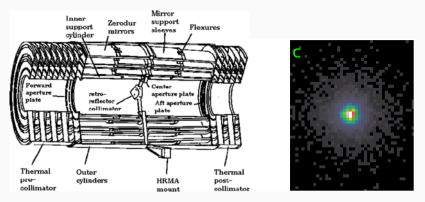
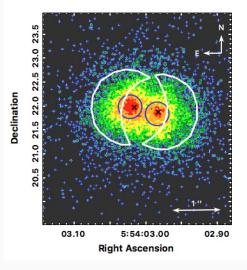

Disentangling Overlapping Point Sources

Using Spatial, Spectral, and Temporal Information

Luis F. Campos¹ with David Jones,² Aneta Siemiginowska,³ Vinay Kashyap,³ Xiao-Li Meng,¹ David van Dyk⁴


¹Harvard University, ²Texas A&M University, ³Center for Astrophysics, Harvard and Smithsonian ⁴Imperial College London

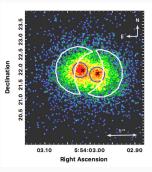
What are overlapping sources?


Why do we see this?

• Close proximity and instrument effects:

Chandra X-ray observatory and point spread function (psf)

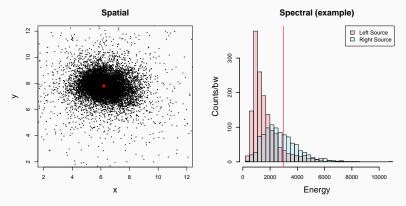
How are overlapping sources typically analyzed?


- cores/wings are defined spatially for each source
- separate events into sources
- continue analysis separately

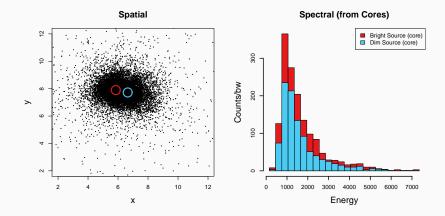
Principe, et.al. (2017) 'The multiple young stellar objects of HBC 515: An X-ray and millimeter-wave imaging study in (pre-main sequence) diversity'

How are overlapping sources typically analyzed?

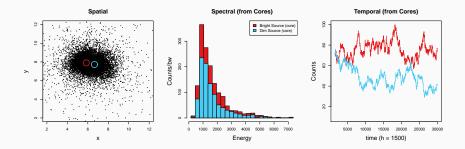
This leaves much to be desired


- discards lots of data
- overestimates our certainty

Certainty?


- Sources: 1.2 arcsec apart
- Core regions: 0.5 arcsec radius
- Left source: 1.6x brighter
- About about 13% events in dimmer core will be misclassified

Jones, Kashyap, van Dyk (2015) "Disentangling Overlapping Astronomical Sources using Spatial and Spectral Information." ApJ


- Define p(source|location, energy)
- Based on spatial, equally likely L or R energy?
- Key: you need differing energy distributions.

A complication for HBC515A

• HBC515Aab: the energy distributions don't seem to differ.

Extending the model to supplement

• Would it benefit to use temporal information (t_i) to supplement?

Consider the following factorization of likelihood for model parameters $\boldsymbol{\Theta}$

$$p(x_i, y_i, E_i, t_i \mid z_i = j, \Theta) = p(x_i, y_i \mid E_i, t_i, z_i = j, \Theta)$$
$$p(t_i \mid z_i = j, \Theta)$$
$$p(E_i \mid t_i, z_i = j, \Theta)$$

Some modeling assumptions/decisions:

- 1. Spatial model: $(x_i, y_i | z_i = s) \sim f_{\mu_i}$ point-spread function
- 2. Time model: Multinomial-Dirichlet model with fixed time-breaks
- 3. Energy model: Gamma distributions that vary across source **and** time.

Parameters and model fitting

Parameters:

- Source Intensities: $\boldsymbol{\pi} = (\pi_0, \pi_1, ..., \pi_S)$
- Source locations: (*μ*₁, *μ*₂, ..., *μ*₅)
- Time-varying Intensities: $(\lambda_1,...,\lambda_S)$
- Time and source-varying Energy distributions:

$$(\alpha_{jk}, \beta_{jk}), \quad j = 1, ..., J, k = 1, ..., S$$

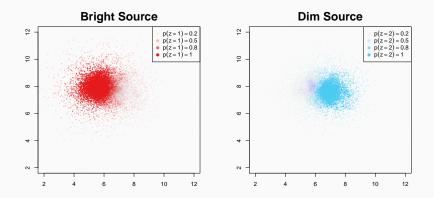
• Event Allocation: $(z_1, z_2, ..., z_n)$

Fitting Procedures:

• Gibbs sampling and Metropolis-Hastings MCMC

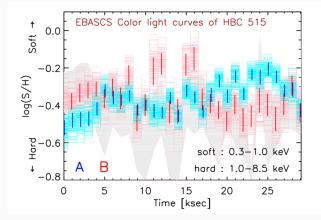
Allocation Output: For each iteration, r, we have

$$\mathbf{z}^{(r)} = \left(z_1^{(r)}, z_2^{(r)}, ..., z_n^{(r)}\right)$$

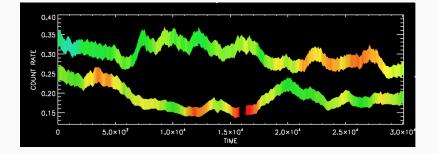

Events list for source k:

Subset events such that $z_i^{(r)} = k$

Allocation Probabilities:


$$\Pr(z_i = k | x_i, y_i, E_i, t_i) \approx \frac{1}{R} \sum_{i=1}^R \mathbb{1}\{z_i^{(r)} = k\}$$

Results for HBC515ab


Allocation probabilities for sources as an alternative to core/wing extraction

HBC515A a/b: Hardness ratio $\log \frac{S}{H}$ light curves

- Sources can be treated as if *isolated* for each allocation $(z^{(r)})$
- Spectra vary and differ at times.

HBC515A a/b: Light-Energy Curves (sliding window)

- Red areas indicate source softened, blue = hardened
- Spectra are changing especially dimmer source

 \bullet **Deterministic** allocation rule \rightarrow **probabilistic** allocation rule

$$z_i = 1 | x_i, y_i \rightarrow p(z_i = 1 | x_i, y_i, e_i, t_i)$$

- Quantifying uncertainty like this **utilizes more data** and **more closely reflects reality**
- Enables more **honest down-stream analyses** by reflecting uncertainty