Disentangling Overlapping Point Sources

Using Spatial, Spectral, and Temporal Information

Luis F. Campos ${ }^{1}$
with David Jones, ${ }^{2}$ Aneta Siemiginowska, ${ }^{3}$ Vinay Kashyap, ${ }^{3}$
Xiao-Li Meng, ${ }^{1}$ David van Dyk ${ }^{4}$
${ }^{1}$ Harvard University,
${ }^{2}$ Texas A\&M University,
${ }^{3}$ Center for Astrophysics, Harvard and Smithsonian
${ }^{4}$ Imperial College London

What are overlapping sources?

$0.069 \quad 0.21$
0.49

1
2.2
4.4
8.7

18
35

Why do we see this?

- Close proximity and instrument effects:

How are overlapping sources typically analyzed?

- cores/wings are defined spatially for each source
- separate events into sources
- continue analysis separately

How are overlapping sources typically analyzed?

This leaves much to be desired

- discards lots of data
- overestimates our certainty

Certainty?

- Sources: 1.2 arcsec apart
- Core regions: 0.5 arcsec radius
- Left source: $1.6 x$ brighter
- About about 13% events in dimmer core will be misclassified

Using models to capture uncertainty

Jones, Kashyap, van Dyk (2015) "Disentangling Overlapping Astronomical Sources using Spatial and Spectral Information." ApJ

- Define p(source|location, energy)
- Based on spatial, equally likely L or R - energy?
- Key: you need differing energy distributions.

A complication for HBC515A

- HBC515Aab: the energy distributions don't seem to differ.

Extending the model to supplement

- Would it benefit to use temporal information $\left(t_{i}\right)$ to supplement?

Setting A Joint Data Model

Consider the following factorization of likelihood for model parameters Θ

$$
\begin{aligned}
p\left(x_{i}, y_{i}, E_{i}, t_{i} \mid z_{i}=j, \Theta\right)= & p\left(x_{i}, y_{i} \mid E_{i}, t_{i}, z_{i}=j, \boldsymbol{\Theta}\right) \\
& p\left(t_{i} \mid z_{i}=j, \boldsymbol{\Theta}\right) \\
& p\left(E_{i} \mid t_{i}, z_{i}=j, \boldsymbol{\Theta}\right)
\end{aligned}
$$

Some modeling assumptions/decisions:

1. Spatial model: $\left(x_{i}, y_{i} \mid z_{i}=s\right) \sim f_{\mu_{j}}$ point-spread function
2. Time model: Multinomial-Dirichlet model with fixed time-breaks
3. Energy model: Gamma distributions that vary across source and time.

Parameters and model fitting

Parameters:

- Source Intensities: $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{S}\right)$
- Source locations: $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{S}\right)$
- Time-varying Intensities: $\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{S}\right)$
- Time and source-varying Energy distributions:

$$
\left(\alpha_{j k}, \beta_{j k}\right), \quad j=1, \ldots, J, k=1, \ldots, S
$$

- Event Allocation: $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$

Fitting Procedures:

- Gibbs sampling and Metropolis-Hastings MCMC

Bayesian Mixture Model

Allocation Output: For each iteration, r, we have

$$
z^{(r)}=\left(z_{1}^{(r)}, z_{2}^{(r)}, \ldots, z_{n}^{(r)}\right)
$$

Events list for source k :
Subset events such that $z_{i}^{(r)}=k$

Allocation Probabilities:

$$
\operatorname{Pr}\left(z_{i}=k \mid x_{i}, y_{i}, E_{i}, t_{i}\right) \approx \frac{1}{R} \sum_{i=1}^{R} 1\left\{z_{i}^{(r)}=k\right\}
$$

Results for HBC515ab

Bright Source

Dim Source

Allocation probabilities for sources as an alternative to core/wing extraction

HBC515A a/b: Hardness ratio $\log \frac{S}{H}$ light curves

- Sources can be treated as if isolated for each allocation $\left(z^{(r)}\right)$
- Spectra vary and differ at times.

HBC515A a/b: Light-Energy Curves (sliding window)

- Red areas indicate source softened, blue $=$ hardened
- Spectra are changing - especially dimmer source

Conclusions

- Deterministic allocation rule \rightarrow probabilistic allocation rule

$$
z_{i}=1 \mid x_{i}, y_{i} \rightarrow p\left(z_{i}=1 \mid x_{i}, y_{i}, e_{i}, t_{i}\right)
$$

- Quantifying uncertainty like this utilizes more data and more closely reflects reality
- Enables more honest down-stream analyses by reflecting uncertainty

