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M O T I VAT I O N

• This is very difficult 

• Interested in morphology of complex astronomical objects 

• Irregular shapes 

• Low photon counts 

• Can not always rely on other wavelengths to help out

• Small structures, low resolution 

• Diffuse sources (no edges)



B A C K G R O U N D

• Region of Interest (ROI)  -  region 
containing source, separate from the 
background (e.g. the jet or a partition of the 
jet) 

• Previous work tests whether or not a jet 
exists in a predefined ROI (McKeough et al. 
2016, Stein et al. 2015) 

• Multi-phase image segmentation finds 
minimal boundary around ROI (McKeough 
et al. TBD)

RO I



M U LT I - P H A S E  I M A G E  S E G M E N TAT I O N

X-Ray Counts Expected  
Multi-scale Counts 

(LIRA)

Pixel Assignments



M U LT I - P H A S E  I M A G E  S E G M E N TAT I O N

• Reconstruct image using LIRA (  ; Low-count 
Image Reconstruction and Analysis) 

• Esch et al. (2004) , Connors & van Dyk (2007) 

• Assign each pixel  in the image to either the 
ROI  or the background  

• Build posterior describing pixel assignments 
 

Λ

i
zi = + 1 zi = − 1

Z

p(Z |Λ, θ)



T H E  M I N I M A L  B O U N D A R Y

• The minimal boundary is defined 
as the point in which the source can 
no longer be distinguished from the 
boundary 

• We estimate the minimal boundary 
by maximizing the posterior 
distribution on pixel assignments



T H E  P R O B L E M

• Posterior space is discrete, but very large (  ) 

- Probabilities evaluated at a single observations are too small 

- Not feasible to methodically evaluate posterior at every possible 

264×64

Z



O N E  S O L U T I O N

Compare ratio  

• Pairwise comparisons easier to calculate 

• Able to find global maximum in set of  through series of pairwise comparisonsZ

R =
p(Zi |Λ, θ)
p(Zj |Λ, θ)

> 1 pmax = p(Zi |Λ, θ)



• Creates a smaller set of  to explore (  ) 

• If  is a one-to-one mapping of the  where if  and  
then the neighborhood statistic is evaluated at each pixel to be 

•   is the average neighborhood value across draws from the posterior, 

• A collection of images is created by sequentially assigning pixels with the highest    
to +1 and the remainder to -1

Z 64 × 64 = 4096

ζi zi zi = − 1 → ζi = 0 zi = + 1 → ζi = 1

ϕ̄i

ϕ̄i

A D  H O C  S E T  S E L E C T I O N

ϕi =
∑j∈d(i,j)=1 ζiζj

∑j∈d(i,j)=1 1



A  B E T T E R  S O L U T I O N :  
G E N E T I C  A L G O R I T H M S



G E N E T I C  A L G O R I T H M S

• Stochastic search method inspired by the laws of genetics and natural selection — 
fittest individuals are selected for reproduction in order to produce offspring 

• Efficiently optimize over a large space while avoiding getting caught in local extrema 

• Use cases in : 

- Medical imaging (Pereira et al. 2014) 

- Astronomy (Rajpaul 2012) 

- Image segmentation  (Yu 1998, Sheta et al. 2012)



G E N E T I C  A L G O R I T H M S

• Relatively simple than other standard 
optimization techniques 

• Robust to problems with high noise 
and/or high dimensionality  

• High speeds, easily to compute in 
parallel

• “Jack of all problems, but master of 
none” 

• Limited theoretical understanding

P R O S  N O  F R E E  L U N C H  



O U T L I N E :

1. Start with N individuals in an initial 
population 

2. Repeat until convergence: 

I. Selection — select the fittest individuals 
to become parents for the next 
generation 

II. Crossover — new individuals are created 
as a combination of two of the selected 
parents 

III. Mutation — each “gene” in an offspring 
has a probability of mutating  

3. Final boundary
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I N I T I A L  P O P U L AT I O N

• Initial population can be 
entirely random, or generated 
from a “best guess” 

• We will use the ad hoc selection 
method to generate the initial 
population of (  ) 
pixel assignments (  )

64 × 64 = 4096
Z
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S E L E C T I O N

• Create a fitness function to evaluate how “fit” each individual in the 
population is relative to one another.  

- Optimize over the posterior:   

• Select  individuals to become parents and reproduce, based on the 
fitness function

p(Z |Λ, θ)

Nselect



S E L E C T I O N

There are numerous types of selection, three main procedures are 

• Rank selection  — rank all  by the fitness function. Select the  -th 
fittest individual observations 

• Roulette selection — assign a probability to each  based on a fitness 
function and randomly draw  individuals based on distribution (fittest 
are most likely to be selected) 

• Tournament selection — create a bracket tournament where two  face off in 
each round, the fittest wins and moves on; repeat until  are selected

Z Nselect

Z
Nselect

Z
Nselect



T O U R N A M E N T  S E L E C T I O N

• Repeat  times: 

- Select 2 pixel assignments 
( ) completely at random 
to be in a tournament 

- Evaluate   

- If  then  is selected, if 
 then  is selected

Nselect

Z1, Z2

R =
P(Z1 |λ, θ)
P(Z2 |λ, θ)

R > 1 Z1
R < 1 Z2

Z1 Z2

Z1

R > 1



T O U R N A M E N T  S E L E C T I O N

Reasons for using tournament selection: 

• Allows for pairwise comparisons 

• Easy to implement in parallel (Muhlenbein 1989) 

• Relatively small time complexity  compared to standard roulette  
and ranking selection methods  

• Smaller tournament brackets encourage diversity (Goldberg & Deb 1991)

O(n) O(n2)
O(n ln n)
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C R O S S O V E R  ( R E P R O D U C T I O N )

Zp
1 Zp

2

Zo
1 Zo

2

Once selected, the “parents” pair up to 
produce “offspring” based on their pixel 
assignments   

• One point crossover  — select a random 
pixel, the offspring get all assignments 
from on parent before that pixel and all 
assignments after from that pixel onward 

• Uniform crossover  — each pixel has an 
equal chance from being the same as one 
parent or the other
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O U T L I N E :

1. Start with N individuals in an initial 
population 

2. Repeat until convergence: 

I. Selection — select the fittest individuals 
to become parents for the next 
generation 

II. Crossover — new individuals are created 
as a combination of two of the selected 
parents 

III. Mutation — each pixel in an offspring has 
a probability of mutating  

3. Final boundary



M U TAT I O N

• Bit Flip Mutation — select one or 
more random bits and flip them 

- A bit will flip with probability  
where  is the length of the gene 
sequence

1/ℓ
ℓ

Zo
1

Zo
2

Zo
1

Zo
2



N E X T  G E N E R AT I O N

• Pool parents and offspring and begin selection process again:

Z1 Z2 Z3 Z4
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C O N V E R G E N C E

• Stop when all but 10% of the pixels 
are identical classified 

• Stop after a maximum number of 
iterations ( 1000 )

F I N A L  B O U N D A R Y

• Find global maximum within unique  
of final generation of

Z



A P P L I C AT I O N  T O  O B S  I D  7 8 7 3



X-Ray Counts Expected Multi-scale Counts 
(LIRA)



A N  I M P R O V E M E N T ?

• The  maximized using the genetic 
algorithm maximizes better than just using 
the ad hoc selection :  

• Ad hoc version looks at fixed number of 
possible boundaries 

- (  ) 

• Genetic algorithm explores many more 
possibilities in the relevant region of the 
posterior 

- > 100,000 pixel assignments considered

Z

R = 1.5 × 1012

64 × 64 = 4096



P O S S I B L E  E X T E N S I O N S

• Uncertainty — is there a way get an error bound on our final estimate 

• Smarter mutations 

- Probability of mutation correlated with whether or not the pixel matches 
it’s neighbors  (Yu, 1998) 

- Pixels are swapped with local pixels rather than flipped randomly 
(scramble or swap mutations)
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