Concordance: In-Flight Calibration of X-ray Telescopes without Absolute References

- Herman L. Marshall (MIT), Vinay Kashyap, Jeremy Drake, Pete Ratzlaff, Paul Plucinsky (SAO), Matteo Guainazzi (ESA)
 - Yang Chen (Harvard, UMich.), Xiao-Li Meng, Xufei Wang (Harvard), David van Dyk (ICL)

The Goal

- The problems
 - Discrepant results from X-ray observatories in orbit
 - Cluster temperatures and fluxes
 - Blazar fluxes from simultaneous observations
 - SNR line fluxes
 - Imperfect ground cal, performance changes in flight
 - Instrument area priors a_i differ from "true values" A_i
 - No absolute calibrators across all bands in flight: no "true" F_i
- Specific task: derive \hat{A}_i for optimal agreement

 $\blacksquare Let flux f_{ij} = c_{ij}/T_{ij}/a_i$ where $a_i = \text{prior on } A_i$ c_{ii} = observed counts T_{ii} = known exposure time

Some Previous Cross-Cal Work

G21.5-0.9 (Tsujimoto + '10)

AstroStats — 9/08/20

Concordance Overview

3/17

The Problem, Graphically

AstroStats — 9/08/20

Some Poor Methods

- Use the average: $F_i = \langle f_{ii} \rangle$
 - If statistical weighting, answer depends on T_{ii} and a_i
 - If no weighting, then "agnostic" but not stable
 - Problematic statistical inference: $\hat{A}_j = \frac{c_{ij}}{T_{ii}F_i}$
- Use one instrument as "given": $F_i = f_{X_i}$ for some X
 - Reference choice is subjective
 - Still problematic statistically

AstroStats — 9/08/20

- $\blacksquare Let flux f_{ij} = c_{ij}/T_{ij}/a_i$ where $a_i = \text{prior on } A_i$ c_{ii} = observed counts T_{ij} = known exposure time

Better: Mult. Shrinkage (Chen+'19)

 $y_{ij} = B_i + G_j - \frac{1}{2\sigma_i^2} + e_{ij}$, $y_{ij} \equiv \log(c_{ij}/T_{ij})$, $B_i \equiv \log A_i$, $G_j \equiv \log F_j$

AstroStats — 9/08/20

 $\widehat{B}_i = W_i(\overline{y}'_{i\cdot} - \overline{G}_i) + (1 - W_i)b_i$ and $\widehat{G}_i = \overline{y}'_{\cdot i} - \overline{B}_i$

 $W_i = \frac{M\sigma_i^{-2}}{\tau_i^{-2} + M\sigma_i^{-2}}$ See Y. Chen's talk!

Complications I: Flux Measurements

Concordance: find A_i where $C_{ii} = T_{ii}A_iF_i$, $A(E) = A_i\alpha_i(E)$

- Fluxes in band (E_1, E_2) derived by an inversion process
- Input: observation c_{ijk} for counts in channel k

Then fit to model $C'_{ijk} = t_{ij}a_i f_{ij} \frac{\int_{E_1}^{E_2} \alpha_i(E)q_j(E)\Phi_k(E)dE}{\int_{E_1}^{E_2} q_j(E)dE} = T_{ijk}a_i f_{ij}$

where $f_{ij} = \int_{E_1}^{E_2} n_E(\Theta_{ij}) dE = n_{ij} \int_{E_1}^{E_2} q_j(E) dE$ and $\tilde{A}(E) = a_i \alpha_i(E)$ define shape functions $q_j(E)$ and $\alpha_i(E)$, the detector response is $\Phi_k(E)$, and $\sum \Phi_k(E) = 1$

Now,
$$C_{ij} = \sum_{k} C_{ijk}$$
, $T_{ij} = \sum_{k} T_{ijk}$

AstroStats — 9/08/20

Channel, ADU

Concordance Overview

7/17

Complications II: Eff. Area Correlations

- Assume we have EA parameters $\vec{\xi}$ giving $\log |\xi|$ $p(\overline{\xi})$
- Then $\hat{B}(E) = \int \tilde{B}(E; \vec{\xi}) p(\vec{\xi}) d\vec{\xi}$ is the best (prior) estimate of B and $\tau^2(E) = \int [\tilde{B}(E; \vec{\xi}) \hat{B}(E)]^2 p(\vec{\xi}) d\vec{\xi}$ should be the prior's variance
- Consider two energies, E_i and $E_{i'}$, then the correlation between these is
- In reality, a Monte Carlo method is used to compute the correlations...

$$\tilde{A}(E; \vec{\xi}) = \tilde{B}(E; \vec{\xi})$$
 with

$$(\vec{\xi}) - \hat{B}(E_{i'})]p(\vec{\xi})d\vec{\xi}$$

Band	Soft band	Medium band	
Soft band	1	0.60	
Medium band	0.60	1	
Hard band	0.13	0.53	

Complications III: Assessing Priors

• Collecting *prior* (fractional) uncertainties on effective areas

• Cal scientists assessed their instruments

Table 1. Effective Area Uncertainty Priors $(\tau_i)^*$						Table 2. Effective Area Officertainty Phots (7)											
Energy Bands (keV)									Energ	y Bands	(keV)						
Instrument	0.15-0.33	0.33-0.54	0.54-0.8	0.8-1.2	1.2-1.8	1.8-2.2	2.2-3.5	3.5-5.5	5.5-10	Instrument	2.2-3.5	3.5-5.5	5.5-10	15-25	25-50	50-100	100-300
Astrosat SXT		15	15	10	10	10	10	10	10					20	20	20	25
Chandra ACIS	3	3	3	3	2.6	3.3	3.3	4.9	5	Astrosat CZ11				20	20	20	25
Chandra HETGS			10	5	4	4	4	5	7	Astrosat LAXPC		15	15	15	15	20	
Chandra LETGS	5	7	7	7	7	7	7	10	10	INTEGRAL IBI	s				8	15	20
ROSAT PSPC	10	10	10	10	10	10				INTEGRAL SPI					5	5	5
Suzaku XIS1		20	15	10	10	15	5	5	5	NuSTAR		4	3	3	15	20	
Suzaku XIS0,2,3			15	10	10	15	5	5	5	R XTE PCA	5	10	3	3	10	50	
Swift PC/WT		15	10	7.5	7.5	10	5	5	5	KATETCA	5	10	5	5	10	50	
XMM MOS1,2	20	10	6	6	6	6	6	6	10	RXTE HEXTE				5	5	5	•••
XMM pn	2	2	2	2	2	2	2	2	3	Suzaku HXD				20	20	20	20
XMM RGS		8	5	5	5					Swift BAT				15	4	4	12

Table 1 Effective Area Uncertainty Drives (-)8

^aThe τ_i values are given as percentages. The ellipses indicate bandpasses where the instrument has an insignif-^{*a*}The τ_i values are given as percentages. icant effective area.

AstroStats — 9/08/20

Table 2 Effective Area Uncertainty Priors $(\tau_i)^a$

Input Data

Paper I

- IE0102 with 13 instruments (N=13), O & Ne (M=2)
- 2XMM catalog targets, N=3, M=41; soft, medium, hard
- XCAL bright targets, N=3, M=94-108; soft, medium, hard
- New paper (Marshall+, in prep.)
 - Same 3 sets as in Paper I
 - Also Capella with Chandra gratings, N=8, M=15
 - Added correlations of XMM hard, medium, soft
 - Added corrlations of O, Ne fluxes of IE0102
 - Used heterogeneous tau values AstroStats — 9/08/20

Table 5. 2XMM Concordance Fluxes – Medium Band^a

Target	р	n	MO	МО		
	f_{ij}	σ_{ij}	f_{ij}	σ_{ij}	f_{ij}	
1127-145	0.481	0.049	0.496	0.053	0.490	
1E0919+515	0.053	0.053	0.069	0.066	0.068	
4C06.41	0.131	0.015	0.142	0.017	0.143	
APM08279+5255	0.085	0.041	0.088	0.042	0.082	
CenX-4	0.088	0.035	0.089	0.022	0.091	
CoD-33 7795	0.275	0.136	0.287	0.143	0.276	
ESO323-G077	0.425	0.184	0.438	0.202	0.439	
GRB080411	0.348	0.006	0.415	0.008	0.419	
Holmberg IX	0.514	0.083	0.517	0.084	0.556	
IRAS13197-1627	0.938	0.818	0.914	0.793	1.000	
LBQS1228+1116	0.154	0.009	0.156	0.010	0.162	
M31 NN1	0.173	0.005	0.196	0.007	0.195	
MS0205.7+3509	0.283	0.087	0.304	0.095	0.293	
MS1229.2+6430	0.326	0.086	0.356	0.092	0.355	
NGC 1313	0.200	0.021	0.212	0.023	0.215	
NGC 4278	0.281	0.032	0.291	0.035	0.307	
NGC 5204 X-1	0.140	0.032	0.140	0.033	0.148	
NGC 5204 X-1	0.192	0.034	0.195	0.035	0.196	
NGC 5252	0.326	0.092	0.327	0.095	0.328	

Sample Data (Marshall+ in prep.)

Concordance Overview

DS2

 σ_{ij} 0.052 0.065 0.018 0.040 0.023 0.136 0.203 0.009 0.090 0.873 0.010 0.007 0.092 0.101 0.023 0.037 0.036 0.036 0.091

Yang Chen^{*}, Xiao-Li Meng[†], Xufei Wang[‡], David A. van Dyk[§], Herman L. Marshall, Vinay L. Kashyap

We present analytical solutions in the form of power shrinkage in special cases and develop reliable Markov chain Monte Carlo (MCMC) algorithms for general cases, both of which are available in the Python module *CalConcordance*. We apply our method to several data sets including a combination of observations of *active galactic nuclei* (AGN) and spectral line emission from the *supernova remnant* E0102, obtained with a variety of X-ray telescopes such as Chandra, XMM-Newton, Suzaku, and Swift. The data are compiled by the International Astronomical Consortium for High Energy Calibration (IACHEC). We demonstrate that our method provides helpful and practical guidance for astrophysicists when adjusting for disagreements among instruments.

*Yang Chen is Assistant Professor, Department of Statistics and Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109; email: ychenang@umich.edu. [†]Xiao-Li Meng is Whipple V. N. Jones Professor of Statistics, Harvard University, Cambridge, MA 02138. [‡]Xufei Wang was a Ph.D. candidate, Department of Statistics, Harvard University, Cambridge, MA 02138. [§]David A. van Dyk is a Professor of Statistics and Head of the Department of Mathematics at Imperial College London, London, UK SW7 2AZ.

[¶]Herman Marshall is Astrophysicist, MIT Kavli Institute, Cambridge, MA 02139. Vinay Kashyap is Astrophysicist, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138.

Paper I Published

Calibration Concordance for Astronomical Instruments via Multiplicative Shrinkage

April 10, 2018

Concordance I: IE0102

12/17

Concordance 2: 2XMM

- Based on 42 sources from the 2XMM catalog
- Unaffected by pileup
- Fixed τ: no EA change required
- Result (hetero. τ): 1% for pn indicated, 5-7% for MOS

Concordance Overview

pn

Concordance 3: XMM Blazars

- II7 bright XMM sources from Matteo Guainazzi
- PSF clipped to reduce effect of pileup
- Result (fixed τ): 5% adjustment to pn indicated, I-2% for MOS
- Result (hetero. τ): 1% for pn indicated, 5-7% for MOS

Concordance 4: Capella

- Lines from Chandra grating spectra
 - Ne x, Fe xxvii (15 Å), Fe xxvii (17 Å), OVII
- 5 sets of adjacent observations compared
- Not all instruments used each time
- Result: ± I generally consistent, LETGS are low of HETGS

Marshall+ in prep. **Concordance** Overview

Posterior Distributions?

- Most posterior distributions look Gaussian
- Few have skew, tails

E0102, O, *τ*=0.05, i=13

Frequency

AstroStats — 9/08/20

Conclusions

- We can bring observations into Concordance
- Simple situations give reasonable answers: consistent with other analyses
- More complex situations:
 - Fluxes in bands are related globally, not independent
 - Instrument areas are time-dependent

17/17

XMM-Newton - Chandra Cross-Calibration with Blazars | M. Smith | 14th IACHEC, 20-23 May 2019 | Pag. 17

AstroStats — 9/08/20

European Space Agency

