problem

Astronomers' Dilemma:

$$\frac{c_{ij}}{a_i} \neq \frac{c_{i'j}}{a_{i'}}$$
 for $i \neq i'$.

Different instruments give different estimated flux of the same object!

Calibration Concordance Problem

Astronomers' Dilemma:

$$\frac{c_{ij}}{a_i} \neq \frac{c_{i'j}}{a_{i'}}$$
 for $i \neq i'$.

Different instruments give different estimated flux of the same object!

2 Scientific Question:

- Are there systematic errors in 'known' effective areas?
- Can we derive properly adjusted effective areas?
- Can we unify estimates of the same flux with different instruments?

Scientific and Statistical Models

Concordance Model

Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data

Summary

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

 $\mathsf{Counts} = \mathsf{Exposure} \times \mathsf{Effective} \; \mathsf{Area} \times \mathsf{Flux},$

 $C_{ij} = T_{ij}A_iF_j, \quad \Leftrightarrow \quad \log C_{ij} = B_i + G_j,$

where log area $= B_i = \log A_i$, log flux $= G_j = \log F_j$; let $T_{ij} = 1$.

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

 $Counts = Exposure \times Effective Area \times Flux,$

 $C_{ij} = T_{ij}A_iF_j, \quad \Leftrightarrow \quad \log C_{ij} = B_i + G_j,$

where log area $= B_i = \log A_i$, log flux $= G_j = \log F_j$; let $T_{ij} = 1$.

Statistical Model

log counts $y_{ij} = \log c_{ij} - \alpha_{ij} = B_i + G_j + e_{ij}$, $e_{ij} \stackrel{indep}{\sim} \mathcal{N}(0, \sigma_{ij}^2)$; where $\alpha_{ij} = -0.5\sigma_{ij}^2$ to ensure $E(c_{ij}) = C_{ij} = A_i F_j$.

- Known Variances: σ_{ij} known.
- **Unknown Variances**: $\sigma_{ij} = \sigma_i$ unknown.

Introduction

Concordance Model

- Advantages of Our Approach
 - Multiplicative Shrinkages
 - Benefits of fitting the variances
 - Extentions to handle outliers
 - Results from Astronomy Data

Summary

Log-Normal Hierarchical Model.

Log-Normal Hierarchical Model.

 $\begin{array}{rcl} \log \ {\rm counts} \ | {\it area} \ \& {\it flux} \ \& {\it variance} & \stackrel{\rm indep}{\sim} & {\rm Gaussian} \ {\rm distribution}, \\ y_{ij} \ | \ B_i, \ G_j, \ \sigma_i^2 & \stackrel{\rm indep}{\sim} & {\cal N} \left(B_i + G_j, \ \sigma_i^2 \right), \\ & B_i & \stackrel{\rm indep}{\sim} & {\cal N}(b_i, \ \tau_i^2), \\ & G_j & \stackrel{\rm indep}{\sim} & {\rm flat} \ {\rm prior}, \end{array}$

Log-Normal Hierarchical Model.

 $\begin{array}{rcl} \log \ {\rm counts} \ | {\it area} \ \& {\it flux} \ \& {\it variance} & \stackrel{{\rm indep}}{\sim} & {\rm Gaussian \ distribution}, \\ y_{ij} \ | \ B_i, \ G_j, \ \sigma_i^2 & \stackrel{{\rm indep}}{\sim} & {\cal N} \left(B_i + G_j, \ \sigma_i^2 \right), \\ & B_i & \stackrel{{\rm indep}}{\sim} & {\cal N}(b_i, \ \tau_i^2), \\ & G_j & \stackrel{{\rm indep}}{\sim} & {\rm flat \ prior}, \\ \end{array}$ If variance unknown: $\sigma_i^2 & \stackrel{{\rm indep}}{\sim} & {\rm Inv-Gamma}(df_g, \ \beta_g). \end{array}$

Setting the prior parameters.

•
$$b_i = \log a_i$$
, τ_i are given by astronomers.

Log-Normal Hierarchical Model.

 $\begin{array}{rcl} \log \ {\rm counts} \ | {\it area} \ \& {\it flux} \ \& {\it variance} & \stackrel{{\rm indep}}{\sim} & {\rm Gaussian \ distribution}, \\ y_{ij} \ | \ B_i, \ G_j, \ \sigma_i^2 & \stackrel{{\rm indep}}{\sim} & {\cal N} \left(B_i + G_j, \ \sigma_i^2 \right), \\ B_i & \stackrel{{\rm indep}}{\sim} & {\cal N}(b_i, \ \tau_i^2), \\ G_j & \stackrel{{\rm indep}}{\sim} & {\rm flat \ prior}, \\ \end{array}$ If variance unknown: $\sigma_i^2 & \stackrel{{\rm indep}}{\sim} & {\rm Inv-Gamma}(df_g, \ \beta_g). \end{array}$

Setting the prior parameters.

•
$$b_i = \log a_i$$
, τ_i are given by astronomers.

2) df_g, β_g are given based on the variability in data.

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $|I_j| \ge 1$ for all $1 \le j \le M$.

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $|I_j| \ge 1$ for all $1 \le j \le M$.

Identifiability

• $\tau_i^2 = \infty$: same posteriors with $\{B_i, G_j\}$ and $\{B_i + \delta, G_j - \delta\}$;

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $|I_j| \ge 1$ for all $1 \le j \le M$.

Identifiability

- $\tau_i^2 = \infty$: same posteriors with $\{B_i, G_j\}$ and $\{B_i + \delta, G_j \delta\}$;
- the condition number of $\Omega(\sigma^2)$ (conditional variance of B,G) is

$$\frac{\lambda_{\max}(\boldsymbol{\Omega}(\boldsymbol{\sigma}^2))}{\lambda_{\min}(\boldsymbol{\Omega}(\boldsymbol{\sigma}^2))} \geq \frac{u^{\top}\boldsymbol{\Omega}(\boldsymbol{\sigma}^2) u}{v^{\top}\boldsymbol{\Omega}(\boldsymbol{\sigma}^2) v} = 1 + \frac{4\sum_{i=1}^{N} |J_i|\sigma_i^{-2}}{\sum_{i=1}^{N} \tau_i^{-2}}, \quad (1)$$

where $u = (\mathbf{1}_N, \mathbf{1}_M)^{\top}$ and $v = (\mathbf{1}_N, -\mathbf{1}_M)^{\top}$.

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $|I_j| \ge 1$ for all $1 \le j \le M$.

Identifiability

- $\tau_i^2 = \infty$: same posteriors with $\{B_i, G_j\}$ and $\{B_i + \delta, G_j \delta\}$;
- the condition number of $\Omega(\sigma^2)$ (conditional variance of B,G) is

$$\frac{\lambda_{\max}(\boldsymbol{\Omega}(\boldsymbol{\sigma}^2))}{\lambda_{\min}(\boldsymbol{\Omega}(\boldsymbol{\sigma}^2))} \geq \frac{\boldsymbol{u}^{\top}\boldsymbol{\Omega}(\boldsymbol{\sigma}^2) \boldsymbol{u}}{\boldsymbol{v}^{\top}\boldsymbol{\Omega}(\boldsymbol{\sigma}^2) \boldsymbol{v}} = 1 + \frac{4\sum_{i=1}^{N} |J_i|\sigma_i^{-2}}{\sum_{i=1}^{N} \tau_i^{-2}}, \quad (1)$$

where $u = (\mathbf{1}_N, \mathbf{1}_M)^{\top}$ and $v = (\mathbf{1}_N, -\mathbf{1}_M)^{\top}$.

• $\{\tau_i^2\} >> \{\sigma_i^2\}$: elongated posterior contours.

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $|I_j| \ge 1$ for all $1 \le j \le M$.

Identifiability

- $\tau_i^2 = \infty$: same posteriors with $\{B_i, G_j\}$ and $\{B_i + \delta, G_j \delta\}$;
- the condition number of $\Omega(\sigma^2)$ (conditional variance of B,G) is

$$\frac{\lambda_{\max}(\boldsymbol{\Omega}(\boldsymbol{\sigma}^2))}{\lambda_{\min}(\boldsymbol{\Omega}(\boldsymbol{\sigma}^2))} \geq \frac{\boldsymbol{u}^{\top}\boldsymbol{\Omega}(\boldsymbol{\sigma}^2) \boldsymbol{u}}{\boldsymbol{v}^{\top}\boldsymbol{\Omega}(\boldsymbol{\sigma}^2) \boldsymbol{v}} = 1 + \frac{4\sum_{i=1}^{N} |J_i|\sigma_i^{-2}}{\sum_{i=1}^{N} \tau_i^{-2}}, \quad (1)$$

where
$$u = (\mathbf{1}_N, \mathbf{1}_M)^{ op}$$
 and $v = (\mathbf{1}_N, -\mathbf{1}_M)^{ op}$

• $\{\tau_i^2\} >> \{\sigma_i^2\}$: elongated posterior contours.

Alternative: setting $B_1 = 0$ or $\tau_1 = 0$.

Markov Chain Monte Carlo (MCMC) algorithms.

• Gibbs Sampling: update parameters one-at-a-time.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.
- Hamiltonian Monte Carlo (HMC) Stan package.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.
- Hamiltonian Monte Carlo (HMC) Stan package.
 - Highly correlated parameters, high-dim parameter space.

1 Introduction

Scientific and Statistical Models

Concordance Model

4 Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data

Introduction

Scientific and Statistical Models

Concordance Model

- 4
- Advantages of Our Approach • Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model \Rightarrow Shrinkage estimators (weighted averages of evidence from 'Prior' and evidence from 'Data').

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model \Rightarrow Shrinkage estimators (weighted averages of evidence from 'Prior' and evidence from 'Data').

(1) When fluxes and variances are known,

Original Scale

$$\hat{A}_i = a_i^{W_i} \left[(ilde{c}_i. ilde{f}^{-1}) e^{\sigma_i^2/2}
ight]^{1-W_i},$$

where

$$ilde{c}_{i\cdot} = \prod_j c_{ij}^{1/M}, \; ilde{f} = \prod_j f_j^{1/M}$$

are geometric means.

The 'weights', $W_i = \frac{\tau_i^{-2}}{\tau_i^{-2} + M\sigma_i^{-2}}$, represents the direct information in b_i relative to indirect information in fluxes.

Log-Scale

$$\hat{B}_i = W_i b_i + (1 - W_i)(ar{y}_{i\cdot} - ar{G}),$$

where

$$\bar{G} = rac{\sum_{j} g_{j}}{M}, \bar{y}_{i\cdot} = rac{\sum_{j} y_{ij}}{M}$$

are arithmatic means.

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

$$\hat{\mathcal{B}}_i = \mathcal{W}_i b_i + (1-\mathcal{W}_i)(ar{y}_{i\cdot} - ar{\mathcal{G}}_i), \quad \hat{\mathcal{G}}_j = ar{y}_{\cdot j} - ar{\mathcal{B}},$$

where
$$\bar{G}_i = \frac{\sum_j \hat{G}_j}{M}$$
, $\bar{B} = \frac{\sum_i \hat{B}_i \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}$, $\bar{y}_{i.} = \frac{\sum_j y_{ij}}{M}$, $\bar{y}_{.j} = \frac{\sum_i y_{ij} \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}$.

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

$$\hat{B}_i=W_ib_i+(1-W_i)(ar{y}_{i\cdot}-ar{G}_i),\quad \hat{G}_j=ar{y}_{\cdot j}-ar{B},$$

where
$$\bar{G}_i = \frac{\sum_j \hat{G}_j}{M}$$
, $\bar{B} = \frac{\sum_i \hat{B}_i \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}$, $\bar{y}_{i\cdot} = \frac{\sum_j y_{ij}}{M}$, $\bar{y}_{\cdot j} = \frac{\sum_i y_{ij} \sigma_i^{-2}}{\sum_i \sigma_i^{-2}}$.

(3) When variances are unknown, shrinkage estimator of variance,

$$\hat{\sigma}_i^2 = rac{2}{1 + \sqrt{1 + S_{y,i}^2}} \; S_{y,i}^2, \quad S_{y,i}^2 = rac{1}{|J_i| + lpha} \left[\sum_{j \in J_i} (y_{ij} - \hat{B}_i - \hat{G}_j)^2 + eta
ight]$$

-

Introduction

Scientific and Statistical Models

Concordance Model

Advantages of Our Approach
 Multiplicative Shrinkages

- Denofite of fitting the verience
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data

4

Benefits of Fitting σ_i^2

• Tolerance to model/error model misspecification.

Benefits of Fitting σ_i^2

- Tolerance to model/error model misspecification.
- Pitfalls of assuming 'known' variances:
 - Overly optimistic 'known variances'
 - \Rightarrow overly narrow confidence intervals
 - \Rightarrow possible false discoveries

Benefits of Fitting σ_i^2

- Tolerance to model/error model misspecification.
- Pitfalls of assuming 'known' variances:
 - Overly optimistic 'known variances'
 - \Rightarrow overly narrow confidence intervals
 - \Rightarrow possible false discoveries
 - 'known variances' \geq true variability
 - \Rightarrow noninformative results

Introduction

Scientific and Statistical Models

Concordance Model

Advantages of Our Approach
Multiplicative Shrinkages
Benefits of fitting the variances
Extentions to handle outliers
Results from Astronomy Data

4

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

$$\begin{array}{rcl} y_{ij} \mid B_i, \ G_j, \ \xi_{ij} & = & -\frac{\sigma^2}{2\xi_{ij}} + B_i + G_j + \frac{Z_{ij}}{\sqrt{\xi_{ij}}}, \\ & & Z_{ij} & \stackrel{\mathrm{indep}}{\sim} & \mathcal{N}(0, \sigma^2), \\ & & B_i & \stackrel{\mathrm{indep}}{\sim} & \mathcal{N}(b_i, \tau_i^2). \end{array}$$

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

$$egin{array}{rcl} y_{ij} \mid B_i, \ G_j, \ \xi_{ij} &=& -rac{\sigma^2}{2\xi_{ij}} + B_i + G_j + rac{Z_{ij}}{\sqrt{\xi_{ij}}}, \ Z_{ij} &\stackrel{ ext{indep}}{\sim} & \mathcal{N}(0,\sigma^2), \ B_i &\stackrel{ ext{indep}}{\sim} & \mathcal{N}(b_i, au_i^2). \end{array}$$

If $\xi_{ij} \stackrel{\text{indep}}{\sim} \chi_{\nu}^2$, i.e. independent chi-squared distributions, the error term $Z_{ij}/\sqrt{\xi_{ij}}$ follows independent student-t distributions, i.e. $\frac{Z_{ij}}{\sqrt{\xi_{ij}}} \stackrel{\text{indep}}{\sim} \frac{\sigma}{\sqrt{\nu}} t_{\nu}$.

A Numerical Example with Outliers

Simulation: N = 10, M = 40, $G_1 = -1$ and $G_j = 3$, j > 1. Asymptotic variance of log-counts: $e^{-B_i - G_j} \Rightarrow$ outliers.

A Numerical Example with Outliers

Simulation: N = 10, M = 40, $G_1 = -1$ and $G_j = 3$, j > 1. Asymptotic variance of log-counts: $e^{-B_i - G_j} \Rightarrow$ outliers.

$$\hat{\mathcal{R}}_{ij} = rac{y_{ij} - \hat{B}_i - \hat{G}_j + 0.5 imes \hat{\sigma}_i^2}{\hat{\sigma}_i}, \hat{\mathcal{R}}_{ij} = rac{y_{ij} - \hat{B}_i - \hat{G}_j + 0.5 imes \kappa^2 / \hat{\xi}_{ij}}{\kappa / \hat{\xi}_{ij}^{1/2}}$$

A Numerical Example with Outliers

Simulation: N = 10, M = 40, $G_1 = -1$ and $G_j = 3$, j > 1. Asymptotic variance of log-counts: $e^{-B_i - G_j} \Rightarrow$ outliers.

$$\hat{\mathcal{R}}_{ij} = rac{y_{ij} - \hat{B}_i - \hat{G}_j + 0.5 imes \hat{\sigma}_i^2}{\hat{\sigma}_i}, \hat{\mathcal{R}}_{ij} = rac{y_{ij} - \hat{B}_i - \hat{G}_j + 0.5 imes \kappa^2 / \hat{\xi}_{ij}}{\kappa / \hat{\xi}_{ij}^{1/2}}$$

Coverage Properties With Outliers, Misspecification

Poisson	Para	Coverage Probability		Length of Interval		
Model		log-Normal	log- <i>t</i>	log-Normal	log-t	
<i>N</i> = 10	В	[0.941, 0.959]	[0.971, 0.975]	$0.067 {\pm} 0.005$	0.073 ± 0.002	
<i>N</i> = 10	G ₁	0.399	0.700	0.090± 0.015	0.182±0.045	
N = 10	G _{2:M}	[0.967, 0.977]	[0.996, 0.999]	$0.077 {\pm} 0.003$	$0.104{\pm}0.002$	
<i>N</i> = 40	В	[0.953, 0.969]	[0.993, 0.998]	$0.041{\pm}0.007$	$0.050{\pm}0.001$	
<i>N</i> = 40	G1	0.398	0.686	0.045±0.003	0.093±0.013	
<i>N</i> = 40	G _{2:M}	[0.965,0.977]	[0.996,0.999]	$0.038{\pm}0.001$	$0.051{\pm}0.001$	

Table 1: M = 40. Coverage of nominal 95% posterior intervals calculated from 2000 datasets simulated under a Poisson model. The intervals in columns 3 and 4 give the smallest and largest coverage observed for the corresponding parameter. The last two columns give the lengths of nominal 95% intervals in the format: mean \pm standard deviation.

Introduction

2 Scientific and Statistical Models

Concordance Model

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data

5 Summary

Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.

Estimates of $B_i = \log A_i$ (M = 2 each panel)

- Adjusted so that default effective area, $b_i = \log a_i = 0$.
- 95% posterior intervals (black: $\tau = 0.05$; blue: $\tau = 0.025$).
- Some instruments systematically high, others low.

Prior Influence

Instrument	Oxy	gen	Neon		
	au= 0.025	au= 0.05	au= 0.025	au= 0.05	
RGS1	0.570	0.205	0.063	0.016	
MOS1	0.279	0.077	0.075	0.019	
MOS2	0.355	0.065	0.077	0.017	
pn	0.250	0.041	0.620	0.218	
ACIS-S3	0.218	0.040	0.270	0.088	
ACIS-I3	0.906	0.640	0.099	0.026	
HETG	0.648	0.341	0.129	0.034	
XIS0	0.180	0.051	0.069	0.018	
XIS1	0.298	0.078	0.071	0.019	
XIS2	0.463	0.140	0.063	0.016	
XIS3	0.772	0.364	0.062	0.018	
XRT-WT	0.726	0.278	0.154	0.026	
XRT-PC	0.934	0.235	0.906	0.017	

Table 2: Proportion of prior influence, as defined by $1 - W_i$, for E0102 data.

 2XMM catalog: used to generate large, well-defined samples of various types of astrophysical objects; collected with the XMM-Newton European Photon Imaging Cameras (EPIC).

- 2XMM catalog: used to generate large, well-defined samples of various types of astrophysical objects; collected with the XMM-Newton European Photon Imaging Cameras (EPIC).
- Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS detectors (pn, MOS1, and MOS2).

- 2XMM catalog: used to generate large, well-defined samples of various types of astrophysical objects; collected with the XMM-Newton European Photon Imaging Cameras (EPIC).
- Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS detectors (pn, MOS1, and MOS2).
- Three datasets: hard (2.5 10.0 keV), medium (1.5 2.5 keV) and soft (0.5 - 1.5 keV) energy bands. The three instruments (pn, MOS1 and MOS2) measured 41, 41, and 42 sources respectively in hard, medium, and soft bands. Faint sources.

Figure 1: Adjustments of the log-scale Effective Areas for hard band (left), medium band (middle) and soft band (right) of the 2XMM datasets.

Numerical Results (XCAL)

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
 - Observed in hard (n = 94), medium (n = 103), soft (n = 108) bands.
- **Pileup**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three detectors: MOS1, MOS2 and pn.
- We fit our model and show results on

Sources: M=103 (in medium band).

The hard and soft bands data are fitted similarly – treating hard/medium/soft band as three different data sets.

Numerical Results (XCAL): Calibration Concordance

4 out of 103 Sources in medium band. y-axis: G (log flux); vertical bars (left 3 in each panel): mean \pm 2 s.d. based on observed fluxes, vertical bars (right 2 in each panel): 95% posterior intervals based on our model.

Prior Influence

Data Name	$ au_{i} = 0.025$			$ au_i = 0.05$		
	pn	mos1	mos2	pn	mos1	mos2
hard band 2XMM	0.093	0.075	0.082	0.025	0.020	0.022
medium band 2XMM	0.250	0.216	0.222	0.076	0.065	0.067
soft band 2XMM	0.093	0.075	0.069	0.025	0.020	0.018
hard band XCAL	0.010	0.019	0.031	0.003	0.005	0.008
medium band XCAL	0.023	0.016	0.028	0.006	0.004	0.007
soft band XCAL	0.021	0.011	0.007	0.005	0.003	0.002

Table 3: Proportion of prior influence.

1 Introduction

- Scientific and Statistical Models
- 3 Concordance Model
- Advantages of Our Approach
 - Multiplicative Shrinkages
 - Benefits of fitting the variances
 - Extentions to handle outliers
 - Results from Astronomy Data

Statistics

1 Multiplicative mean modeling:

log-Normal hierarchical model.

Statistics

• *Multiplicative* mean modeling:

log-Normal hierarchical model.

Shrinkage estimators.

Statistics

• *Multiplicative* mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- **③** Bayesian computation: MCMC & Stan.

Statistics

• *Multiplicative* mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- **③** Bayesian computation: MCMC & Stan.
- The potential pitfalls of assuming 'known' variances.

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- **③** Bayesian computation: MCMC & Stan.
- The potential pitfalls of assuming 'known' variances.

Astronomy

Adjustments of effective areas of each instrument.

Statistics

Multiplicative mean modeling:

log-Normal hierarchical model.

- Shrinkage estimators.
- **③** Bayesian computation: MCMC & Stan.
- The potential pitfalls of assuming 'known' variances.

Astronomy

- Adjustments of effective areas of each instrument.
- ② Calibration concordance.

Discussions: Ongoing and Future Work

- Correlations among instruments.
 - Estimated correlations based on theoretical simulations.
 - Prior? Extra data? Uncertainty?

Discussions: Ongoing and Future Work

- Correlations among instruments.
 - Estimated correlations based on theoretical simulations.
 - Prior? Extra data? Uncertainty?
- Robustness \Rightarrow Misspecified models.
Discussions: Ongoing and Future Work

- Correlations among instruments.
 - Estimated correlations based on theoretical simulations.
 - Prior? Extra data? Uncertainty?
- Robustness \Rightarrow Misspecified models.
- Better quantification of prior influence.

Discussions: Ongoing and Future Work

- Correlations among instruments.
 - Estimated correlations based on theoretical simulations.
 - Prior? Extra data? Uncertainty?
- Robustness \Rightarrow Misspecified models.
- Better quantification of prior influence.
- Coverage properties when outliers exist.

Acknowledgement

Yang Chen (UMich), Xufei Wang (Two Sigma), Xiao-Li Meng (Harvard), David van Dyk (ICL), Herman Marshall (MIT) & Vinay Kashyap (cfA)

Yang Chen

Calibration Concordance