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Background Total Electron Content (TEC) map

Total Electron Content (TEC) map

Ionosphere Total Electron Content (TEC) is defined as the total
number of electrons in the path between satellite2 radio transmitter
and ground-based receiver. (1 TEC unit (TECU) = 1016

electrons/m²)

TEC affects the propagation of radio waves, leading up to 10s meters
positioning error in the GNSS Positioning, Navigation and Timing
(PNT) services. Better knowledge of TEC map will make PNT
services more accurate.

2satellite of The Global Navigation Satellite Systems (GNSS)
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Background Total Electron Content (TEC) map

Total Electron Content (TEC) map

(A) Madrigal TEC map
(~74% missing)
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(C) IGS TEC maps
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(B) Madrigal TEC map with median filter
(~47% missing)
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Figure: TEC map from the Madrigal Database (A) without median filter, (B)
with a 3◦ × 3◦ median filter and (C) TEC map from the International GNSS
Service (IGS).
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Background Total Electron Content (TEC) map

Total Electron Content (TEC) map

The goal of the project is to reasonably “fill in“ the missing values
within TEC maps. Pan et al. (2020) used DCGAN-based models for
TEC map completion, relying on IGS TEC maps as either reference or
training data. But overall the IGS data is of low-resolution, and we
want to preserve the high-resolution nature of the TEC map.
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Background Matrix Completion Problem

Matrix Completion Problem

To impute the TEC maps, we adopt classical statistics techniques
called matrix completion.

Matrix completion is a commonly used method in designing
recommender systems. With a user-item rating matrix, for example,
matrix completion can infer the potential rating a user would give to
an item he/she has never consumed.
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Background Matrix Completion Problem

Matrix Completion Problem

Rank-Restricted SVD (Mazumder et al., 2010)

min
Mt

H(Mt) :=
1

2
‖PΩt (Xt −Mt)‖2

F + λ‖Mt‖∗ (1)

where ‖Mt‖∗ is the nuclear norm, i.e. sum of all singular values, of Mt .
Following the notation in (Candès and Tao, 2010), the projection PΩt (Xt)
is an m × n matrix keeping all observed entries of Xt and replacing all
missing entries with 0.

It is a well-known result that the solution is Mt = UrSλ(Dr )V T
r ,

where r = min(m, n) and Ur ,Dr ,Vr are the components of rank-r
SVD of Xt . Sλ(Dr ) = diag [(σ1 − λ)+, (σ2 − λ)+, . . . , (σr − λ)+] is
the soft-thresholding operator.
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Background Matrix Completion Problem

Matrix Completion with Factorization

Maximum-margin Matrix Factorization (MMMF) (Srebro et al., 2005)

min
At ,Bt

F (At ,Bt) :=
1

2
‖PΩt (Xt − AtB

T
t )‖2

F +
λ1

2
(‖At‖2

F + ‖Bt‖2
F ) (2)

with solution Ât = UrSλ(Dr )
1
2 and B̂t = VrSλ(Dr )

1
2
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Such a factorization setup has direct interpretations in the factor
matrices A,B. For example, the original map is of size m × n, where
m, n corresponds to latitude and longitude. Then each row in A and
B can be considered as the “latent feature“ of each latitude and
longitude. The final imputation at any location is the inner product of
the feature vectors of the corresponding latitude and longitude.
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Background Matrix Completion Problem

Matrix Completion with Factorization

SoftImpute-Alternating Least Square (Hastie et al., 2015)

min
At ,Bt

F (At ,Bt) :=
1

2
‖X̂t − AtB

T
t ‖2

F +
λ1

2
(‖At‖2

F + ‖Bt‖2
F ) (2)

where X̂t is a ”filled-in” m × n matrix, with X̂t = PΩt (Xt) + PΩ⊥
t

(ÃtB̃
T
t ),

and Ãt , B̃t are the two factor matrices in the previous iterative step.
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Background Matrix Completion Problem

Matrix Completion with Factorization

Figure: TEC maps: observed (left) and fitted by the SoftImpute approach (right).
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Background Spherical Harmonics

Spherical Harmonics

Apart from the matrix completion method, one can also impute each
TEC map Xt with Spherical Harmonics (SH).

Spherical Harmonics is approximating data on a surface with a linear
combination of several basis functions. For TEC map, we can think of
TEC value distributed on the globe, and we use Spherical Harmonics
to approximate this surface of TEC values.
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Background Spherical Harmonics

Spherical Harmonics

Figure: Example of Spherical Harmonics Fitting
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Background Spherical Harmonics

Spherical Harmonics

Figure: Source: Nortje et al., 2015
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Method Conceptual Framework

Conceptual Framework

Our final framework has the following features:

Impute a consecutive sequence of TEC maps (i.e. TEC videos)

Use a matrix factorization formulation as the imputed matrix

Use spherical harmonics as a warm-start (we call it “auxiliary data“)

Penalizes the matrix norm of the factor matrices (soft constraint on
rank)

Reinforce smoothness of the imputed results along the temporal
dimension

Objective function has the form:

Imputation Loss + λ1 ×Matrix Norm Penalty

+ λ2 × Temporal Smoothness Penalty

+ λ3 × Auxiliary Data Penalty
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Method Conceptual Framework

Conceptual Framework

Our model has a name “Video Imputation with SoftImpute,Temporal
smoothing and Auxiliary data“ (VISTA)
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Method Conceptual Framework

Conceptual Framework

Objective Function

min
A1:T ,B1:T

{
F (A1:T ,B1:T ) ,

1

2

T∑
t=1

‖PΩt (Xt − AtB
T
t )‖2

F

+
λ1

2

T∑
t=1

(‖At‖2
F + ‖Bt‖2

F )

+
λ2

2

T∑
t=2

‖AtB
T
t − At−1B

T
t−1‖2

F

+
λ3

2

T∑
t=1

‖Yt − AtB
T
t ‖2

F

}
where Y1,Y2, . . . ,YT are m × n auxiliary data with no missing values.
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Method Conceptual Framework

Conceptual Framework

An alternative perspective to interpret the objective function is to think
about it under a Bayesian setup:

Xt ∼ N(AtB
T
t , σ

2) (Data generating model)

At ∼ N(0,
1

λ1
σ2) (Prior of A)

Bt ∼ N(0,
1

λ1
σ2) (Prior of B)

AtB
T
t ∼ N(At−1B

T
t−1,

1

λ2
σ2) (Random walk assumption)

AtB
T
t ∼ N(Yt ,

1

λ3
σ2) (Prior of ABT )

And the objective function is maximizing the posterior likelihood based on
T frames of data.
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Method Algorithm

Algorithm Outline

There are in total T frames to be imputed at the same time, and
each frame has its own At ,Bt factors.

Update the factors A1,A2, . . . ,AT ,B1,B2, . . . ,BT cyclically:
A1 → A2 → · · · → AT → B1 → B2 → · · · → BT → A1 → A2 → . . . .

Fix 2T− 1 matrices and update one matrix at a time with
majorization-minimization (MM) algorithm. The final form is simply
doing a least square.
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Method Algorithm

Update Matrix with Least Square

Suppose in the k-th round, we wish to update At . The current values for

the other factors are: A
(k+1)
1 ,A

(k+1)
2 , . . . ,A

(k+1)
t−1 ,A

(k)
t , . . .A

(k)
T and

B
(k)
1 ,B

(k)
2 , . . . ,B

(k)
T . Keeping every matrix other than At fixed at their

current values, the convex optimization problem is reduced to the
following optimization problem:

min
At

{
Q(At |A(k+1)

1:t−1 ,A
(k)
t+1:T ,B

(k)
1:T )

,
1

2
‖PΩt (Xt − At(B

(k)
t )T )‖2

F +
λ1

2
‖At‖2

F +
λ3

2
‖Yt − At(B

(k)
t )T‖2

F

+
λ2

2
I{t>1}‖At(B

(k)
t )T − A

(k+1)
t−1 (B

(k)
t−1)T‖2

F

+
λ2

2
I{t<T}‖A

(k)
t+1(B

(k)
t+1)T − At(B

(k)
t )T‖2

F

}
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Method Algorithm

Update Matrix with Least Square

The very first term is ‖PΩt (Xt − At(B
(k)
t )T )‖2

F , which can be upper
bounded easily by:

‖PΩt (Xt − At(B
(k)
t )T )‖2

F ≤ ‖PΩt (Xt) + PΩ⊥
t

(A
(k)
t (B

(k)
t )T )− At(B

(k)
t )T‖2

F
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Method Algorithm

Update Matrix with Least Square

Substituting the first term with its upper bound, and denote the new

objective function as Q̃(At |A(k+1)
1:t−1 ,A

(k)
t+1:T ,B

(k)
1:T ). Then one can take the

derivative of Q̃ w.r.t. At and sets it to zero and get:

A
(k+1)
t =

[
(1 + λ2(I{t<T} + I{t>1}) + λ3)(B

(k)
t )TB

(k)
t + λ1I

]−1
Z

(k)
t B

(k)
t

where

Z
(k)
t = PΩt (Xt) + PΩ⊥

t
(A

(k)
t (B

(k)
t )T

+ λ2

(
I{t>1}A

(k+1)
t−1 (B

(k)
t−1)T + I{t<T}A

(k)
t+1(B

(k)
t+1)T

)
+ λ3Yt
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Method Algorithm

Final Algorithm
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Method Theoretical Guarantees

Convergence Guarantee

Across the iterations of our algorithm, we denote the iterative value of

A1:T ,B1:T in the k-th round of algorithm as A
(k)
1:T ,B

(k)
1:T . Then we can

prove the following property of our algorithm:

Objective Function is Non-Increasing

Define the descent of objective function value at iteration k as

∆k = F (A
(k)
1:T ,B

(k)
1:T )− F (A

(k+1)
1:T ,B

(k+1)
1:T ). Then the value of the objective

function is non-increasing, i.e.,

F (A
(k)
1:T ,B

(k)
1:T ) ≥ F (A

(k+1)
1:T ,B

(k)
1:T ) ≥ F (A

(k+1)
1:T ,B

(k+1)
1:T ),

thus ∆k ≥ 0, for all k ≥ 1.
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Method Theoretical Guarantees

Convergence Rate

Convergence Rate Lower Bound

Let the limit of the objective function F (A
(k)
1:T ,B

(k)
1:T ) be f∞, we have:

min
1≤k≤K

∆k ≤
F (A

(1)
1:T ,B

(1)
1:T )− f∞

K

where K is the total number of iterations.

These results suggest that our algorithm is converging at a rate of
O(1/K ).
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Empirical Analysis

Empirical Analysis: Data Pipeline

Figure: Data Pipeline
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Empirical Analysis Simulation Study

Simulation Study: Data

In our simulation study, we use the IGS dataset of TEC map, which is
of low resolution but is fully observed without missing values. We fit
our model on several days of IGS data in Sept. 2017. Each day
contains data of size 181× 361× 96, where every matrix is of size
181× 361.

To mimic some data missing patterns typically observed in Madrigal
database (high-res TEC maps), we artificially “created“ some
missingness.
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Empirical Analysis Simulation Study

Simulation Study: Missingness Design

Figure: Create Missing Data
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Empirical Analysis Simulation Study

Simulation Study: Missingness Design

Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27× 27 or 45× 45 or 63× 63 patch as
missing.

Temporal patch missingness (sub-figure F): similar to patch
missingness, but the center of the 27× 27/45× 45/63× 63 patch
moves along the bounding box at the speed of 6 columns(rows) per
matrix (anti-clockwise as shown by the red arrow).

Hu Sun (U-M) CHASC 2021 April 27, 2021 16 / 28



Empirical Analysis Simulation Study

Simulation Study: Missingness Design

Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27× 27 or 45× 45 or 63× 63 patch as
missing.

Temporal patch missingness (sub-figure F): similar to patch
missingness, but the center of the 27× 27/45× 45/63× 63 patch
moves along the bounding box at the speed of 6 columns(rows) per
matrix (anti-clockwise as shown by the red arrow).

Hu Sun (U-M) CHASC 2021 April 27, 2021 16 / 28



Empirical Analysis Simulation Study

Simulation Study: Missingness Design

Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27× 27 or 45× 45 or 63× 63 patch as
missing.

Temporal patch missingness (sub-figure F): similar to patch
missingness, but the center of the 27× 27/45× 45/63× 63 patch
moves along the bounding box at the speed of 6 columns(rows) per
matrix (anti-clockwise as shown by the red arrow).

Hu Sun (U-M) CHASC 2021 April 27, 2021 16 / 28



Empirical Analysis Simulation Study

Simulation Study: Missingness Design

Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27× 27 or 45× 45 or 63× 63 patch as
missing.

Temporal patch missingness (sub-figure F): similar to patch
missingness, but the center of the 27× 27/45× 45/63× 63 patch
moves along the bounding box at the speed of 6 columns(rows) per
matrix (anti-clockwise as shown by the red arrow).

Hu Sun (U-M) CHASC 2021 April 27, 2021 16 / 28



Empirical Analysis Simulation Study

Simulation Study: Models & Metrics

We consider fitting the following VISTA models on each of the missing
pattern:

1 soft: softImpute as in Hastie et al., 2015: λ1 = 0.9, λ2 = 0, λ3 = 0.
(Benchmark model)

2 TS: softImpute + temporal smoothing: λ1 = 0.9, λ2 = 0.05, λ3 = 0.

3 SH: softImpute + auxiliary data based on spherical harmonics:
λ1 = 0.9, λ2 = 0, λ3 = 0.01.

4 TS+SH: softImpute + temporal smoothing + auxiliary data based
on spherical harmonics: λ1 = 0.9, λ2 = 0.05, λ3 = 0.01.
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Empirical Analysis Simulation Study

Simulation Study: Models & Metrics

To evaluate the performance of the imputation, we compute Relative
Squared Error (RSE):

RSE(Xt ,X
∗
t ,Ωt) =

‖PΩ⊥
t

(X ∗t − Xt)‖F
‖PΩ⊥

t
(Xt)‖F

,

where Xt is the fully-observed IGS data. Ωt is the bitmap indicating the
observed pixels. PΩ⊥

t
(.) is a projection operator onto the missing pixels.

X ∗t is the imputation of PΩt (Xt) and ‖.‖F is the Frobenius norm.
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Empirical Analysis Simulation Study

Simulation Study: Result of Random Missingness

Figure: Random missing and temporal missing results. Three variants of our
method are considered: TS, SH, TS+SH. The scatter points show the average
test set RSE margin over baseline softImpute method, positive means
performance better than softImpute. Error bar gives the 95% confidence interval.
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Empirical Analysis Simulation Study

Simulation Study: Result of Patch Missingness

Figure: Random patch missing and temporal patch missing results. Three variants
of our method are considered: TS, SH, TS+SH. The scatter points show the
average test set RSE margin over baseline softImpute method, positive means
performance better than softImpute. Error bar gives the 95% confidence interval.
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Empirical Analysis Simulation Study

Simulation Study: Imputation Example

Figure: Example of imputing IGS data with temporal patch missingness.
Hu Sun (U-M) CHASC 2021 April 27, 2021 20 / 28



Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Data

To impute the final Madrigal TEC map, we fit VISTA on each day of
TEC map, which is of size 181× 361× 288. Every matrix is of size
181× 361. We showcase our results based on two days of data:
Sept-08-2017 (storm day), Sept-03-2017 (non storm day).

Tuning parameters (λ1, λ2, λ3) are determined with grid-search.

Since Madrigal TEC map contains missing values, it not possible to
directly validate the fitted model on the missing values. We instead
randomly drop 20% of the observed pixels and use them as test set,
and we fit our model only on the rest 80% of the observed pixels.
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Result

Figure: Imputation Result

Hu Sun (U-M) CHASC 2021 April 27, 2021 22 / 28



Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Non-storm Day Example

Figure: 2017-09-03/00:02:30 UT Result
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Storm Day Example

Figure: 2017-09-08/00:02:30 UT Result
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Conclusion & Future Plan

Conclusion

We propose a new imputation method (VISTA), combining matrix
completion with soft rank constraint, temporal smoothing and
spherical harmonics in a unified framework, to impute Total Electron
Content (TEC) maps with over 50% data missing.

Matrix completion provides the basic low-rank structure of the
imputation.

Temporal smoothing borrows information from TEC maps at adjacent
timestamp and smooth the low-rank structure.

Spherical harmonics provides a warm-start of imputation values at big
patches of missingness.

Empirical results suggest improvements on both global-scale and
meso-scale reconstruction.
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Conclusion & Future Plan

Future Plan

We plan to release a data product containing the imputed TEC maps
based on VISTA for the last solar cycle (2009-2020).

We plan to use matrix/tensor-based factor model and other machine
learning methods to do TEC map predictions using our VISTA data
product as inputs. The ultimate goal is to provide a complete
imputation-prediction pipeline for operational use.
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